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Abstract

An outbreak of Coronavirus Disease 2019 (COVID-19) emerged in Wuhan, China
in late December. Within four months, the World Health Organization (WHO) charac-
terized the disease as a pandemic. As of July 10, 2020, the United States has reported
more confirmed cases than any other country, and the count continues to increase. The
state of New York has been the hardest hit with 404,000 confirmed cases, 223,000 of
which are attributed to New York City (NYC) alone. Given that homelessness in NYC
has reached its highest level since the Great Depression and many of the precaution-
ary measures for preventing COVID-19 are not an option for the homeless, a major
concern is the contribution of this group to the prolongation of the epidemic. In order
to analyze the role of the homeless population in NYC’s COVID-19 dynamics, we use
a SEIR-like, two-group epidemic model, for the homeless and housed populations un-
der preferential mixing. Parameter values and initial states, whenever possible, were
defined using publicly available data about COVID-19 and homelessness in NYC. Our
findings indicate that preferential mixing and compliance with precautionary measures
have a significant influence on the final epidemic size for NYC. We use these results
to discuss the importance of the homeless population when considering the wellness of
the city.

Keywords: COVID-19; homelessness; reproduction number; control measures;
New York City; epidemiology;
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1 Introduction

As of June 30, 2020, there were 10,185,374 globally confirmed cases of Coronavirus Disease
2019 (COVID-19) and among those 503,863 deaths. Currently the regions with the most
reported cases include the North America, Europe, Eastern Mediterranean, and South-East
Asia [8]. In the United States (U.S.) alone there were 2,537,636 confirmed cases with 126,203
deaths, the highest number recorded out of any country so far. Coronavirus is a single-
stranded RNA belonging to the family coronaviridae. All human found variations of the
virus have been shown to originate from animals. Similar to cases of Middle East Respiratory
syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS), it was discovered in
Wuhan, China with patients showing symptoms of the virus ranging from mild flu like
symptoms to severe symptoms such as pneumonia [3]. After 41 patients tested positive for
this new form of the virus, it was named severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2).

Known to originate from bats, there is little known about the mediator responsible
for transmitting the virus to humans. Although similar forms have been seen in the past,
what makes this virus novel is that it originated in animals and has now been seen to be
transmitted from human to human. Since our immune system is yet to develop immunity to
this virus, we lack the necessary response system to fight it off [9]. This may be especially
harmful for people with compromised immune systems, such as those taking medications or
suffering from health conditions [9].

The virus is known to spread through droplets when an individual carrying the virus
talks, sneezes, or coughs. It can also be transmitted through surfaces, this occurs when
a non-carrier of the virus touches a surface and then touches an opening of their body
such as their mouth, nose, or eyes [8]. Due to its novelty, there are currently no approved
vaccinations available to the public. In the absence of vaccination, CDC suggests several
control measures, few of which include social distancing, wearing cloth covering when in
public, and hand washing.

A population that cannot consistently follow the recommended CDC guidelines is the
homeless population. Furthermore, they are among those with underlying health conditions
and most vulnerable for the disease. In 2018, 552,830 people in the U.S. were homeless
on a given night with NYC accounting for a little over 14% of that population [1]. NYC
alone accounts for 85% of the homeless population in New York State with the number of
homeless people expected to grow [1]. Despite its high homeless population, it has the lowest
unsheltered population with only 5% accounting for unsheltered homeless [1]. However,
among those that are sheltered, one of the main concerns is the tight and closely confined
spaces within shelters which make social distancing difficult. Adding to these conditions is
the lack of sanitary bathrooms, dining areas, and bedrooms [6].

In 2010 homeless people with underlying health conditions accounted for 552,000 of
emergency department visits in NYC. This is mainly due to the fact that homeless people
are generally more vulnerable to disease. They suffer higher levels of physical illnesses
such as cardiovascular disease, mental illness, hypertension and infectious diseases such as
tuberculosis [3]. Since the need for clinical care is secondary to the need for shelter and food,
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they often delay seeking medical attention until their conditions have become severe. Lack
of access to appropriate medical care increase the frequency of medical care visits.

When considering frequent users of the healthcare system, reports have shown that the
homeless population has a rate of hospitalization and use of emergency departments four and
three times higher, respectively, in comparison to the U.S average [4]. Compared to visits
by members of low income households, these visits incur an additional cost to the state of
$ 2,400 per hospital visit. In addition to hospital costs, the current spending on homeless
shelters for the population is $ 2.04 billion. This comes from a total of $ 3.08 billion of the
total projected spending on homelessness [4].

This study centers on the COVID-19 epidemic with a focus on the homeless population
in NYC. The goal of this study is to quantify the homeless subpopulation’s ability to affect the
dynamics of the virus. This particular group is of interest mainly due to the disproportionate
impact of the epidemic on the homeless population. With 63,839 people sleeping in shelters
every night, in May 2020, there were 926 confirmed cases of COVID-19 with 179 shelters
affected [6]. The lack of sanitation equipment such as soap, hand sanitizer, and face masks
made available to the population can intensify the vulnerability of the homeless population
to the disease. Overall, because the homeless population does not have the means to follow
the recommended precautionary measures for the epidemic, they are more likely to acquire
and spread the virus.

2 Methods

2.1 Model Formulation

To better understand the dynamics between the homeless and housed population we use
a two group Susceptible-Exposed-Asymptomatic-Infective-Removed (SEAIR) compartmen-
tal model. One population is the homeless population, while the other is composed of the
housed population. Our Susceptible class (S) is comprised of individuals who have not yet
been exposed to the disease. Exposure happens at rate βi, and moves group i’s individuals
into the incubation stage after first encountering the virus. This represents their transition
into the Exposed class (E), where they have the virus but are not yet infectious. They
transition from this class with a rate, φ. When exiting the exposed class, people become
infectious. These people will either exhibit symptoms and enter the symptomatic Infected
class (I), or they will not develop symptoms and instead enter the Asymptomatic infected
class (A). We quantify this distinction by a term, σ, which is the proportion of individuals
who do not develop symptoms.

Given the short time span in which COVID-19 spreads, taking only a few months to
reach global pandemic levels, our model assumes a constant total population and labels the
final class as Removed (R). All individuals who get exposed eventually reach the Removed
class after having recovered or died of the disease. The recovery rate is γ and the disease-
related mortality for a member of group i is µi. Note that, due to the lack of symptom in the
asymptomatic group, the disease does not typically affect asymptomatic individuals severely
and so the rate of death for asymptomatic individuals is assumed to be negligible.
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Common culture in NYC dictates the assumption that our groups exhibit preferential
mixing; homeless people primarily interact within their own group, and housed individuals
primarily mix among themselves. This is incorporated by including the pij terms, where
i = 1, 2 and j = 1, 2. Each one of these terms is a numerical account of the proportion
of individuals from the i group which mixes with the j group. Note that the cross terms
are marking the same event. That is, p12 denotes mixing of group 1 with group 2, and p21
denotes mixing of group 2 with group 1, which is the same event.

