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Abstract

Electrical Impedance Tomography (EIT) is a low-cost, portable, and noninvasive
imaging system that does not use ionizing radiation. Though it has seen promising
use in many applications including the continuous monitoring of the lungs and de-
tection of cancerous regions in the body, it has potential for industrial uses beyond
what is typically recognized in human medicine. However, EIT formulates a very
challenging, nonlinear, highly ill-posed problem. Over the past few decades, many
approaches have been introduced by incorporating the advancements in traditional
methods. However, those approaches lack clinical and experimental versatility as
there is still disagreement over which proposed algorithms are most successful.
Therefore, we investigate, develop, and implement new regularization methods us-
ing deep neural network (DNN) approaches for solving the EIT inverse problem.
In this study, we explore the use of first, second, and third order derivative regular-
ization operators, Krylov methods, and distinct neural network architectures. We
compare our approaches with traditional EIT methods and present the results of
each technique with respect to improvement (or loss) in spatial resolution as well
as influence on computational cost.
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1 Introduction

One of the main imaging modalities that has seen a significant increase in recent
years is the noninvasive, nonionizing, and radiation-free imaging technique of Electrical
Impedance Tomography (EIT) [5]. EIT is a process used to create tomographic images
of the electrical properties of the tissues within a subject based on electrical impulse
measurements from body surface electrodes [1]. While there are a wide variety of ap-
plications for this technique, EIT is seeing its most widespread usage in the monitoring
of pulmonary ventilation of intensive care and surgical patients [2]. In addition, EIT is
showing promise for applications in many other areas of science and engineering, includ-
ing geophysics and biology [23, 42]. Nevertheless, despite the advantages of producing
high-contrast images and acquiring data through harmless electrical impedance measure-
ments, the image recovery process of characterizing the EIT image from the current
and voltage measurement data is a severely ill-posed nonlinear inverse problem which
requires a noise-robust regularization strategy for precise reconstruction of an otherwise
poor-quality solution [13]. The voltage data is usually highly corrupted with unknown
levels of Gaussian noise, and consequently, the recovered solutions are highly sensitive to
small perturbations in the observations, rendering the inverse problem difficult to solve.

One limitation of solving the EIT problem is that most clinical and physiological re-
search for medical imaging is being done using older and proprietary imaging algorithms.
Reconstructed images from these more traditional methods show non-uniformity in fac-
tors including amplitude response, position error, spatial resolution, shape deformation,
ringing, and noise amplification [1]. In response, many other approaches to the EIT in-
verse problem have been introduced, incorporating advances that have been made over
the past few decades. However, they lack clinical and experimental versatility as there is
still disagreement about which proposed methods are best or how they can be combined
for optimal output [1].

To address this issue, we explore a variety of regularization methods and compare
them against each other. Additionally, we compare these to Deep Neural Network (DNN)
approaches to reach a feasible consensus on the improved efficacy in the characterization
of the reconstructed images and collate numerical validity of each method’s impact on
spatial resolution given its computational cost.

Reconstructions of EIT typically use regularization techniques, such as Tikhonov Reg-
ularization [22], Krylov Methods [12], and Total Variation (TV) Regularization [18] in
our case, that yield an approximation of the respective solution function. Typically, these
methods require careful consideration of boundary conditions, but these are set by the
EIT problem. Such conditions can be overcome, but they are computationally demanding,
as modeled in the use of a Krylov method [5]. Iterative methods used for approximating
solutions for nonlinear problems easily fall into local solutions due to their linear nature
which causes a large amount of loss during image reconstruction [18]. Therefore, unless
we linearize the problem, as we’ll see using more traditional methods, iterative meth-
ods are relatively sensitive to disturbances in the data, causing the reconstructed images
to suffer from a lack of sharpness or clarity. These imbalances must be corrected with
sophisticated modeling techniques. Thus, it is challenging to account for the uncertain-
ties in the data set including unknown electrode locations, boundary shape, or contact
impedances [9, 17, 26].

The spectrum of non-iterative EIT imaging solutions comprises of methods including
Linear Back Propagation [35], the Sensitivity Coefficient [25], and Truncated Singular
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Value Decomposition [39]. However, for under-sampled imaging, direct image recon-
struction contains severe artifacts that iterative methods lack. This is because iterative
methods typically optimize an objective function containing spatial or temporal con-
straints [40]. Therefore, we aim to exercise recent advances in the larger scale field of
image reconstruction by exploring the influence of Deep Learning and Neural Networks
for faster, more direct iterative procedures.

