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Abstract

Sexually Transmitted Infections (STI’s) remain a significant public health chal-

lenge globally with a high burden of some diseases even in some parts of developed

countries. Translation of the evidence regarding the protective role of condom use on

STI, with sexual transmission rates into sexual behaviour patterns of infected sub-

jects, remains largely unexplored. This study aims to describe and analyze the impact

of inconsistent condom use and risky sexual behaviors on the prevalence and dynamic

of STIs. A novel Susceptible-Infected-Susceptible (SIS) model with continuous-risk,

defined as number of concurrent partner, for the spread of high infectious STI’s such
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as chlamydia, gonorrhea an syphilis in a homosexual and heterosexual community, is

developed and analyzed. The model incorporates heterogeneous sexual behavior via a

function describing the biased (preferential) mixing between individuals with different

risks. Sensitivity analysis is carried out to assess the relative impact of condom use

frequency by high-risk people on the fraction of infection at the steady state as well

as the rule of distribution of infection on changing risk. Our results show that under

the case partners of people have the risk close (but not equal) to their risk, condom

use by high risk people has more impact on controlling the infection than the case

people choose some fraction of their partners with exactly the same risk and the rest

randomly. Also, high-risks attitude to condom use changes the shape of endemic equi-

librium point as a function of risk: when people with maximum number of partners

don’t use condom frequently, they have the biggest chance to get infection among

all risks, but when they start to use condom more, peak of infection at steady state

disappears and the shape of infection at steady state becomes a flat function of risk.
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1 Introduction

Sexually Transmitted Infections (STI) are one of the major health issues that can be a

consequence of risky behavior or unprotected sexual activity. More than half of sexually

active people in the United States of America will have an STD/STI at some point in

their lifetime [12]. Recent estimates from the CDC show that there are 19.7 million new

STIs every year in the U.S.A [16].

Currently, use of the male latex condom is the primary strategy for HIV and STI pre-

vention in sexually active individuals worldwide. Condoms, if used correctly, can greatly

reduce (though not eliminate) the risk of STI. However, differences in disease-specific infec-

tivity and the number of exposures to an infected partner may reduce condom effectiveness

[14]. Several studies show the attitude of adolescents, as sexually active population, to

condom use [1, 2, 13, 15]. Six in ten high school students in U.S.A, who are sexually

active, reported they used condoms at their most recent sexual intercourse. Condom use

among this group increased from 46% in 1991, to 63% in 2003, and was 59% in 2013 [1].

Reece et.al. [15] also studied rates of condom use among sexually active individuals in the

U.S. population. Based on their result, adolescents reported condom use during 79.1% of

the past 10 vaginal intercourse events.

Beadnell et.al. [2] conducted a study on students in a large urban northwest school

district were recruited and then surveyed annually for seven years. The sample is taken

from 5 different grades (8−12th grades). In this study adolescents are in 3 different profiles:

condom-user who are people with few partners and use condom consistently, few-partners:
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who are the ones with few partners and use condom inconsistently, and the risk-takers:

people who have lot’s of partners and use condom inconsistently. Among the few-partners

and risk-takers, risk takers use condom (68% of the sexual acts) more than few partners

do (49% of the sexual acts). The fraction of individuals with few-partners is more than

condom-users ones in grades 11 and 12. Therefore, we conclude that adolescents with at

least age 15 who have few partners are less likely to use condom consistently.

Another study by Lescano et.al [13] examined the attitude of adolescent toward condom

use by casual and main partners. Their study showed the number of partners in casual

partners is more than those with main partners. That is, partners of people with lots

of partners are mostly casual, and partners of people with few partners are the main

ones. Individuals with casual partners reported to use condom more than those with main

partners (47% vs. 37%, respectively). Therefore, based on these results, we assume, people

in age 15− 25 with high number of partners are more positive toward using condom than

people with the same age but few number of partners.

Mathematical models can provide frameworks to understand the underling epidemiol-

ogy of diseases and how they are correlated to the social structure of the infected popula-

tion [4, 5, 6, 7]. Transmission-based models can help the medical community to understand

and to anticipate the spread of diseases in different populations, and help them to eval-

uate the potential effectiveness of different approaches for bringing the epidemic under

control. The primary goal of our modeling effort is to create a model that can be used to

understand the spread of STI’s, and predicting the impact of having several concurrent
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partners by individuals as well as the use of condom on STI epidemic.