2.2 COVID-19 Epidemic Model

We begin by establishing that Ni is the total population for each group, where i =
1 indicates the homeless group and i = 2 refers to the housed group. The susceptible
class is denoted by Si, the exposed class by Ei, the symptomatic infected class by Ii, the
asymptomatic infected by Ai, and recovered class by Ri.

The population that is infective will take the form I+A
N

. That is, effective contact
can occur with either an asymptomatic infective individual or with a symptomatic infective
individual. One step further, we will find that in our model, these infectives can come from
either the housed or homeless population, and in order to capture these dynamics we make
use of preferential mixing terms which will be discussed in detail.

By considering the general impact the control measures such as mask-wearing, maintain-
ing at least 6 feet of distance from others, and frequent thorough hand washing, might have,
we include a term, (1− αi). The parameter αi measures the compliance of the control mea-
sures. We let 0 ≤ αi ≤ 1, where αi = 0 denotes no compliance and αi = 1 denotes complete,
perfect compliance with the control measures. We specify that αi values are group-specific
because each population is a different practical ability to comply with suggested precautions.
Notably, at α1 = α2 = 0 we have no control measure being employed and get the control-free
version of our model. On the other hand if α1 = α2 = 1, there is no possibility of new
infections and the effective rate of exposure drops to 0.

A fuller description of βi is given by investigating the standard incidence model of
transmission. In this model, βi = pci, where p is the probability of transmission given an
effective contact and ci is the rate of effective contacts for an individual in group i. We
consider that the rate of effective contact is the only difference between contact with an
asymptomatic person and contact with a symptomatic person[7]. To account for this, we
establish the parameter δ ≥ 0 which will scale our singular βi value to the appropriate size
for transmission from an asymptomatic person belonging to group i.

The mathematical expressions capturing the previously described dynamics are the
following
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Ṡ1 = −S1β1(1− α1)

(
p11

δA1 + I1
N1

+ p12
δA2 + I2
N2

)
,

Ė1 = S1β1(1− α1)

(
p11

δA1 + I1
N1

+ p12
δA2 + I2
N2

)
− φE1,

Ȧ1 = σφE1 − γA1,

İ1 = (1− σ)φE1 − (µ1 + γ)I1,

Ṙ1 = γA1 + (µ1 + γ)I1,

Ṡ2 = −S2β2(1− α2)

(
p21

δA1 + I1
N1

+ p22
δA2 + I2
N2

)
,

Ė2 = S2β2(1− α2)

(
p21

δA1 + I1
N1

+ p22
δA2 + I2
N2

)
− φE2,

Ȧ2 = σφE2 − γA2,

İ2 = (1− σ)φE2 − (µ2 + γ)I2.

Ṙ2 = γA2 + (µ2 + γ)I2,

(1)

where Ni = Si + Ei + Ii + Ai +Ri and i = {1, 2}.
We assumed preferential mixing among the populations and used the following formulas

to implement this:

p11 = π1 + (1− π1)p1
p12 = (1− π1)p2
p21 = (1− π2)p1
p22 = π2 + (1− π2)p2

pi =
(1− πi)βiNi

(1− π1)β1N1 + (1− π2)β2N2

where pij, as seen in the table below, indicates the proportion of contacts that an individual
in group i has with an individual in group j. Additionally, πi is the proportion of each group
which has an own-group mixing preference and will thus only mix randomly among their
own group. The portion of each group that does not have a preference is assumed to mix
proportionally among either group. The expression for pi gives this proportion in terms of
effective contacts. That is, pi is the proportion of effective contacts that is attributable to
contact with an infective member of group i.
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Parameters Descriptions Units Values

β1 Rate of transmission for homeless days−1 0.25

β2 Rate of transmission for housed days−1 0.19
pij Proportion of individuals in group i who N/A [0,1]

contact an individual in group j

φ Rate of entering infectious class days−1 0.1923

µ1 Rate of COVID-19 related death homeless days−1 0.00321

µ2 Rate of COVID-19 related death for housed days−1 0.0027

γ Rate of recovery days−1 0.0556
σ Proportion of infections that are asymptomatic N/A 0.325
δ Asymptomatic factor, accounts for relative N/A [0.1, 10]

infectivity of asymptomatic individuals
αi Compliance factor, proportion of individuals N/A [0,1]

in group i taking recommended precautions

Table 1: Parameter Definitions and Units for ODEs

3 Mathematical Analysis

3.1 Derivation of Rc and R0

The control reproductive number, Rc, is the average number of secondary infections
caused by a single infective individual over the course of the infected period, in a susceptible
population where disease control measures are being implemented.

To begin the calculation of Rc we write the next generation matrix (NGM)[5] . The
Rc value for the system is the dominant eigenvalue of this matrix. We obtain a 6x6 matrix
however, we can reduce this matrix. We notice that first and fourth rows of this matrix
provide us some information. Furthermore, the only relevant columns are, correspondingly,
the first and the fourth columns. This gives us our reduced matrix with the corresponding
values of p12 and p21.

FV −1
reduced =


S1β1δp11σ(1−α1)

N1γ
− S1β1p11(1−α1)(σ−1)

N1(γ+µ1)
S1β1δp2σ(1−α1)(1−π1)

N2γ
− S1β1p2(1−α1)(1−π1)(σ−1)

N2(γ+µ2)

S2β2δp1σ(1−α2)(1−π2)
N1γ

− S2β2p1(1−α2)(1−π2)(σ−1)
N1(γ+µ1)

S2β2δp22σ(1−α2)
N2γ

− S2β2p22(1−α2)(σ−1)
N2(γ+µ2)



It is now possible to define new variables which simplify our matrix even further. In order
to do this, we let
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Γ1 =
δσ

γ
+

1− σ
γ + µ1

Γ2 =
δσ

γ
+

1− σ
γ + µ2

then the matrix becomes,

FV −1
reduced =

[
Γ1β1p11 (1− α1) Γ2β2p1 (1− α1) (1− π1)

Γ1β1p2 (1− α2) (1− π2) Γ2β2p22 (1− α2)

]
Thus,

Rc =
Γ1β1p11 (1 − α1) + Γ2β2p22(1 − α2) +

√
(Γ1β1p11 (1 − α1) − Γ2β2p22(1 − α2))2 − 4(Γ1Γ2β1β2p1p2 (1 − α1) (1 − α2) (1 − π1) (1 − π2))

2

R0 is given when α1 = α2 = 0, where the system contains no control measures. Hence,

R0 =
β1Γ1p11 + β2Γ2p22 +

√
(β1Γ1p11 − β2Γ2p22)2 + 4β1β2Γ1Γ2p12p21

2
(2)

These expressions correspond to the average number of secondary infections an infected
person could cause in an otherwise entirely susceptible population. Rc relates to the case
that the population is employing control measures, and R0 corresponds to the instance in
which there are no control measures.