In this study, with the help of physical modeling, we simulate capable reconstruction
algorithms that produce EIT images by utilizing iterative and non-iterative algorithms
as well as deep neural networks and compare the resolution and computational efficiency
of each technique against one another. We show that while iterative techniques improve
the insensitivity to noise given incomplete data, Deep Neural Networks (DNN) are not
only well suited for the post-processing of initial data but also for the preserving of
two-dimensional structure information [18]. By obtaining local features of the unknown
solution through filters (hidden layers) and training the DNN to remove destructive ar-
tifacts, the received content of the reconstructed image is improved. More specifically,
this paper explores approaches that use EIT simulated data to train and develop an
efficient DNN model. Following training, it can then be adjusted to cope with the un-
trained experimental data, and compare the produced imaging results of the experimental
measurements’ data to more traditional methods.

2 Methods

2.1 Model Description and Derivative Operators

Electrical impedance tomography is a nonlinear inverse problem in which we aim to
calculate the conductivities of the volume inside of a subject from the observed current to
voltage measurements at boundary electrodes. We start by considering the linear model

Ax = b = btrue + e (1)

where A is the model matrix with dimension m×n, b is the vector of voltage differences,
btrue is the unknown vector of true values, e is the unknown vector of observation errors,
and x is the unknown list of parameters that characterize the reconstructed image in
vectorized form [29]. Then, for any given vector x, we can calculate a residual vector
r(x) = Ax− b, our goal being to find the x that produces a residual vector with the least
magnitude.

We find the solution x by obtaining estimates of the solution vector x̂ and the norm
of the residual vector using minimization functions such as

min
x

{
∥Ax− b∥22

}
.

This generates a solution that fits the system according to the Euclidean (L2) norm [29].
However, we then examine

min
x

{
∥Ax− b∥22 + λ ∥x∥22

}
which incorporates a regularization term to reduce the noise influence of the estimated
parameters. However, it is important to note that when the regularization parameter is
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too high, there is an increased prevalence of inconsistencies in the output. To account
for this flaw, we explore the addition of a derivative operator which can be modeled with
the General Tikhonov Regularization equation

min
x

{
∥Ax− b∥22 + λ ∥Lx∥22

}
, (2)

where L is an n×n matrix chosen according to the factor of an image that is looking
to be optimized [27]. For instance, edge detection is one of the most frequently utilized
techniques in digital image processing. As first order derivative operators are based
on approximations of the 2-D gradient across an image, such operators work well at
calculating the gradient of image intensity at each pixel, indicating the largest increase
from light to dark as well as the direction [36]. However, second order derivative operators
have the zero crossing property and are therefore more efficiently utilized for detecting
regions of the image with rapid intensity changes, otherwise known as edges [4]. The
difference in application between first and second derivative operators is modeled in Figure
3.

First order derivative operators are useful in minimizing the objective function (2)
by identifying smoother derivations in brightness while suffering from problems such as
staircase artifacts and loss in smooth intensity changes for textures and low-contrast ob-
jects [16]. To compare the advantages and limitations of first and second order derivative
operators, we approximate the gradient using first order derivative operators [31]:

f ′(x) ∼=
f(x+ h)− f(x)

h
(3)

f ′(x) ∼=
f(x)− f(x− h)

h
(4)

f ′(x) ∼=
f(x+ h)− f(x− h)

2h
(5)

Figure 1: Example of a matrix L as a first derivative operator approximating equation (3)
for a one-dimensional system. h is the chosen interval size and f(xi) is the corresponding
dependent approximation at xi = x+ (i− 1)h starting at i = 1 [31]
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Then we observe the effects of the second order derivative operators:

f ′′(x) ∼=
f(x+ h)− 2f(x) + f(x− h)

2h
(6)

 0 −1 −1
−1 4 −1
−1 −1 0


︸ ︷︷ ︸

Negative Laplacian Operator

,

0 1 1
1 −4 1
1 1 0


︸ ︷︷ ︸

Positive Laplacian Operator

(7)

The purpose of exploring the Laplacian operator is to determine how alternative operators
affect the efficacy of edge localization of a given image reconstruction function. While (6)
approximates the second derivative with respect to abrupt changes in brightness intensity,
the Laplacian operators (7) take out edges in a particular direction depending on whether
the positive or negative operator is imposed [37]. Particularly, the Laplacian operators
work to highlight gray level discontinuities and deemphasize regions with slowly varying
gray levels.