The main goal of this project is to study impact of combination of risk and condom use

to determine whether a particular behavior is safe or risky with regard to STIs prevention.

In this study, we look at condom use as a function of risk, both risk and frequency of

condom use are continuous variables per unit time. We analyze the model to identify the

importance of these two factors in the spread or prevention of STIs.

Most of the parameters in the model are estimated within a reasonable level of accuracy

in order for results to give qualitative and quantitative understanding of how the disease is

spreading. We use local sensitivity analysis to identify the relative importance of condom

use and numerical examples to illustrate how we can prioritize behavioral strategies by

individuals based on their predicted effectiveness.

The reminder of this article is organized as follow: in section two, we explain the model

and its parameters. Section three provides some numerical result of the model, and section

four will summarize our results.

2 Mathematical Model

We developed and analyzed a continuous risk-based transmission model that can be used to

understand the spread of the disease and quantify the relative effectiveness of accounting

for different behaviors by individuals. In our model, the sexually active population is

divided into the susceptible population (S), and the infectious population (I). Once a

person has recovered from infection, they are again susceptible to infection. Therefore,
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the model has a S → I → S(SIS) structure.

The number of partners a person has (his/her risk), and the number of partners that

their partners have (his/her partners risk) both affect the spread of STIs. That is, different

assumptions about the distribution of risk behavior for the population will result in dif-

ferent disease forecasts. We use the selective mixing model developed by Busenberg et.al.

[3] to capture the heterogenous mixing among people with different numbers of partners.

Our model is closely related to the STI models for the spread of the HIV/AIDS virus in

a heterosexual network [10, 11]. These models account for the distribution of risk in a

population based on realistic sexual contact networks [8, 9, 10, 11]. We assume the risk of

contracting STI is primarily a function of a person’s risk, the probability that a partner

is infected, and the use of prophylactics (e.g. condoms).

We built an integro-differential equation model, where the risk is defined based on the

number of partners a person has per unit time. The relative importance of the number

of partners and the number of acts per partner on the spread of an STI depends on the

disease infectiousness. A high infectious STI is the infection in that the probability of

transmission per act, from an infected person to uninfected one is high; it means one act

with an infected person may be enough to catch the infection. Therefore, the number of

people a person infects (in a highly infectious STI), and a persons risk, depends mostly

upon the number of partners he/she has rather than the number of sexual acts per partner.

Chlamydia, gonorrhea, syphilis, and chancroid are example of high infectious diseases. So

we predict our model is more appropriate for high infectious STIs.
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Total population Ng(r) of people with gender g ∈ [m,w] and total number of partners

or risk r ∈ [r0, r∞] is divided into susceptible , Sg(t, r), and infectious , Ig(t, r), at any time

t. We assume people leave and enter the population with migration rate µ and susceptible

people may become infectious at the infection rate λ and infectious individuals come back

to susceptible status with rate γ. Based on these assumptions we have a heterogeneous

SIS model

dSg(t, r)

dt
= µ(Ng

0 (r)−Ng(r))− λg(t, r)Sg(t, r) + γIg(t, r), (1)

dIg(t, r)

dt
= λg(t, r)gSg(t, r)− γIg(t, r)− µIg(t, r), (2)

Sg(0, r) = Sg0(r), Ig(0, r) = Ig0 (r). (3)

Here Ng
0 (r) is total initial population of people with gender g and risk r in the absence of

infection. Initial conditions of the model are perturbation of disease free equilibrium, i.e

Ig0 (r) > 0 at least for one r ∈ [r0, r∞].

2.1 Migration and Disease Recovery Rates

We model a 15-25 year-old sexually active population and assume that the primary mech-

anism for migration is by aging into, and out of, the population. We consider migration

rate µ = 0.1 = [(25− 15)years]−1, with the assumption that death is negligible compared

to the rate that people enter and leave the modeled population. We also assume that, in

the absence of infection, equilibrium population for each risk group r of men and women
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is given, and that everyone aging into the model population enters being a susceptible.