3.2 Equilibrium Points

All parameters and state variables of the model are non-negative and αi ∈ [0, 1] for
i = 1, 2 in which case

−Siβi(1− αi)
(
pii
δAi + Ii
Ni

+ pij
δAj + Ij
Nj

)
≤ 0,

where j = 1, 2 and i 6= j. In this case both susceptible classes are continuously decreas-
ing functions of time. This observation leads to the expectation no endemic equilibrium will
be observed. That is, with the assumption of no new inflows of susceptibles, the disease
must die out. To see this point demonstrated in greater detail, refer to Sections A and D
in the Appendix.

Given that αi is the compliance rate with precautionary measures for group i, it is
reasonable to assume αi 6= 1. With that assumption, there are only two solutions to the
equation

− Siβi(1− αi)
(
pii
δAi + Ii
Ni

+ pij
δAj + Ij
Nj

)
= 0. (3)
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Let Q∗
k denote the k-th equilibrium point, then Q∗

k is found by choosing one of the
solutions of (3) and substituting into the rest of the system. Assuming S∗

1 = 0 and S∗
2 = 0

the equilibrium point is Q∗
1 = (0, 0, 0, 0, 0, 0, 0, 0). Furthermore, if S∗

1 = 0 and

p21
δA∗

1 + I∗1
N1

+ p22
δA∗

2 + I∗2
N2

= 0,

the equilibrium point is Q∗
3 = (0, 0, 0, 0, f2N2, 0, 0, 0), where fi is a proportion

(0 < fi ≤ 1) of the i-th group. Supposing

p11
δA∗

1 + I∗1
N1

+ p12
δA∗

2 + I∗2
N2

= 0

and S∗
2 = 0 yields the equilibrium point Q∗

2 = (f1N1, 0, 0, 0, 0, 0, 0, 0). Lastly, making
the assumptions

p21
δA∗

1 + I∗1
N1

+ p22
δA∗

2 + I∗2
N2

= 0,

and

p11
δA∗

1 + I∗1
N1

+ p12
δA∗

2 + I∗2
N2

= 0

gives the disease-free equilibrium Q∗
4 = (f1N1, 0, 0, 0, f2N2, 0, 0, 0). In summary, the four

equilibria of the system are

Q∗
1 = (0, 0, 0, 0, 0, 0, 0, 0),

Q∗
2 = (f1N1, 0, 0, 0, 0, 0, 0, 0),

Q∗
3 = (0, 0, 0, 0, f2N2, 0, 0, 0),

Q∗
4 = (f1N1, 0, 0, 0, f2N2, 0, 0, 0).

Notably, the infectious compartments are empty at all equilibrium points, as hypothe-
sized.

The Jacobian that is given in Section E of the Appendix has zero as an eigenvalue
with multiplicity two when evaluated at the equilibrium points Q∗

1, Q
∗
2, and Q∗

3. As for what
this finding adds to understanding the model, it is first important to draw a distinction
between a hyperbolic equilibrium and a non-hyperbolic equilibrium. If all eigenvalues of the
Jacobian have a non-zero real part, then small perturbations do not change the qualitative
behaviour of the system near the equilibria and it is said to be hyperbolic [10]. On the other
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hand, when the Jacobian has a zero eigenvalue the system is not structurally stable at that
point and the equilibria is called non-hyperbolic. Given a small perturbation, the equilibria
could disappear, change stability, or split into several equilibria. Unlike the previous three,
the equilibrium point Q∗

4 is hyperbolic; therefore, small perturbations will not qualitatively
change the phase plane at this point.

4 Results

4.1 Numerical Evaluation of R0

A closed-form expression (2) for the basic reproductive number of (1) was obtained in
Section 3.1. With the basic reproductive number expressed in terms of the parameters of
the model, it is now possible to observe the behavior of R0 as parameter values change. In
particular, the purpose of this study is to examine the impact of preferential mixing between
the homeless and housed populations of New York City. Two assumptions being made are
that the homeless population is a high-risk group and face difficulties when trying to comply
with the recommended precautions (e.g. social distancing). Bearing that in mind, it is
natural to question what happens to the disease dynamics when the two groups come into
contact more frequently or if the homeless population complies with precautionary measures
at a higher rate. Mathematically, these questions are addressed by changing the values
of the parameters for preferential mixing (πi) and for compliance with the recommended
precautionary measures (αi). Although there are many different outcomes that could change
and are worth taking note of, the most fundamental aspect of any epidemic model is the basic
reproductive number. Therefore, the first simulation undertaken focuses on how the basic
reproductive number changes as the preference for mixing within each group changes. Table
2 presents values for the basic reproductive number when 80 percent of the homeless group
prefers to mix among themselves, and the preference for mixing within the housed group
is 0, 50, and 99 percent. Similarly, Table 3 lists values of the basic reproductive number
when 80 percent of the housed group prefers to mix among themselves, and the preference
for mixing within the homeless group is 0, 50, and 99 percent.

π1 π2 R0

0.8 0 2.4528
0.8 0.5 2.4538
0.8 0.99 2.5444

Table 2: Values of R0 when π1 is fixed.

π1 π2 R0

0 0.8 2.3012
0.5 0.8 2.3048
0.99 0.8 3.0126

Table 3: Values of R0 when π2 is fixed.

When the proportion of the housed group with a preference for mixing among them-
selves is fixed at 0.8, Table 3 indicates the value of R0 remains relatively consistent for small
values of π1 but increases significantly when π1 becomes large. In other words, as the prefer-
ence among the homeless group for contact within their group becomes large, the expected
number of secondary cases produced by a single typical infection in a completely susceptible
population increases. Figure 1 plots the basic reproductive number for all combinations of
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preferences and shows that R0 does not increase linearly with π1. Rather, a threshold occurs
at approximately π1 = 0.8. That is, it is seen when the fraction of the homeless group that
has a preference for mixing among themselves is less than 0.8, R0 varies little as π1 changes.
On the other hand, once this threshold is reached, increases in R0 occur on a noticeable
scale as π1 increases.

Unlike the preference parameter for the homeless, the results given in Table 2 and
Figure 1 do not indicate that large fractions of the housed group having a preference for
mixing among themselves has a negative affect on R0. As the value of π2 approaches the
point at which the entire housed group has a preference for contact among themselves, R0

increases slightly from 2.45 to 2.54. Figure 1 extends the results in Table 2 by showing that
regardless of what fraction of the housed group prefers mixing with their own group, changes
in R0 do not occur on the same scale as when the preference parameter for the homeless
changes. From an epidemiological perspective, this finding suggests the parameter π2 is not
a substantial factor for preventing the spread of COVID-19 in NYC.

Figure 1: Changes in the reproductive number for different preferences.