(a) Result of applying the
negative Laplacian operator
to an image [10].

(b) Result of applying the
positive Laplacian operator
to an image [10].

Figure 2: The negative Laplacian operator takes out inward edges and displays them
against a dark background (a) while the positive Laplacian operator takes out outward
edges and displays them against the same dark background (b) [15, 37]. Therefore, one
must either subtract the positive Laplacian operator resultant from the original image
or add the negative Laplacian operator resultant to the original image for sharper res-
olution. However, it is important to note that the Laplacian operator is not used for
one-dimensional systems. If used, it generates a scalar field with broad discrepancies
between itself and the objective function as shown in Figure 11.
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In addition to first and second order derivative operators, we assess the influence of
third derivative operators (8) and integral operators (9):

f ′′′(x) ∼=
f(x+ 2h)− 2f(x+ h) + 2f(x− h)− f(x− 2h)

2h3
(8)

∫ b

a

f(x) dx ∼=
b− a

2
× [f(b)− f(a)] (9)

Third derivative operators such as (8) are constructed through a process similar to de-
riving operators (3), (4), and (5). They cooperate in giving more accurate localization
of edges [6]. However, higher derivatives are more sensitive to noise, as can be seen in
the comparison of solving the minimization problem, using various derivative operators,
posed in Figures 8, 9, 10, 11 and 12.

As we are dealing with discrete models as practical models for image restoration,
integral operators (9) produce piecewise constant approximations of the objective model
by assuming continuity [21]. This suppresses the model error caused by the discrete
models, allowing for the localization of edges, as well as distinction between differentiable
and non-differentiable intervals. As we observe in Figures 8, 9 and 10, first, second, and
third order derivative operators improve edge detection respectively. However, estimation
of the solution function on more differentiable intervals becomes less accurate. Integral
operators work well for locally approximating the solution function to account for these
differences in the minimization function’s behavior [24].

Now, after incorporating the regularization term into the minimization function, we
look at the implementation of other norms, as opposed to utilizing the L2 norm as a
default, in defining a measurement of magnitude of the least error between the objective
and various proposed minimization functions.

Figure 3: An example of how first and second order derivative operators work in edge
detection. [7].
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2.2 Norms, Iteratively Reweighted Least Squares & Total Vari-
ation

We further experimented with one-dimensional image reconstruction by examining
iteratively reweighted norm algorithms for total variation regularization. Iteratively
Reweighted Least Squares (IRLS) is used for denoising and deconvolution, so it generally
improves resolution and contrast for digital images. The algorithm typically utilizes the
Manhattan distance (L1 norm) or the Euclidean norm. For instance, (2) can be modified
into

min
x

{
∥Ax− b∥22 + λ ∥Lx∥1

}
,

where the L1 norm of the regularization term is taken because it is more robust than
the L2 norm, computing the cost of outliers linearly as opposed to exponentially [33].
However, from a theoretical perspective, there are many other ways of constructing the
optimization function, with no definite systematic comparison between them because of
competing performance measures of various imaging modalities[32].

Branching off of the concept of IRLS, Total Variation (TV) essentially allows for more
flexibility within the algorithm. A sample TV method utilizes the equation:

min
x

{
1

p
∥Ax− b∥pp +

λ

q
∥Lx∥q

}
, (10)

where p and q represent respective norms looking to be implemented. Methods that
exercise this TV aspect can apply a wide variety of norms to regularized inversions with
the intention of improving the data fidelity and regularization terms [38]. It is important
to consider the cost of using such equations in an iterative process. Since there is no real
time variable, and the only connection that exists is between two approximations at each
iteration, an observed problem is that it is difficult to find the trajectory of these errors
over time. With an open boundary like this, performing fewer or more iterations than
necessary will yield a less precise solution [33]. Hence, boundary conditions should be
imposed.