The rate at which infectious people are recovered, γ , depends upon the gender of

the person and their risk level. We assume an infectious individual leaves the infectious

compartment when they recover naturally. Natural recovery rate, γ is determined by

assuming an exponential distribution for the average time to recovery 1
γ .

2.2 Disease Transmission rate λ

We derive the transmission rate for the case where a susceptible person with gender g and

risk r (shown by (g, r)) can be infected by someone of the opposite sex g′ in any risk group

r′. This force of infection, λg(r) , is the rate that people in (g, r) are infected through

sexual acts. Here an act is any sexual activity that can transmit the disease between

individuals. We define λg(r) as the integral of the rate of disease transmission from each

infected person in (g′, r′), Ig
′
(r′), to the susceptible Sg(r) by

λg(r) =

∫ r∞

r0

λ̃g(r, r′)dr′. (4)
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The rate of disease transmission from the infected persons Ig
′
(r′) in group (g′, r′) to the

susceptible individuals Sg(r) in group (g, r), λ̃, is defined as the product of three factors:

λ̃g(r, r′) =


Number of r′−risk

partners of susceptible

with risk r, per unit time




Probability of

disease transmission

per partner




Probability that

partner with risk r′

is infected


= p(r, r′) β(r, r′)

(
Ig
′
(r′)

Ng′(r′)

)
.

These terms are defined as:

• p(r, r′): the number of sexual partners per unit time that each individual in group

(g, r) has with someone in group (g′, r′), and

• β(r, r′): the probability of disease transmission per partner for a susceptible person

in group (g, r) with their partner in (g′, r′) and

• Ig
′
(r′)

Ng′ (r′)
: the probability of that the person in (g′, r′) is infected.

2.2.1 Partnership Formation

A person with risk r has r partner per unit time. An individual selects his partners

based on mixing function, such partners can be selected randomly, biased or with a linear

combination of them.

Random Mixing Function: We use random mixing function, when individuals with

risk r, do not show any preference for any risk, during choosing partners. The random
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mixing function ρr, which r stands for random mixing are described as follow:

ρr =
r′Ng′(r′)∫ r∞

r0
uNg′(u)du

. (5)

Biased Mixing Function: In biased mixing, people with risk r prefer to have partners

with same risk, which also called assortative mixing. However, because in this model risk

is a continuous variable finding partners of exactly the same risk does not seem reasonable.

Therefore it would be better to consider selecting partners on some neighborhood of r. In

order to choose the radius of this neighborhood, we make some assumptions. First of all

when risk of a person increases, the probability that he can find partners of the same risk

decreases. That is when risk r increases the number of people with risk r decreases, so

the variance of risk of his partners increases. Suppose σ(r) is the standard deviation of

risk of partners of a person with risk r, then we define ρb(r, r
′) as a hat function

ρb(r, r
′) =



r′−r+σ(r)
σ2(r)

r − σ(r) ≤ r′ ≤ r

− (r′−r−σ(r))
σ2(r)

r < r′ < r + σ(r)

0 elsewhere,

(6)

where index b stands for biased mixing. Figure (1) shows these ρb functions for risks

r = 1, 3, 10. Both functions ρr and ρb satisfy the condition

∫ ∞
−∞

ρ(r, r′)dr′ = 1.
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Figure 1: Plot of Hat Function ρb(r, x) for r = 1, 3, 10. By increasing r the function
becomes fatter and shorter.

In our model, we assume people choose some fraction of their partners based on their

preference, and for the rest they do not have any preference (totally random mixing), that

is we use a convex combination of ρr and ρb to define the mixing function ρ(r, r′). Suppose

ε(r) fraction of partners of a person with risk r are selected preferentially and the rest

randomly, therefore, we have [3]:

ρ(r, r′) = ε(r)ρb(r, r
′) + (1− ε(r))ρr(r, r′), (7)

where, in that case function ρr changes, because people with risk r′ choose ε(r′) fraction

of their partner preferentially as well. Therefore we have random mixing function given

by:

ρr(r, r
′) =

(1− ε(r′)r′N(r′))∫ r∞
r0

(1− ε(u))uNg′(u)du
.
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Function ε(r) states what percentage of partners should be in the σ(r) neighborhood of

person with risk r. This value can be a constant number say 0.5, or a function of r. In

case we take σ(r) as a non-constant function of r, ε(r) is constant, but if σ(r) is constant,

we take ε(r) as a decreasing function of r. For instance, we can define σ(r) = 1, therefore,

we have

ρb(r, r
′) =



r′ − r + 1 r − 1 ≤ r′ ≤ r

r′ − r − 1 r < r′ < r + 1

0 elsewhere,

(8)

and then apply variance on ε(r). We point out that ε is a decreasing function of risk r,

because when risk increases the diversity of risk of partners increases, for example we can

think of ε(r) ∝ 1
σ(r) . In our simulation we assume ρb is defined as Equation (8) and define

several functions for ε(r):

1. ε1(r) = 0, that is random mixing function, this means nobody prefers nobody.

2. ε2(r) = 0.50, that means all people want to have half of their partners with the same

risk as themselves.

3. ε3(r) = 1, that means people only want to have partners with same risk as them-

selves.

4. ε4(r) = 0.6√
r
,(for ε(r) = 0.6

r the results were the same), and finally

5. ε5(r) = e−2r + 0.5.
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The last two functions are plotted in figure (2), By this definition, a person with risk r

Figure 2: functions ε4(r) and ε5(r). The range of ε4 is bigger than that of ε5, for example in
ε4 1-partner people want to have 60% of their partners to be one-partner, and 20-partner
people want to have 12% of their partners like themselves. For ε5 the preference of lower
risk ones changes from 65% to 50%, however higher risk ones all take 50%.

choose ε(r)% of their partner from almost the same risk, the rest are chosen equally from

all risk groups. Population of people in (g, r) is Ng(r), so all individuals in (g, r) want to

have rNg(r)ρ(r, r′) partners in (g′, r′). On the other hand all people in (g′, r′) want to have

r′Ng′(r′)ρ(r′, r) partners in in (g, r). Therefore, we define actual number of partnership

between groups (g, r) and (g′, r′) as harmonic average of these two values:

H(r, r′) =
2rN(r)ρ(r, r′)× r′N(r′)ρ(r′, r)

rN(r)ρ(r, r′) + r′N(r′)ρ(r′, r)
. (9)
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Therefore, we define

p(r, r′) =
H(r, r′)

N(r)
, (10)

as the number of partners for a person with risk r who have risk r′.

2.2.2 Probability of Transmission per Partner

The probability that a susceptible person catches infection from their infected partner

depends upon the number of sexual acts between the individuals. We allow the number

of acts per partner for a person with risk r, a(r), to depend upon the number of his (her)

partners,(r), if the total number of acts is given by A, then the number of acts per partner

for a person with risk r is

a(r) =
A

r
. (11)

However, the number of acts between a person with risk r and their partner with risk r′,

should be the same as the number of acts between a person with risk r′ and their partner

with risk r. To make it compatible, we define harmonic average A(r, r′) as

A(r, r′) =
2a(r)a(r′)

a(r) + a(r′)
, (12)

that is the number of acts between a person with risk r and their partner with risk r′. In

some portion of acts, people use condom, we assume a person with risk r, uses condom in

c(r) fraction of their acts, where c(r) is an increasing function of r, that means people with
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more partners are more likely to use condom in their acts. At the end of this subsection

we will introduce the function c(r).

Now suppose a person with risk r has a sexual act with their partner of risk r′. We

know person r use condom in c(r) fraction of their acts and person r′ use condom in c(r′).

Therefore, we should make decision if they use condom in their particular act or not. T

here are two different scenarios for that:

1. Preference to low condom use: The decision tend to no condom act, it means

the person who is less likely to use condom wins, therefore

C1(r, r
′) =

2c(r)c(r′)

c(r) + c(r′)
. (13)

2. Preference to high condom use: The decision tend to condom act, it means the

person who is more likely to use condom wins, therefore

1− C2(r, r
′) =

2(1− c(r))(1− c(r′))
2− c(r)− c(r′)

,

or

C2(r, r
′) = 1− 2(1− c(r))(1− c(r′))

2− c(r)− c(r′)
. (14)

Now, suppose probability of transmission per no-condom act is β̄ and probability of

transmission under condom use is β̄c = 0.01β̄, it means condom is 99% effective. Therefore,
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the probability that a person with risk r does not catch infection after one condom act is

1− β̄c.