Observing how the value of R0 changes as the level of interaction between the homeless
and housed group varies was the focal point of the simulation presented in Figure 1; yet, the
issue of different rates of compliance with precautionary measures has been overlooked. Al-
though the assumably different compliance rates presents a concern for ending the epidemic,
R0 is not the appropriate metric to use for exploring this idea. If the goal of the analysis is to
determine how different compliance rates impact the epidemic, then changes in the control
reproductive number (Rc) must be the focus of the analysis. More specifically, the analy-
sis must determine for what values of the parameters, if any, that the control reproductive
number is less than one. In this case the disease-free equilibrium is asymptotically stable.
Rather than attempting to answer this question here, an alternative approach to exploring
the potential consequences of low rates of compliance among the homeless and significantly
higher compliance rates among the housed group is taken in later sections (4.3).
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4.2 Peak Time

In epidemiology, ”peak time” is the point at which the maximum number of infectious
individuals is reached. For the system (1), there are two groups and time is being measured
in days, so peak time refers to the day at which the maximum number of individuals in
the homeless and housed groups are infectious. Much of the media attention surrounding
the COVID-19 epidemic has emphasized ”flattening the curve”, so a potential concern if
the homeless population is a high-risk group is that mixing could cause the curve to spike
rather than flatten. The preciseness of this predicament is explored numerically by observing
changes in the peak time and proportion of each group that is infectious as parameter values
change. The first simulation attempts to quantify the effect of mixing between the homeless
and housed groups by increasing the preference parameters simultaneously (i.e. π1 = π2).
When πi (i = 1, 2) takes on small values, the simulations indicate the dynamics when there
is a substantial amount of mixing between the groups. For example, π1 = π2 = 0 is the case
of proportional mixing. At the other extreme, large values of π1 and π2 approach like-with-
like mixing where the homeless only mix with others in the homeless group and vice versa.
Results are displayed in Table 4 and Figure 2.

π1 = π2 Peak Time for I1 Peak Time for I2 I1 I2
0 11 107 0.00846 0.0156

0.1 13 106 0.0890 0.0157
0.2 15 106 0.0952 0.0159
0.3 22 105 0.1053 0.0160
0.4 32 104 0.1231 0.0161
0.5 35 103 0.1455 0.0160
0.6 36 103 0.1687 0.0157
0.7 36 103 0.1909 0.0154
0.8 35 104 0.2116 0.0150
0.9 34 106 0.2304 0.0145

Table 4: Peak times and proportion of each group that is infectious.

The results listed in Table 4 imply that increased levels of mixing within the groups is
not ideal for the homeless. Namely, as the assumed values of the preference parameters tend
towards both groups preferring to mix within their own group, the proportion of the homeless
group that is infectious at the peak time increases monotonically. While the variation is not
substantial, there is an initial increase in the fraction of infectious individuals in the housed
group up until a peak is reached at π1 = π2 = 0.4. As for how to interpret this observation,
first note it should be expected that large amounts of mixing with members of the same group
is good for the housed group. An explanation for why the peak occurs at π1 = π2 = 0.4
is not so clear-cut, but one possible explanation is there is just the right amount of mixing
between groups for the housed to get the disease from the homeless and then infect others in
their own group. For πi > 0.4 (i = 1, 2), the proportion of the housed group that is infectious
at the peak time is continuously decreasing. Although the numeric values are useful, the
dynamics are more easily understood from Figure 2. For example, the case of proportional
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mixing (i.e. π1 = π2 = 0) results in a much flatter curve for the homeless group than when
π1 = π2 = 0.9. Contrarily, the peak is minimized for the housed group when π1 = π2 = 0.9,
or when a large fraction of each group has a preference for mixing with members in the same
group.

It is clear from Figure 2 that mixing has more of an impact on the dynamics of COVID-
19 for the homeless group, however, this does not necessarily mean proportional mixing
is optimal for controlling the epidemic. When one takes into account the relative sizes
of the homeless and housed groups in New York City, determining the ideal amount of
mixing becomes more difficult. On the other hand, the ideal level of mixing for each group
individually is straightforward. For the homeless, proportional mixing is optimal while like-
with-like mixing is ideal for the housed group. That is, the homeless population of New York
City is a high-risk group for COVID-19 and their interactions with the housed population
can impact the overall dynamics of the disease within the city. The extent of this impact
will be discussed further in Section 5.

Figure 2: Peak time for different values of π1 = π2.

Regardless of what the model suggests is a desirable level of mixing, it is inevitable
that the homeless and housed groups will come into contact with one another. Hence, an
issue just as pressing as the impact of mixing is the affect of compliance with precautionary
measures among the two groups on peak time and levels of infection. There is the potential
that high rates of compliance among the housed group that would ordinarily flatten the
curve are mitigated by low rates of compliance among the homeless group to the extent that
a surge in the number of cases continues. To investigate this point mathematically, the ratio
α2

α1
is varied from 0.5 to 50 as peak time and the proportion of each group that is infectious

is observed. Results are given in Table 5 and Figure 3.
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α2

α1
Peak Time for I1 Peak Time for I2 I1 I2

0.50 10 105 0.0801 0.0141
0.56 11 105 0.0828 0.0142
0.63 12 105 0.0860 0.0143
0.71 13 106 0.0901 0.0145
0.83 15 106 0.0955 0.0146
1.00 21 106 0.1036 0.0148
1.25 30 106 0.1174 0.0150
1.67 34 106 0.1356 0.0151
2.50 36 105 0.1548 0.0152
5.00 36 104 0.1736 0.0153
50.00 36 103 0.1896 0.0154

Table 5: Peak time and the proportion of each group that is infectious for different values
of α2

α1
.

Note that for simulation results given in Table 5, the proportion of the housed group
that is complying with precautionary measures is being held constant at α2 = 0.5. In other
words, as the ratio α2

α1
increases, the proportion of the homeless who are complying with

precautionary measures is decreasing monotonically from from 1 to 0.01. The constant rate
of compliance being used is not intended to precisely reflect the compliance rate of the housed
population in New York City; instead, the purpose of this simulation is to identify the impact
on the disease dynamics when compliance among the homeless and housed groups take on
significantly different values. That in mind, the value being assumed for α2 is not of upmost
importance.

As the ratio of compliance among the housed relative to the homeless group increases,
the peak time increases monotonically for the homeless group and remains relatively the same
for the housed group. Also, as this increase in the ratio of the compliance factors occurs,
the proportion of both groups that are infectious at the peak point increases as well. Thus,
unlike the prior simulation, a consensus can be reached on the optimal value of the ratio of
compliance rates. If one of the goals for combating the COVID-19 epidemic is flattening the
curve, Figure 3 suggests the housed group complying at half of the rate that the homeless
are complying is the most ideal value that was tried in the simulation. Clearly, however, this
is the result of perfect compliance among the homeless group and not an accurate indication
of the optimal value for the ratio of compliance rates.

14



Figure 3: Peak time for different values of α2

α1
.

4.3 FES

Another important aspect of any epidemic is the Final Epidemic Size (FES). Once
the disease has died out, the FES is defined as the number of individuals in the population
who are not susceptible. As with the previous metrics used for gauging the impact of an
epidemic, mixing between the homeless and housed groups could cause the FES to be larger
than it would be otherwise. Unlike the previous analyses, however, time is held constant in
FES simulations. Specifically, a time value must be chosen that is large enough to ensure
none of the effects of transient dynamics of the system are captured in the simulation.