A modified TV functional that has attracted attention is the equation

min
x

{
1

p
∥Ax− b∥pp +

λ

q

∥∥∥∥√(Dxx)2 + (Dyx)2
∥∥∥∥q

q

}
,

where
∥∥∥√(Dxx)2 + (Dyx)2

∥∥∥ is the total variation of x, and Dx, Dy denote the horizontal

and vertical discrete derivative operators respectively in a two-dimensional system. It
is important to note that in a one-dimensional system, we exclude the (Dyx)

2 term
[33]. Now, the solution is approximated within an iterative scheme by incorporating
a regularized weighted matrix WR as well as a functional weighted matrix WF in the
solution estimate, both of which are recalculated based on the previous x estimation.
This seeks a way to implement the manipulation of the observed data points and weight
their influence on the solution approximation.
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At each iteration k, define

x(0) =
(
ATA+ λDTD

)−1
AT b

W
(k)
F = diag

(
2

p
fF

(
Axk−1 − b

))

W
(k)
R = diag

(
2

q
fR

((
Dxx

k−1
)2

+
(
Dyx

k−1
)2))

xk =
(
ATW k

FA+ λDT
xW

k
RDx + λDT

y W
k
RDy

)−1
ATW k

F b,

where x(0) is the initial solution approximation, and xk is the updated solution approxi-
mation at iteration k [33]. Additionally,

fF (x) =

{
|x|p−2 , if |x| > ϵF
ϵp−2
F , if |x| ≤ ϵF

fR(x) =

{
|x| q−2

2 , if |x| > ϵR
0 , if |x| ≤ ϵR

.

The motivation for setting fR below the threshold value is that a region with very small or
zero gradient should have an insignificant contribution to the regularization term. These
functions play an active role in the reweighting process because not only are they applied
to matrices WR and WF , but they also get updated depending on a very small threshold
value.

The epsilon value is determined according to the piecewise function equations depend-
ing on if all of the values in the W matrices are above or below the threshold value
[8].

This iterative process is also commonly referred to as robust regression. It is a way of
mitigating the influence of outliers in an otherwise normally-distributed data set. Robust
regression is commonly used when the number of variables in a linear system exceeds
the number of observations [19]. In EIT there is only one observation: noisy vector b.
However, there are two variables: x and noise. Hence, we use this process to assign a
weight to each data point. This method is less sensitive to perturbations in the data and
therefore less sensitive to outliers than standard least squares.

Iteratively changing these weights provides an additional factor which improves the
fit. To compute weights, we use the predefined weight function. The algorithm then com-
putes new model coefficients and iteration terminates when the values of the coefficient
estimates converge within a specified tolerance [33]. However, this still poses the same
boundary error as (10).
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2.3 Larger Scale Problems

After modeling the EIT inverse problem using the standard matrix-vector equation
(1), we move to a more sophisticated representation of our system. The problem can be
modeled using the equation:

∇ · (σ∇u) = 0.

This is a mathematical model for the propagation of electromagnetic fields in the body
as derived from Maxwell’s equations [27]. This measures the electrical potential u inside
of a given domain for a given conductivity σ and boundary condition.

At the electrical impulse frequencies used in EIT, voltages distribute according to
∇ · (σ∇u) = 0 with imposed boundary conditions. This is to say that EIT is non-
local. Thus every change in conductivity affects the voltage measurements throughout
the remainder of the region, leading to the ill-conditioning of the image reconstruction.

We can then transform (1) into

S △ σ = △v (11)

where S is the sensitivity matrix as denoted in Figure 4 [2]. In order to reconstruct
an image, sensitivity explains what each measurement means and which regions of the
subject could be generating the measurements observed. △v represents the voltages
measured at the receiving electrode after the electrical signal has passed through the
subject and experienced resistance due to varying conductivities. △σ is what we want
to determine because it consists of conductivity measurements, in a vectorized form, and
how they vary throughout the region of interest. This gives us information about what
the image should look like and how to construct it.

Figure 4: For simplicity, this model uses four electrodes and divides the subject’s region
into four voxels. The sensitivity matrix is constructed so that each column represents the
resistivity of each voxel and each row represents the voltage of each receiving electrode.
Each entry in the sensitivity matrix denotes a weight that indicates the extent to which
the corresponding voxel affects the overall voltage. Thus, each voltage can be calculated
as a matrix decomposition of the sum of resistivity in each voxel weighted by a factor S
[2].
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Adapting to a larger scale problem, we use the sensitivity matrix to explore the leverage
of image reconstruction techniques such as the Truncated Singular Value Decomposition
(TSVD) and the Generalized Krylov Subspace algorithmic framework.