Assume a person with risk r has A(r, r′) act with their partner with risk r′, and in

C(r, r′)% of the acts, they use condoms, therefore, they have a total of C(r, r′)A(r, r′) acts

with condom, and so the probability that the person with risk r doesn’t catch infection

from his infected partner with risk r′ after finishing all condom acts is (1− β̄c)C(r,r′)A(r,r′).

Similarly, the probability that the person with risk r does not catch on infection from his

infected partner with risk r′ after finishing all no-condom acts is (1 − β̄)(1−C(r,r′))A(r,r′).

Finally the probability of catching infection after at least one act with partner r′ is

β(r, r′) = 1− (1− β̄c)C(r,r′)A(r,r′)(1− β̄)(1−C(r,r′))A(r,r′). (15)

The form of condom use function c(r): Now we are making several assumptions

for condom use function c(r) and define two different type of functions c(r). The first

assumption is that people with more partners use condom more [2, 13], therefore, c(r) is

an increasing function of r. Now the question is how fast this function grows. For this we

made our own assumption: using condom for small value of r grows fast, however after

some point it grows slowly. For that, the function should be concave down. The function

should also be dimensionless, because it represents the fraction of times condom used by

a person with r partners. Based on these assumptions we introduce two functions:
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c1(r) = α

√
r − r0
r + r0

, and c2(r) =
α(r − r0)
r + r0

, (16)

which are plotted for different α values in figure (3).

(a) co1(r) = α
√

r−r0
r+r0

, (b) co2(r) = α r−r0
r+r0

Figure 3: Plot of two different condom use functions c(r).

The value of α states, people with an infinite number of partners use condom in α

fraction of their acts. That is

lim
r→∞

c(r) = α.

Based on [15] people use condom at most at 50% of their sexual act, so we may assume

α = 0.50 at baseline.
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To summarize we have the SIS model

dSg(t, r)

dt
= µ(Ng

0 (r)−Ng(r))− λg(t, r)Sg(t, r) + γIg(t, r),

dIg(t, r)

dt
= λg(t, r)gSg(t, r)− γIg(t, r)− µIg(t, r),

where all functions are defined in Table (1)

functions used in the model
Function Definition

λg(t, r)
∫ r∞
r0

λ̃g(r, r′)dr′

λ̃g(r, r′) p(r, r′)β(r, r′) I
g′(t,r′)

Ng(t,r′)

p(r, r′) H(r,r′)
N(r)

H(r, r′) Harmonic average of rN(r)ρ(r, r′) and r′N(r′)ρ(r′, r)
ρ(r, r′) ε(r)ρb(r, r

′) + (1− ε(r))ρr(r, r′)
ε(r) 0.6√

r

β(r, r′) 1− (1− β̄)A(r,r
′)(1−C(r,r′))(1− β̄c)A(r,r

′)C(r,r′)

A(r, r′) Harmonic average of a(r) and a(r′)

a(r) A
r

C(r, r′) Harmonic average of c(r) and c(r′) (or 1− (Harmonic average of 1− c(r) and 1− c(r′)))
c(r) α

√
r−r0
r+r0

Table 1: The definition of functions used in the model.

3 Numerical Simulation

In our simulation, we assume for a period of one year, people have at least one and at most

20 concurrent partners. To find the number of people with risk r (N(r)), we use power law
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distribution with parameter 3, it means

N(r) ∝ r−3.

For the initial condition we use current infection distribution over risk based on an indi-

vidual data for Chlamydia. The Figure (4) shows the percentage of infection per risk. All

other parameters and functions are fixed with the baseline values given in Tables (2) and

(3), unless specifically defined otherwise.

Figure 4: Initial Infection fraction for men and women, solid red columns refers to women
and dashed red refers to men.