Since the purpose of this study is to quantify the impact of control measures for the
homeless group on COVID-19 dynamics in New York City, one matter of interest is whether
changing control measures among the homeless can impact the FES for the city. It is
assumed that the fraction of each group with a preference for mixing with others in their
group along with differences in the compliance rates will affect the FES. Nonetheless, due to
the relatively small size of the homeless group, it is not clear to what extent this assumption
is true. Numerical simulations are one approach to quantifying the magnitude of the impact
that different levels of mixing and compliance have on FES, but simulations do not illustrate
what will happen under all possible circumstances. Compliance among the housed group
could take on many values (α2 ∈ [0, 1]), but only low (α2 = 0.5), moderate (α2 = 0.8),
and high (α2 = 0.9) compliance rates will be studied. Note that the definitions being used
for low, moderate, and high compliance are not taken from the literature but are specific
to this study. For every level of compliance among the housed group, three values for the
compliance factor among the homeless are used such that the ratio of the two compliance
rates are α2

α1
= 4, α2

α1
= 2, and α2

α1
= 1. In other words, the housed group complies at a rate 4

times greater, 2 times greater, and at the same rate as the homeless group. The preference
each group has for mixing with others in the same group is assigned values by taking 50
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equally spaced grid points in a unit square. Taking this approach indicates what happens to
the FES for any amount of mixing.

4.4 Cases of Compliance

4.4.1 Case 1 (α2 = 0.5)

The first case is when there is a low rate of compliance among the housed group which is
defined here to be when half of the group is complying with precautionary measures. Figures
4, 5, and 6 illustrate the case where the compliance rate among the homeless is 0.125, 0.25,
and 0.5, respectively. These figures show that the FES for the homeless gets larger as the
fraction of the homeless with a preference for mixing within their group increases. This result
is expected since a higher rate of transmission is being assumed for the homeless group and
they are complying with precautionary measures at a lower rate than the housed group.
The housed group, on the other hand, benefits from a larger fraction of the homeless having
a preference for mixing within their own group. That is, the FES for the housed group
decreases as more of the homeless prefer to mix with others who are homeless.

If the ideal outcome is lowering the FES for the total population of New York City,
there are two ways in which this is accomplished. Firstly, the most significant decrease
in the total FES occurs when the fraction of the homeless with a preference for mixing
with other homeless increases. To understand this result, it is important to recognize the
relative sizes of the groups being considered. Namely, the homeless group makes up less than
one percent of the total population of New York City. Thus, increased mixing among the
homeless has a negative impact on the homeless FES but this is outweighed by the decrease
in FES experienced by the housed group. The second way in which a lower total FES occurs
is when the fraction of the housed group with a preference for mixing with others in their
group gets large. This effect is most noticeable when very few of the homeless and almost
all of the housed group have a preference for mixing within their group. Overall, the total
FES is the lowest when contact between the homeless and housed groups is minimal.
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Figure 4: α2

α1
= 4

Figure 5: α2

α1
= 2
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Figure 6: α2

α1
= 1

4.4.2 Case 2 (α2 = 0.8)

Case 2 studies changes in the FES as a greater fraction of the housed group comply
with the recommended precautionary measures. Specifically, an 80% compliance rate among
the housed group is referred to as moderate in this study. Figures 7, 8, and 9 show how the
FES changes for different values of the mixing parameters and when compliance among the
homeless group is 0.2, 0.4, and 0.8, respectively. As was the case for low levels of compliance,
the figures indicate negative consequences for the homeless group’s FES as the fraction of the
homeless that prefer mixing with other homeless increases. With lower rates of compliance
and a higher rate of transmission being assumed for the homeless group, the result is again
anticipated. Interestingly, there is a different relationship between the housed group and
the optimal amount of mixing than was the case for low compliance. When there was low
compliance among the housed group, the FES for the group decreased monotonically as
more of the homeless group gained a preference for mixing with other homeless. For the
case of moderate compliance among the housed group, both Figures 7 and 8 indicate a peak
occurs for the housed group’s FES. Initially, the FES increases as more of the homeless prefer
mixing among themselves but then declines continuously after reaching the peak point at
π1 ≈ 0.4 for Figure 7 and π1 ≈ 0.5 for Figure 8. When the compliance rate for the two
groups are the same, the FES for the housed group again declines monotonically as more of
the homeless prefer mixing among themselves.

A noticeable difference between this simulation and the previous is the magnitude of
the FES. For example, a low value of the FES for the housed group is roughly 2,850,000
individuals in Figure 4 but drops to 320,000 for the case of moderate compliance displayed
in Figure 7. Similarly, a low value of the FES for the homeless group is about 40,000 in
Figure 4 but declines to 20,000 with moderate compliance in Figure 7. Clearly, this result
is good for reducing the total FES for New York City, however, there is another implication
of increased compliance. For the case of low compliance, the FES for the total population
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strongly reflects the FES for the housed group. When the compliance rate of the housed
group is increased, the total FES no longer decreases monotonically as more of the homeless
prefer mixing within their own group. In Figures 7 and 8 both the housed and total FES
initially increase, peak, and then decline as more of the homeless prefer to mix with other
homeless. Since changes in the FES for the homeless is now comparable in scale to changes
in the FES for the housed group, the homeless have a noticeable impact on total FES but
this is moderated by the housed group. In other words, the total FES does not increase
monotonically as more of the homeless prefer mixing among themselves but instead peaks
and then declines due to the housed group.

Figure 7: α2

α1
= 4

Figure 8: α2

α1
= 2
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Figure 9: α2

α1
= 1

4.4.3 Case 3 (α2 = 0.9)

The final case that is studied assumes that there is a 90% rate of compliance with
precautionary measures among the housed group. To make the ratio of the compliance
factors the desired values, compliance rates of 0.225, 0.45, and 0.9 are used for the homeless
group. Like in previous cases, Figures 10, 11, and 12 show that increases in the fraction of the
homeless group with a preference for mixing within their group has a negative consequence
for the FES of the homeless group. Thus, all three simulations indicate large amounts of
mixing within the homeless group is not ideal for controlling the COVID-19 epidemic among
the homeless. As for members of the housed group, the figures suggest the FES is lowest
when the majority of the homeless prefer mixing with themselves. While the ideal strategy
for lessening the impact on each group individually is contradictory, it is noticeable that
the FES for the housed group peaks when approximately half of the homeless group has a
preference for mixing with other homeless. In other words, the FES for the housed group
does not decrease monotonically with the preference parameter for the homeless.