The Singular Value Decomposition is used for inverse problems for which there are no
analytical solutions, as is the case in EIT [20]. The advantage of using the non-iterative
TSVD approach is that it is used for quick and accurate image reconstruction. TSVD
is a multi-resolution strategy that reduces the size of the system as a way to reserve
memory capacity given the large scope of this problem [41]. However, spatial resolution
is compromised due to the non-iterative nature of the process. This is because smaller
singular values magnify projection noise. Therefore, we define a threshold to truncate
small singular values:

î = argmin
i

∣∣∣∣∣
∑j

i=1 σj⊕
σ

− r

∣∣∣∣∣ (12)

where î is the index of truncation and r is the desired threshold ratio of the sum of
singular values up to index j to the sum of all singular values [11].

It is important to note that as index increases, the amount of incorporated singular
values of the matrix increase as well and that small perturbations in the observations
can cause significant perturbations in the solution [28]. Problems to be aware of include
choosing a truncation parameter large enough as to not lose a large part of the detected
signals and small enough as to not incorporate too much noise.

TSVD is used for dimensionality reduction and produces Figure 13 on a given data
set. This method is not sophisticated enough so we explore another process that uses a
way to incorporate known properties of the solution into the solution method.

We impose restraints on the regularization term to develop a general regularized
method with total variation to solve the nonlinear EIT using the Generalized Krylov
Suspace iterative algorithm. The goal is to majorize the linearized EIT problem at each
iteration and minimize the function through a quadratic tangent majorant [5]. This finds
a surrogate function that locally approximates the objective function with difference min-
imized at a current point, upper bounding the objective function up to a constant. The
product is a vector in which we need to re-weight and reshape to produce the approxi-
mation of the vector that characterizes the image seen in Figure 13.

2.4 The EIT Deep Neural Network Model

EIT requires the implementation of feasible reconstruction methods capable of guar-
anteeing trustworthy image generation [18]. DNNs have a powerful ability to express
complex nonlinear functions for which untrained voltage measurement samples are used
as input for the trained DNN and an estimate for image reconstruction of the internal
conductivity distribution is the output [30].

The nonlinear approach of DNNs allows them to efficiently simplify the EIT mathe-
matical problem:

G = F (V ; I) (13)

where I is a vector storing the boundary current impulse measurements sent out and
V is the resulting boundary voltage measurement [18]. The function maps these values
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to the pixel value distribution with respect to varying conductivities, representing the
backwards model of the forward problem:

V = U(σ; I)

in which the boundary voltage measurements V are calculated using the conductivity
σ and current I measurements [18]. As the EIT problem is ill-posed, we solve for the
inverse to reconstruct the conductivity measurements to more accurately represent their
true values. This yields a more accurate pixel value distribution to be recovered.

Therefore, function (13) is then to be reconstructed using a DNN model. This elimi-
nates the need to linearize the inverse problem. Additionally, DNNs can also overcome
shortcomings of other proposed NN structures that may lead to overfitting of data, pa-
rameter dependence, or limited ability to express complex functions [13].

We begin by establishing the DNN architecture. DNNs predict a discrete class label
and fit a continuum set of data points. When data training, we use boundary voltage
data as the input layer and 3 hidden layers, each with 70 nodes. The output layer then
reflects the distribution of conductivity within the object field, as can be modeled by
Figure 5. The learning process is extracting previously unknown features of the solution
layer by layer and mapping the detected features of original spatial data samples to a
new continuum [13].

We simulate an object that places N , in our case N = 16, electrodes evenly around
its exterior. Then, once electrical impulse signals are sent through the object, we record
N × (N − 3) independent voltage measurements for each data set [34]. Thus, 208 voltage
measurements are recorded. The goal of our DNN is to accurately predict the conductivity
values that generate these measurements. We use electrical impedance maps (EIM)
(Figure 6) as a visual representation of the conductivity distribution in each object [14].

Figure 5: Deep Neural Network Structure
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We start by generating data for the DNN to train on. We utilize EIDORS simulation
software to solve the EIT forward problem when reconstructing the EIMs. Each data
set generates an EIM with one circular anomaly, of varying size and position, within a
boundary Figure 7. The voltage and conductivity values are recorded for the respective
EIM using EIDORS. This process was repeats until 16,000 unique datasets are generated.
Of these 16,000, 3,200 datasets are withheld from the neural network. Gaussian noise is
added to the withheld datasets to mimic a realistic EIT process. These datasets are then
used to test the accuracy of the trained DNN.