We aim to study the impact of condom use function c(r) on the fraction of infected

individuals at steady state that is a function of risk (I∗(r)) as well as the total fraction

of infection for all risks (
∫ r∞
r0

I∗(r)dr). Figure (5) shows the function I∗(r) for different
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Model
Quantities

Definition Unit Baseline
Values

t Time variable Years —

Sg(t, r) Number of susceptible people with gender
g and risk r at time t

People —

Ig(t, r) Number of infectious people with gender
g and risk r at time t

People —

Ng Total population size of People with gen-
der g.

People 1000

A Total number of sexual acts per unit time. Act 260

β̄ Probability of transmission per unpro-
tected act.

Act−1 0.22

β̄c Probability of transmission per protected
act.

Act−1 0.22× 0.01

γ Per capita recovery rate for humans from
the infectious state to the susceptible
state. 1/γ is the average duration of the
infectious period.

Y ear−1 2

µ Migration rate. Y ear−1 0.10

r0(r∞) Minimum (maximum) number of partners People 1(20)

Table 2: The definition of the model variables and parameters.

functions of risk r
Function Description Definition

ρb(r, r
′) biased mixing function


r′−r+σ(r)
σ2(r)

r − σ(r) ≤ r′ ≤ r
− (r′−r−σ(r))

σ2(r)
r < r′ < r + σ(r)

0 elsewhere,

ρr(r, r
′) random mixing function (1−ε(r′)r′N(r′))∫ r∞

r0
(1−ε(u))uNg′ (u)du

.

ε(r) prefrence amount of risk r person 0.6√
r

to choose the same behavior partner.

a(r) total # of contacts for person of risk r pre day. A
r

c(r) fraction of times condom used by a person with risk r α
√

r−r0
r+r0

Table 3: The definition of functions of risk.
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scenarios of condom use: when function c(r) tends to α as r tends to ∞ (α% condom), i.e

lim
r→∞

c(r) = α

for α = 0, 60%, 80%, 90%, 95%, 100%. This means people with infinite number of partners

use condom at α% of their acts, and therefore, people with high but finite number of

partners, use condom in some fraction close to but less than α%.

Figure (5.a) is the result when we apply preference to low condom use for C(r, r′),

Equation (13). In this case, for all scenarios I∗(r) is an increasing function of r, it means

infection happen mostly among higher risk people, even if they use condom more. Increas-

ing α only shifts the function I∗(r) downward, without changing its shape. It means in

any case, taking more partners increase your chance of getting infection. This is due to

the fact that we take the Equation (13) for C(r, r′). The aformentioned strategy trusts

more on lower-risk response regarding condom use. For example, if a person has risk 20

and reports to use condom 80% of the time and his partner has risk 10 and use condom

in 50% of the time, Equation (13) finds a percentage to condom use that is closer to 50%

other than 80%. Therefore, even if a person reports to use condom 100% of the time, the

model doesn’t apply 100% except for the case that his partner uses condom 100% of the

times.

The strategy represented by Equation (14) is reverse, it trusts more on the response of

higher-risk people regarding condom use. Figure (5.b) shows the result for when strategy
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of Equation (14) is taken. In this case, by increasing condom use the graph of I∗(r) drops

down and becomes flatter. In this graph, we observe for each α > 80% there is a sharp

threshold, a risk r∗ for which people with risk more than r∗ have the same chance of

catching infection. To see that we test condom function for more α values between 80%

and 100% and found that r∗ values, then we fitted a curve trough these points to predict

r∗ for all α values, the Figure (6) shows the result.

In all these simulations we used ε(r) = ε4(r) = 0.6√
r

(ε shown in Table (3)) for the

mixing function. For other εi values we have the same results, however if we use ε3 =

1, for all strategies for C(r, r′) we have similar result to figure (5.b). Because taking

ε3 = 1 means that people have only partners with the same risk as themselves, therefore

higher risk ones have contact with only higher risk ones and vise versa, therefore, we

have C(r, r′) = c(r) = c(r′) and when high risk people use condom 100% of the time the

infection disappears among them and therefore peak of infection happens among lower

risk people.
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(a) C(r, r′) follows equation (13) (b) C(r, r′) follows equation (14)

Figure 5: Different Scenarios of condom use (different α) for ε4 and function co(r) = co1.
For co2 and co3(r) the result were similar, so we skip them. Increasing condom use by
high-risk people does not save them from a possible infection.
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(a) C(r, r′) follows equation (13) (b) C(r, r′) follows equation (13)

Figure 6: (a)I∗(r) for ε = 0.6√
r
, sharp threshold is observed in STI prevalence with in-

crease in any risk r, however threshold decreases and shift to the left when condom use
increases.(b) Fit a curve through r∗ to find r∗ for any α ∈ [0, 1].