If the population of New York City is considered as a whole, Figures 10, 11, and 12
suggest dynamics that are similar to the case of moderate compliance. Although the housed
group makes up the majority of the population in New York City, only a minor proportion of
this group becomes infectious when there is moderate or high compliance. Hence, unlike the
case of low compliance, the FES for the total population of New York City does not primarily
reflect only the FES for the housed group. Due to the FES for the homeless and housed
groups now being similar in scale, total FES does not decrease as more of the homeless have
a preference for mixing with other homeless. In fact, total FES now increases under those
circumstances.
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Figure 10: α2

α1
= 4

Figure 11: α2

α1
= 2
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Figure 12: α2

α1
= 1

5 Conclusions and Discussion

This study sought to quantify the impact of preferential mixing between the homeless
and housed groups of New York City on the dynamics of COVID-19. In Section (1), a ten-
dimensional system of ODEs was derived based on the assumptions made for interactions
between the homeless and housed groups. Specifically, the standard SEIR model was ex-
panded to include an asymptomatic compartment intended to account for one of the unique
aspects of COVID-19. A factor, δ, was introduced to capture the assumed relative rate of
infectivity of individuals in the asymptomatic compartment. Along with the assumption
of preferential mixing and reduced infectivity of asymptomatic individuals, a distinguishing
point of this model is the compliance factor (αi). With (1 − αi) being the proportion of
group i that is not complying with precautionary measures, this factor reduces the inferred
rate of transmission, βi.

To address our research question, a series of numerical simulations were undertaken.
First, the behavior of the expected number of secondary cases produced by a typical single
infection in a completely susceptible population for various mixing preferences was studied
using the analytical expression for the global reproductive number obtained in Section 3.1.
Second, simulations were run to evaluate the peak time and proportion of each group that
was infectious at that point. In this second series of simulations, changes in the preference
each group has for mixing among itself and the ratio of the compliance rates were considered.
Third, three cases for compliance among the housed group were defined in order to study
changes in the FES for varying degrees of compliance and mixing.

In the first set of simulations, we saw that when the number of homeless people with a
preference for their own group increases (greater π1) there was an increase in the R0 value.
On the other hand, large variations in the housed population’s preference for mixing with
their own group (greater π2) had a negligible effect on the global rate of infection, relative to
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the homeless group. This is because the housed population follows the guidelines outlined
by CDC for preventing the spread of COVID-19. So, even in the chance that they come
into contact with each other, they have lowered the chances of passing the virus to other
individuals. Therefore, as more non-infective people mix amongst each other this impacts
the spread less. On the other hand, the homeless population continues to interact with each
other while maintaining the conditions under which the virus could persist. If the number of
homeless people with a preference for their own group increases, the virus spreads further.

Analysis of the peak time revealed that the greater value of the peak within the housed
population depended on the compliance of the housed population. As a result, we see that
when compliance is lower for the housed population, the peak time occurs at a later day with
a higher proportion of the population, meaning the infection is spreading longer and to more
individuals. Conversely, high compliance with control measures in the housed population
results in a lower peak, meaning less spread of the infection.

In the case that there is more compliance with the housed population than the homeless
population, we saw that increased mixing between the two groups would be beneficial for the
homeless population. In the case when there is more compliance with the homeless than the
housed population, we saw that mixing between groups would be beneficial for the housed
population while being detrimental to the homeless population.

From this we see a relationship holding in the case of more compliance with the housed
or homeless group. If one population group is more infective than the other due to a lack of
control measures or otherwise, increased mixing between the groups would be beneficial for
controlling the disease within the infective group. In the case of this study, because the size
of the housed population is larger than the size of the homeless population, the homeless
population is more likely to display impacts of the mixing. From this, we infer that the size
of the population is also influential on the spread of COVID-19.

Since the housed population is larger than the homeless population we saw that large
variations in the compliance of the housed population has a significant impact on the FES.
Our model accounts for 3 million housed groups while the homeless group accounts for about
60,000 individuals. Overall, we determined that the FES is lowest when there is minimal
mixing within their own group.

Furthermore, we assumed the housed population have greater compliance than the
homeless group because they are equipped with the necessary tools to follow the guidelines to
contain the epidemic. Therefore, the proportional FES of the housed population is lower than
the proportional FES of the homeless population. FES of the homeless population would
benefit from mixing with the housed population, while the housed population would be
negatively impacted. If we consider the total population, increased mixing between the two
groups is expected to lower the FES and would be the best choice if the general population
is considered. However this is not the case for low compliance of the housed group, because
FES would increase for the homeless group.

Although one theoretical solution is to increase mixing amongst both groups, this style
of intervention is not likely to be implemented. Instead, one possible control measure could
be providing housing and sanitary facilities to the homeless population, while maintaining
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that the housed population continues to follow CDC guidelines for preventing the spread
of COVID-19. If homes were provided to the homeless group, this would solve the issue of
social distancing. Similar to the housed population, if the homeless were given the necessary
equipment to take precautionary measures, they reduce the chances of getting infectious.

Two limitations of our study should be noted. Our first limitation is accurately deter-
mining the amount of mixing happening amongst both groups. Though we were not able to
determine exact values associated with the mixing, we ran our simulation for various values
of the mixing parameters to gain a sense of the effect that mixing has overall. The second
limitation is in determining the level of compliance in both groups. Again, the ability to
determine an exact parameter value associated with this aspect of the real world system
alluded us, we were able to simulate the general effect that control measures would have
on disease spread. Despite these limitations, we have successfully quantified the impact of
the epidemic by using simulations and diagrams that would present results for the cases
provided. We determined that although the housed population has a significant impact on
the epidemic, the homeless group still has an influence on the course of the FES. To improve
the public health of the general population, interventions which mitigate the epidemic in the
homeless population should be implemented.
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Appendix A Reducing the System

A ten-dimensional system of ODEs (1) was proposed for modeling the dynamics of
COVID-19 among the homeless and housed populations of New York City. However, for
the purpose of analysis, the system can be reduced to eight dimensions without any loss
of information. To do this, we first notice R1 and R2 do not impact the dynamics of the
system. Furthermore,

Ṅ1 = Ṡ1 + Ė1 + Ȧ1 + İ1 + Ṙ1 = 0,

and

Ṅ2 = Ṡ2 + Ė2 + Ȧ2 + İ2 + Ṙ2 = 0,

which shows N1, N2, and N = N1 + N2 are all constant with respect to time. Therefore,
only the following eight ODEs must be considered in the analysis of system (1)

Ṡ1 = −S1β1(1− α1)

(
p11

δA1 + I1
N1

+ p12
δA2 + I2
N2

)
,

Ė1 = S1β1(1− α1)

(
p11

δA1 + I1
N1

+ p12
δA2 + I2
N2

)
− φE1,

Ȧ1 = σφE1 − γA1,

İ1 = (1− σ)φE1 − (µ1 + γ)I1,

Ṡ2 = −S2β2(1− α2)

(
p21

δA1 + I1
N1

+ p22
δA2 + I2
N2

)
,

Ė2 = S2β2(1− α2)

(
p21

δA1 + I1
N1

+ p22
δA2 + I2
N2

)
− φE2,

Ȧ2 = σφE2 − γA2,

İ2 = (1− σ)φE2 − (µ2 + γ)I2.