Figure 6: Empty Electrical Impedance
Map.

Figure 7: Sample formation of a single
circular anomaly and the distribution of
known conductivity we aim to assimilate
with the DNN.

Before training the DNN, we implement batch normalization to prevent overfitting and
to increase the efficiency of our model. The first hidden layer is trained after we input a
known boundary voltage from an EIM. The output of the previous hidden layer is used
as the input for the subsequent layer. This process is repeated for the remainder of each
of the hidden layers. The relationship between the input, the voltage measurement that
each electrode deploys, and the internal conductivity distribution is determined.

Our neural network model utilizes a rectified linear unit activation function for all
three hidden layers. A dropout method is also implemented, in which weights within the
hidden nodes are set to zero at random in order to prevent overfitting. The learning rate
of the DNN is fixed at .0001, the number of training epochs is 400, and batch size is 10.

Untrained samples of voltage measurements are used as input and the reconstructed
image of the internal conductivity distribution is used as the output for testing the ac-
curacy of the trained DNN. Of the 3,200 generated data sets that are not used in the
training process, approximately 8 are used for assessing the efficacy of the DNN.
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3 Results

This section evaluates the impact of derivative operators on one-dimensional and two-
dimensional systems, how the implementation of iterative and non-iterative methods
compare, and the performance of the trained DNN with respect to producing accurate
conductivity distribution maps.

3.1 Derivative Operator Implementation using Iteratively
Reweighted Least Squares

We begin by examining how derivative operators (3), (6), (7), (8), and (9) perform
at reconstructing a one dimensional image. Figures 8, 9, 10, 11, and 12 represent the
respective plots of the true image in blue versus the estimated image in red using Tikhonov
Regularization implemented with the respective derivative operator.

Figure 8: One-dimensional image reconstruction using the first order derivative approxi-
mation (3).

Figure 8 shows the effect of utilizing derivative operator (3) in the Tikhonov Regu-
larization process, approximating the solution to equation (2). It can be seen that the
minimization function predicts where the edges are positioned in the image. However,
where the image displays horizontal lines, the minimization function produces minor
derivations and some oscillating behavior.
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Figure 9: One-dimensional image recon-
struction using the second order deriva-
tive approximation 6.

Figure 10: One-dimensional image
reconstruction using the third order
derivative approximation 8.

Figures 9 and 10 depict similar results as to Figure 8 using the same Tikhonov Regular-
ization process. This tells us that while we would expect second and third order derivative
operators to produce more accurate images, when operating in a one-dimensional sys-
tem, such operators show singularities due to a limitation in the fundamental structure.
Second and third order derivative operators improve performance in higher dimensional
settings due to their nature of approximating gradients beyond what is computed using
first derivative operators, hence why the figures look almost identical to that of Figure 8.

Figure 11: One-dimensional image reconstruction using the Laplacian operator (7).

Figure 11 is another image reconstruction, using derivative operator (8). As we are in
a one-dimensional system, the Laplacian operator generates broad discrepancies between
the objective and minimization function. We can see that the implementation of (8)
in this example generates an image that does not approximate differentiable intervals
precisely. Due to an imposed boundary condition, the edges are approximated more
accurately. To depict the magnitude of perturbations at the right and left-hand edges of
the plot, the horizontal and vertical scales of Figure 8 have been altered. We can observe
small perturbations on the horizontal regions that are comparable to those of Figures 8,
9, and 10.
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Figure 12: One-dimensional image reconstruction using the integral-based operator 9.

Figure 12 shows the effect of implementation of an integral operator (9) in Tikhonov
Regularization for reconstructing a one-dimensional image. We can see that the integral
operator leads to the approximation of an image with larger discrepancies than those
of any of the other operators for this specific dataset. As with higher order derivative
approximations, the integral operator performs more accurately when used in a higher
dimensional environment. As image processing kernels of integral operators are normally
smooth, the integral operators are compact in higher dimensional Banach spaces [21].
Therefore, the solutions are not continuously dependent on the fed-in data. Hence small
perturbations in the data lead to the large perturbations in the projected solution shown.

Table 1: Different Operators and their x error.