These result also shows for α ∈ [80%, 100%], I∗(r) decreases faster than other values.

Therefore we plot the graph I∗ =
∫ r∞
r0

I∗(r)dr v.s α to see how prevalence changes. Figure

(7.a) shows how total fraction of infection at steady state (I∗ =
∫ r∞
r0

I∗(r)dr) changes by

increasing condom use by high risk people. The baseline value for α is 0.5 (that is when

people at ∞-risk use condom at 50% of their acts). At this point sensitivity index of I∗

is −0.02, that is, at this point if α increases by 1% then I∗ decreases by 0.02%. However,

from the same figure, we observe that to drop down the prevalence, α needs to be at least

75%.

Again, in this simulation we used ε4(r) in mixing function. Now we are going to

test other mixing functions by taking different ε(r) functions. Figure (7.b) shows I∗ =
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∫ r∞
r0

I∗(r)dr v.s α for different mixing functions. As we observe, for different mixing

functions, I∗ is not sensitive to percentage of time people with ∞ number of partners use

condom.

(a) I∗ v.s α for ε4 (b) I∗ v.s α for all εs

Figure 7: This figures report the simulation with condom function c1(r), for c2(r) results
are similar.(a) The sensitivity of I∗ =

∫ r∞
r0

I∗(r)dr with respect to α. The sensitivity index
is then the slope of the response curve at the baseline values, indicated by ∗. The response
is linear near the baseline case and, therefore, the local sensitivity analysis is valid over a
broad range of parameters. (b) For all mixing functions used here, α needs to be at least
80% to drop the infection down.

Therefore, it seems when we fix preference neighborhood and assign a value for this

neighborhood (ε(r)) prevalence of infection would not be sensitive to α near its baseline.

Now we use Equation (6) for defining ε(r)ρb(r, r
′) and define ε(r) = 0.25 and σ(r) =

√
r, it

means a person with risk r wants to have 25% of his partners in domain of (r−
√
r, r+

√
r).

That way by increasing the radius of preferred neighborhood for a person with risk r is

expanded. The Figure (8) shows the result of this simulation: (8.a) is graph of I∗ v.s

risk, which shows for all scenarios high risk people are among the one with most chance

of infection. Figure (8.b) is graph of I∗ v.s α for when we use Equation (6) in the mixing
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(a) I∗ v.s α for ε4 (b) I∗ v.s α for ε4

Figure 8: (a) Different Scenarios of condom use (different α) for ε = 0.25 and function
c(r) = c1. Increasing condom use by high-risk people doesn’t save them from infection.
(b) The sensitivity of I∗ =

∫ r∞
r0

I∗(r)dr with respect to α. The sensitivity index is then
the slope of the response curve at the baseline values, indicated by ∗.

function. As we observe, by increasing the radius of preferred neighborhood, I∗ becomes

more sensitive to α. Sensitivity index at baseline is −0.44, and after 90% condom use

infection will die out.

4 Discusion

We created a continuous risk sexual heterosexual SIS transmission model for the spread of

highly infectious STIs with heterogeneous mixing partnership selection to investigate the

impact of condom use by high risk people in controlling spread of STI’s.

We implemented different condom use functions and studied their impact on fraction

of infected people versus their risk. Our result show the spread of infection over the risk

(shape of I∗(r)) depends on model structure, and how we define condom use function.
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We implemented different mixing functions and different condom use scenarios and

then we did sensitivity analysis of prevalence with respect to fraction of the times that

high risk people use condom. Our result shows that when people have more partners with

the risks close to (but not equal) their risk, the sensitivity index of prevalence with respect

to condom use is more than the case people choose some percentage of their partner with

exactly the same risk and rest randomly.
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