(4)

Appendix B NGM

FV −1 =



S1β1δp11σ(1− α1)

N1γ
− S1β1p11(1− α1)(σ − 1)

N1(γ + µ1)

S1β1δp11(1− α1)

N1γ

S1β1p11(1− α1)

N1(γ + µ1)

S1β1p12σ(1− α1)

N2γ
− S1β1p12(1− α1)(σ − 1)

N2(γ + µ2)

S1β1δp12(1− α1)

N2γ

S2β2p12(1− α1)

N2(γ + µ2)
0 0 0 0 0 0
0 0 0 0 0 0

S2β2δp21(1− α2)

N1γ
− S2β2δp21(1− α2)(σ − 1)

N1(γ + µ1)

S2β2δp21(1− α2)

N1γ

S2β2p21(1− α2)

N1(γ + µ1)

S2β2p22σ(1− α2)

N2γ
− S2β2p22(1− α2)(σ − 1)

N2(γ + µ2)

S2β2δp22(1− α2)

N2γ

S2β2p22(1− α2)

N2(γ + µ2)
0 0 0 0 0 0
0 0 0 0 0 0


.
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Appendix C NGM Reduction

Recalling that the cross-mixing must be reciprocal, that is, each contact between a member
of group 1 with a member of group 2 is also an contact between a member of group 2 with
a member of group 1, we can write mathematically that β2p1

N1
= β1p2

N2
. Thus we can also

equate, β1((1 − π1)p2)
S1

N2
= β2((1 − π1)p1)

S1

N1
. Similarly, we also find it to be true that,

β2((1− π2)p1) S2

N1
= β1((1− π2)p2) S2

N2
. And when these substitutions are made in our matrix,

we get the following:

FV −1
reduced =


S1β1δp11σ(1−α1)

N1γ
− S1β1p11(1−α1)(σ−1)

N1(γ+µ1)
S1β2δp1σ(1−α1)(1−π1)

N1γ
− S1β2p1(1−α1)(1−π1)(σ−1)

N1(γ+µ2)

S2β1δp2σ(1−α2)(1−π2)
N2γ

− S2β1p2(1−α2)(1−π2)(σ−1)
N2(γ+µ1)

S2β2δp22σ(1−α2)
N2γ

− S2β2p22(1−α2)(σ−1)
N2(γ+µ2)


Now, because we are interested in finding expressions for the Rc and R0 values of our system,
we must approximate an entirely susceptible population. Hence we substitute in S1 = N1

and S2 = N2,

FV −1
reduced =


β1δp11σ(1−α1)

γ
− β1p11(1−α1)(σ−1)

γ+µ1

β2δp1σ(1−α1)(1−π1)
γ

− β2p1(1−α1)(1−π1)(σ−1)
γ+µ2

β1δp2σ(1−α2)(1−π2)
γ

− β1p2(1−α2)(1−π2)(σ−1)
γ+µ1

β2δp22σ(1−α2)
γ

− β2p22(1−α2)(σ−1)
γ+µ2


It is now possible to define new variables which simplify our matrix even further. In order
to do this, we let

Γ1 =
δσ

γ
+

1− σ
γ + µ1

Γ2 =
δσ

γ
+

1− σ
γ + µ2

then the matrix becomes,

FV −1
reduced =

[
Γ1β1p11 (1− α1) Γ2β2p1 (1− α1) (1− π1)

Γ1β1p2 (1− α2) (1− π2) Γ2β2p22 (1− α2)

]
Remembering that in order to find Rc we want to find the dominant eigenvalue of this matrix,
we produce the following expression whose solutions correspond to the both the eigenvalues
of this reduced matrix and the non-zero eigenvalues of our original next generation matrix.

λ± =
Γ1β1p11 (1− α1) + Γ2β2p22(1− α2)±

√
(Γ1β1p11 (1− α1) + Γ2β2p22(1− α2)))2 − 4(Det)

2
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Where, for compactness, we use Det to mean the determinant of the reduced matrix.
The expression for which is

Det = −Γ1Γ2β1β2p1p2 (1− α1) (1− α2) (1− π1) (1− π2) + Γ1Γ2β1β2p11p22 (1− α1) (1− α2)

If we expand out all terms under the radical and then recombine we can get a simpler expres-
sion,

λ± =
Γ1β1p11 (1 − α1) + Γ2β2p22(1 − α2) ±

√
(Γ1β1p11 (1 − α1) − Γ2β2p22(1 − α2))2 − 4(Γ1Γ2β1β2p1p2 (1 − α1) (1 − α2) (1 − π1) (1 − π2))

2

Appendix D Equilibria Computations

Equilibria are found by solving the system of equations

−S∗
1β1(1− α1)

(
p11

δA∗
1 + I∗1
N1

+ p12
δA∗

2 + I∗2
N2

)
= 0, (5)

S∗
1β1(1− α1)

(
p11

δA∗
1 + I∗1
N1

+ p12
δA∗

2 + I∗2
N2

)
− φE∗

1 = 0, (6)

σφE∗
1 − γA∗

1 = 0, (7)

(1− σ)φE∗
1 − (µ1 + γ)I∗1 = 0, (8)

−S∗
2β2(1− α2)

(
p21

δA∗
1 + I∗1
N1

+ p22
δA∗

2 + I∗2
N2

)
= 0, (9)

S∗
2β2(1− α2)

(
p21

δA∗
1 + I∗1
N1

+ p22
δA∗

2 + I∗2
N2

)
− φE∗

2 = 0, (10)

σφE∗
2 − γA∗

2 = 0, (11)

(1− σ)φE∗
2 − (µ2 + γ)I∗2 = 0. (12)

As a preliminary step, observe that the relations

A∗
1 =

σφ

γ
E∗

1 , (13)

I∗1 =
(1− σ)φ

µ1 + γ
E∗

1 , (14)

A∗
2 =

σφ

γ
E∗

2 , (15)

I∗2 =
(1− σ)φ

µ2 + γ
E∗

2 , (16)

can be obtained from equations (7), (8), (11), and (12). Given that αi (i = 1, 2) is the rate
of compliance with precautionary measures among the homeless and housed populations,
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respectively, it is feasible to assume αi 6= 1. Thus, equation (5) implies

S∗
1 = 0 or p11

δA∗
1 + I∗1
N1

+ p12
δA∗

2 + I∗2
N2

= 0.

First, assume S∗
1 = 0, then equation (6) gives

−φE∗
1 = 0,

=⇒ E∗
1 = 0,

=⇒ A∗
1 = I∗1 = E∗

1 = 0,

[
(13), (14)

]
.

In other words, if S∗
1 = 0, the equilibrium point has the form (0, 0, 0, 0, S∗

2 , E
∗
2 , A

∗
2, I

∗
2 ) with

the final four values being determined based on the solutions to the equations (9), (10), (11),
and (12). Recalling the assumption αi 6= 1 (i = 1, 2), it follows from equation (9) that

S∗
2 = 0 or p21

δA∗
1 + I∗1
N1

+ p22
δA∗

2 + I∗2
N2

= 0.