Operator x error
First Derivative 0.129444433665467

*Second Derivative* 0.129207766790341
Third Derivative 0.129452952712647
Integral Operator 0.132211275817562

Laplacian 0.594913947842126

Table 1 shows the computed xerror caused by the inconsistencies between the true and
approximated solutions that we observe in Figures 8, 9, 10, 11, and 12. This value was
computed using the formula [3]:

xerror =
||xtrue − xpredicted||22

||xtrue||22
As we were comparing how accurately each derivative operator detected the edges in
the one-dimensional image, we utilized data in which the true output was known. This
way, we could use a method of measuring the magnitude of how closely each derivative
operator got to approximating the directionality changes throughout. Therefore, xtrue

is the true solution value that characterizes information that is used in constructing the
image, and xpredicted is the Tikhonov Regularization’s computed solution value. We can
see that the implementation of (6) had the closest solution approximation by just over
two ten-thousandths of a point.
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3.2 Iterative and Non-Iterative Method Performances

Figure 13 and Figure 14 compare the performance accuracy of using the Truncated
Singular Value Decomposition and the Generalized Krylov Method process to calculate
vectorized information needed for reconstructing an image of a subject’s region of interest
respectively. It is seen that there is not a significant difference between the quality of
the images, though the Generalized Krylov Method does show a slight improvement in
sharpness and definition of the main anomaly as well as those surrounding it.

Figure 13: Product of using the
truncated singular value decompo-
sition non-iterative method.

Figure 14: Product of using the
Generalized Krylov Subspace itera-
tive process.

3.3 Deep Neural Networks

Figure 15: Models 1-4 and their reconstructions generated using a DNN.
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Figure 16: Models 5-8 and their reconstructions generated using a DNN. Model 8 includes
two anomalies, whereas the DNN was trained solely on EIMs containing one anomaly.

Table 2: Reconstructed Models and their MSE.

Reconstructed Models MSE
Model 1 0.0052
Model 2 0.0210
Model 3 0.0179
Model 4 0.0038
Model 5 0.0190
Model 6 0.0061
Model 7 0.0270
Model 8 0.0202

Table 2 shows the Mean Squared Error (MSE) for each model in Figure 15 and Figure
16. To calculate MSE, we utilized the equation

MSE(σ∗) =
||σ∗ − σ||22

N

where σ∗ is the true conductivity distribution, and σ is the prediction calculated by the
DNN [18]. Then N is the number of observations, in our case 3,200.
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4 Discussion

4.1 Conclusions

This study sought to evaluate the performance of different strategies for solving the EIT
inverse problem. We proposed that through investigating both traditional approaches
and a deep neural network structure, we would find an optimal solution method for
reconstructing an accurate image. To test this, we compared traditional approaches
such the Generalized Krylov Method, the Truncated Singular Value Decomposition, and
iteratively reweighted least squares to novel methods such as deep neural networks using
MatLab and EIDORS software.

We began by deriving a baseline minimization function (2) to perform Tikhonov Reg-
ularization with to make more efficiently be able to analyze the results of implementing
different definitions of the L derivative operator. Specifically, we compared operators that
utilized approximations of the first, second, and third derivatives, as well as the integral
and Laplacian operators. The reconstructions generated in Figures 8, 9, 10, 11, and
12 showed that the derivative approximations produced a more accurate depiction of the
one-dimensional signal when compared to the integral and Laplacian operators. Since the
Laplacian and integral operators are primarily used in higher dimensional systems, they
struggled to approximate the signal on both differentiable and non-differentiable inter-
vals, generating error due to the discontinuous nature of the signal [21][37].As derivative
operators are able to detect rapid changes in intensity, the first, second, and third deriva-
tive approximations were able to detect the sharp edges of the one-dimensional signal.
However, higher derivative approximations are more sensitive to noise than lower deriva-
tive approximations. Thus, while the second derivative approximation was able to detect
the edges more accurately than the first derivative approximation, it was also able to
resist noise to a higher degree compared to the third derivative approximation.

To study traditional methods on a larger scale, for the purpose of EIT, we utilized
simulated data to construct a more realistic sensitivity matrix as our A in the standard
matrix-vector equation. In combination with the first derivative operator, we recon-
structed a conductivity distribution map (Figure 13), first using the Truncated Singular
Value Decomposition approach, and compared the result to the map produced using a
Generalized Krylov Subspace algorithmic framework (Figure 14). Although the TSVD
is effective in reducing the dimensionality of the large system, spatial resolution is com-
promised due to its non-iterative nature. Therefore, the image we were able to produce
lacked clarity in depicting the anomalies surrounding the primary anomaly. The General-
ized Krylov process proved to be more effective in detecting small changes in conductivity
about the subject’s region of interest. As the Generalized Krylov method is an iterative
process that updates a solution estimation until an error threshold is reached, the image
in Figure 14 represents the ability for iterative processes to closely approximate a solu-
tion. Therefore, the Generalized Krylov iterative processes work well in not only breaking
the large system down into smaller parts for reduced computational cost, but they also
improve the spatial resolution of reconstructed images.

This study also explored the implementation of a deep neural network as a novel
method to aid in EIT reconstruction. The deep neural network was then used for product
comparison using the results obtained through methods discussed in 2.1, 2.2 and 2.3. We
constructed a deep neural network using processes described in 2.4. Following the training
of the neural network, the DNN was then tested on withheld data. Eight models were
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produced from the 3,200 withheld datasets, each generating an EIM that was compared
to the true conductivity distribution image. Additionally, the Mean Squared Error (MSE)
between the true and constructed maps was calculated. We concluded that the neural
network excelled in reconstructing the simulated images consisting of one central anomaly,
although smaller anomalies on the boundary of the EIM proved challenging to detect. As
small anomalies have reduced effect on the overall voltage distribution, the neural network
had trouble discerning their positions. This reduced effect also caused similar voltage
measurements to be recorded, resulting in the duplication of the same EIM for multiple
datasets. This made our neural network susceptible to overfitting as the predicted EIM
often bore no resemblance to the actual image. To correct this fault, we implemented a
dropout method in which the weight of nodes in the hidden layer was reduced to zero at
random. This prevented the neural network from becoming dependent on any particular
node, thus limiting the model’s ability to overfit data [18]. We then decided to test
our DNN’s ability to detect multiple anomalies. In Model 8 of Figure 16, our DNN is
tested on an image with two circular anomalies. Our DNN was able to reconstruct this
image, despite it solely being trained on datasets in which one anomaly was present. The
MSE for the reconstructed models are given in Table 2 and suggest that our modified
neural network is able to use voltage measurements to accurately predict conductivity
distributions.

4.2 Limitations and Future Work

Future work would include constructing a sensitivity matrix using the information
output in the conductivity and voltage distribution maps. As we utilized a circular tri-
angulated space to test our deep neural network on, we would need to understand how
to convert the circular domain into a grid in a rectangular domain, since the traditional
methods we investigated were dependent on a cartesian set of data. This would allow us
to then compare the spatial resolution in images constructed using traditional methods
to that of images constructed using the deep neural network, as we would then be ana-
lyzing results drawn from the same dataset. Additionally, we found that various models
proposed alternative means of calculating error. As a result, there was not a quantita-
tive approach to compare the neural network to the traditional methods. In order to
progress on the EIT inverse problem, a uniform strategy of accuracy comparison must be
implemented. Additionally, we would be interested in investigating the implications of a
semi-array electrode framework as opposed to the full ring electrode framework simulated
in our study. This would broaden the spectrum of applications of EIT as it would elim-
inate the need to place electrodes around the entire perimeter of the region of interest
within a subject.
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a unified approach to 2d linear eit reconstruction of lung images. Physiological
measurement, 30(6):S35, 2009.

[2] Holder Adler. Electrical Impedance Tomography. 2021.

[3] Babak Maboudi Afkham, Julianne Chung, and Matthias Chung. Learning regular-
ization parameters of inverse problems via deep neural networks. Inverse Problems,
37(10):105017, 2021.

[4] Abdulbasit Alazzawi. Edge detection-application of (first and second) order deriva-
tive in image processing: Communication. Diyala Journal of Engineering Sciences,
8(4):430–440, 2015.

[5] Eman Alruwaili and Jing Li. Majorization–minimization total variation solution
methods for electrical impedance tomography. Mathematics, 10(9):1469, 2022.

[6] John C Bancroft. Differential operators 1: the first derivative. CREWES Report,
2008.

[7] Bebis. Spatial filtering. 2013.

[8] VICTOR CHURCHILL. Iteratively reweighted regularization methods for image
reconstruction from non-uniform fourier data. 2018.
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