If S∗
2 = 0, then equation (10) implies

−φE∗
2 = 0,

=⇒ E∗
2 = 0,

=⇒ A∗
2 = I∗2 = E∗

2 = 0,

[
(15), (16)

]

meaning that the trivial solution (0, 0, 0, 0, 0, 0, 0, 0) is the equilibrium point. On the other
hand, if

p21
δA∗

1 + I∗1
N1

+ p22
δA∗

2 + I∗2
N2

= 0,

it still follows from (10), (15), and (16) that A∗
2 = I∗2 = E∗

2 = 0; yet, there is now no
constraint on S∗

2 . In this case, the equilibrium point is given by (0, 0, 0, 0, f2N2, 0, 0, 0) where
0 < f2 ≤ 1. This would imply that (1− f2)N2 is the removed population whom have either
recovered or died of the disease.

The two equilibria that have been obtained up to this point account for all solutions of
equations (5)-(12) when S∗

1 = 0. When S∗
1 6= 0, then

p11
δA∗

1 + I∗1
N1

+ p12
δA∗

2 + I∗2
N2

= 0,
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which means that

−φE∗
1 = 0,

[
(6)

]
=⇒ E∗

1 = 0,

=⇒ A∗
1 = I∗1 = E∗

1 = 0,

[
(13), (14)

]
.

Although A∗
1, I

∗
1 , and E∗

1 must all equal zero, no constraint has been placed on S∗
1 . Therefore,

the equilibria have the form (S∗
1 , 0, 0, 0, S

∗
2 , E

∗
2 , A

∗
2, I

∗
2 ) with the final four values again being

determined based on how equations (9), (10), (11), and (12) are solved. Since all possible
solutions of (9), (10), (11), and (12) are already known, it is clear that when

p11
δA∗

1 + I∗1
N1

+ p12
δA∗

2 + I∗2
N2

= 0,

the equilibrium points are (f1N1, 0, 0, 0, 0, 0, 0, 0) and (f1N1, 0, 0, 0, f2N2, 0, 0, 0) where
0 < f1 ≤ 1 and 0 < f2 ≤ 1. Hence, the equilibria of this dynamical system are

Q∗
1 = (0, 0, 0, 0, 0, 0, 0, 0),

Q∗
2 = (f1N1, 0, 0, 0, 0, 0, 0, 0),

Q∗
3 = (0, 0, 0, 0, f2N2, 0, 0, 0),

Q∗
4 = (f1N1, 0, 0, 0, f2N2, 0, 0, 0).

Appendix E Jacobians

J =



−β1(1− α1)

(
p11

δA1 + I1
N1

+ p12
δA2 + I2
N2

)
0 −S1β1(1− α1)p11

δ
N1

−S1β1(1− α1)
p11

N1
0 0 −S1β1(1− α1)p12

δ
N2

−S1β1(1− α1)
p12

N2

β1(1− α1)

(
p11

δA1 + I1
N1

+ p12
δA2 + I2
N2

)
−φ S1β1(1− α1)p11

δ
N1

S1β1(1− α1)
p11

N1
0 0 S1β1(1− α1)p12

δ
N2

S1β1(1− α1)
p12

N2

0 σφ −γ 0 0 0 0 0
0 (1− σ)φ 0 −(µ1 + γ) 0 0 0 0

0 0 −S2β2(1− α2)p21
δ

N1

−S2β2(1− α2)
p21
N1

−β2(1− α2)

(
p21

δA1 + I1
N1

+ p22
δA2 + I2
N2

)
0 −S2β2(1− α2)p22

δ

N2

−S2β2(1− α2)
p22
N2

0 0 S2β2(1− α2)p21
δ

N1

S2β2(1− α2)
p21
N1

β2(1− α2)

(
p21

δA1 + I1
N1

+ p22
δA2 + I2
N2

)
−φ S2β2(1− α2)p22

δ

N2

S2β2(1− α2)
p22
N2

0 0 0 0 0 σφ −γ 0
0 0 0 0 0 (1− σ)φ 0 −(µ2 + γ)
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J

∣∣∣∣
Q∗

1

=



0 0 0 0 0 0 0 0
0 −φ 0 0 0 0 0 0
0 φσ −γ 0 0 0 0 0
0 φ(1− σ) 0 −(γ + µ1) 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −φ 0 0
0 0 0 0 0 φσ −γ 0
0 0 0 0 0 φ(1− σ) 0 −(γ + µ2)



J

∣∣∣∣
Q∗

2

=



0 0 −f1β1δp11(1− α1) −f1β1p11(1− α1) 0 0 −f1N1β1δp12(1− α1)

N2

−f1N1β1p12(1− α1)

N2

0 −φ f1β1δp11(1− α1) f1β1p11(1− α1) 0 0
f1N1β1δp12(1− α1)

N2

f1N1β1p12(1− α1)

N2

0 φσ −γ 0 0 0 0 0
0 φ(1− σ) 0 −(γ + µ1) 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −φ 0 0
0 0 0 0 0 φσ −γ 0
0 0 0 0 0 φ(1− σ) 0 −(γ + µ2)



J

∣∣∣∣
Q∗

3

=



0 0 0 0 0 0 0 0
0 −φ 0 0 0 0 0 0
0 φσ −γ 0 0 0 0 0
0 φ(1− σ) 0 −(γ + µ1) 0 0 0 0

0 0 −f2N2β2δp21(1−α2)
N1

−f2N2β2p21(1−α2)
N1

0 0 −f2β2δp22(1− α2) −f2β2p22(1− α2)

0 0 f2N2β2δp21(1−α2)
N1

f2N2β2p21(1−α2)
N1

0 −φ f2β2δp22(1− α2) f2β2p22(1− α2)

0 0 0 0 0 φσ −γ 0
0 0 0 0 0 φ(1− σ) 0 −(γ + µ2)



J

∣∣∣∣
Q∗

4

=



0 0 −f1β1δp11(1− α1) −f1β1p11(1− α1) 0 0 −f1N1β1δp12(1−α1)
N2

−f1N1β1p12(1−α1)
N2

0 −φ f1β1δp11(1− α1) f1β1p11(1− α1) 0 0 f1N1β1δp12(1−α1)
N2

f1N1β1p12(1−α1)
N2

0 φσ −γ 0 0 0 0 0
0 φ(1− σ) 0 −(γ + µ1) 0 0 0 0

0 0 −f2N2β2δp21(1−α2)
N1

−f2N2β2p21(1−α2)
N1

0 0 −f2β2δp22(1− α2) −f2β2p22(1− α2)

0 0 f2N2β2δp21(1−α2)
N1

f2N2β2p21(1−α2)
N1

0 −φ f2β2δp22(1− α2) f2β2p22(1− α2)

0 0 0 0 0 φσ −γ 0
0 0 0 0 0 φ(1− σ) 0 −(γ + µ2)



31


	Introduction
	Methods
	Model Formulation
	COVID-19 Epidemic Model

	Mathematical Analysis
	Derivation of Rc and R0
	Equilibrium Points

	Results
	Numerical Evaluation of R0
	Peak Time
	FES
	Cases of Compliance
	Case 1 (2 = 0.5)
	Case 2 (2 = 0.8)
	Case 3 (2 = 0.9)


	Conclusions and Discussion
	Appendices
	Appendix Reducing the System
	Appendix NGM
	Appendix NGM Reduction
	Appendix Equilibria Computations
	Appendix Jacobians

