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Abstract

In Arizona each prisoner costs the state an average of $25,397 per year, the approximate cost of
attending Arizona State University [21]. Based on the current population of inmates this adds up
to over 1 billion dollars annually. This figure is 5 times more than is spent on public assistance and
about 70 percent of what is spent on transportation in the entire state. In addition to that, 40 percent
of those who leave the prison return which further increases the costs on the state. In an effort to
decrease costs the government of Arizona hopes to implement programs into their prison system
in order to lower the recidivism rate and decrease costs. Multiple studies have shown recidivism
is reduced when education and transition programs are incorporated. Currently, Arizona funds
most of the GED program, excluding testing, while an inmate is incarcerated. Unfortunately, this
education does not continue after the inmate is released. Meanwhile, other states have successfully
incorporated education in order to reduce recidivism. In an effort to analyze recidivism in Arizona
we have developed and analyzed a data-driven mathematical model that captures the dynamics
of prisoners while in and out of prison based on their education status. This model, a system of
differential equations, helped to estimate the cost associated with different educational programs in
and outside of prison to the cost of recidivism. As a result we were able to study the economic impact
of implementing these transition programs which we proved to be cost efficient. We found that the
transition programs would eventually pay for themselves as a higher proportion of inmates enroll
in the program. We were also able to show that it was possible to completely eliminate recidivism
as the length of the program increased and enough inmates enrolled in the transition program after
being released.

1 Introduction

In 1984, the United States entered the ”tough on crime” era which resulted in mandatory minimum
sentences for drug offenses [17]. As a result of this measure, incarceration rates increased rapidly over a
short period of time. Presently, the United States has the highest incarceration rate per year in the world
with over 2 million people imprisoned [23]. That is roughly 6 times higher than China’s incarceration
rate per year, a country with a population 4 times larger than the population of the United States. [3]
Incarceration and high recidivism rates come with high economic and social costs. Consequently, various
states have invested a great amount of effort into minimizing the economic impact on their budget. We
consider how effective educational correction programs are, specifically the General Education Diploma
(GED) inside of the state prisons and the reentry programs outside that parolees have access to in
Arizona.

Over the last thirty years, the inmate population in Arizona has increased from over ten thousand
inmates to more than forty two thousand inmates, an increase of 293%. To accommodate the increased
population of inmates, the corrections’ budget also increased dramatically over the same time period
going from $211.5 million to $1.1 billion, an increase of 419% [18]. This hefty price tag is of major
concern to the Arizona Department of Corrections which stated that the level of historical growth is
unsustainable [18]. Many states are targeting transition and recidivism reduction initiatives as a more
effective criminal justice investment than continuing to expand prison populations and construct new
prison beds [18]. While it is clearly in the best interest of the Arizona Department of Corrections to
reduce the rate of recidivism it is also in the best interest of the community;this would mean that the
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money saved could eventually be reinvested into other areas of the community that are underfunded such
as education and infrastructure.

Arizona Department of Corrections published their 2018-2022 plan which includes a strategy to re-
duce recidivism through reentry preparation and support [19]. The current recidivism rate for Arizona
inmates is 39.1% per year [20]. The strategies to reduce it include leading the state-level breakthrough
project on recidivism reduction, improving inmate programs, increasing emphasis on inmate completions
of degree, stabilizing inmates’ mental health needs prior to release, increasing community engagement,
and improving use of offender interventions and sanctions [20]. As an evaluation, the RAND (Research
and Development) corporation conducted a study that evaluated the effectiveness of correctional educa-
tion. Among the key findings, they found that correctional education improves inmates’ chances of not
returning to prison. Inmates who participate in correctional education programs had 43% lower odds
of recidivating than those who did not, this translates to a reduction in the risk of recidivating of 13
percentage points. In other words, providing correctional education can be cost-effective when it comes
to reducing recidivism [5].

In this study we focus on two types of educational programs; the first is the GED program offered in all
of the state prisons while the second is the Reentry Court Program. The GED is offered to inmates who
have completed the Functional Literacy program, an equivalence to having an 8th grade education [12].
The Reentry Court Program helps a parolee find a job and even offers temporary housing. In this study,
we propose a mathematical approach to examine under what conditions the available program to inmates
and the one available to parolees are the most cost effective and reduce recidivism in Arizona.

The goal of the mathematical study is to examine the qualitative differences between the GED and
non-GED holders in prison so we can understand how to best invest monetary funds. Mechanically,
inmates go through the same process but in order to really establish the effectiveness of education, we
look at the qualitative journey which is different for each group. With an analogy to epidemiology
where disease transmission is modeled, we use a compartmental and deterministic model to analyze
mechanisms inside a given prison and inmates’ influences on transmission of education as an infectious
social disease where ”education” is the disease. In this study, we only consider the Arizona population
that is incarcerated in state prisons and exclude the private prisons because we don’t have enough access
to enough data. For simplicity we analyze the inmates with or without GED, with or without the
transition program, and with or without recidivating.

A previous study in 2012 by Alvarezet al. [1] used a mathematical model to analyze how recidivism
rates were impacted based on which reform programs the inmate attended. They concluded that re-
cidivism rates lowered if inmates had the opportunity to go through both the inside and the outside
programs. The study only analyzed data from California therefore has some geographical limitations.
However, it did not employ a cost analysis of the economic impact that these programs had on the
corrections budget.

In 2015, Purtolas et al modeled the direct impact of incentivized educational programs on the re-
cidivism rates in Louisiana [6]. The study focused on finding out how much incentive the state has to
provide in order to reduce recidivism. The claim is that in order for a prison’s optimal profit strategy
to reduce recidivism then an incentive has to be offered. The study found that more effective reform
programs have a more cost effective strategy in reducing recidivism. However, the study found that the
way the current prison system operates the prison is highly motivated to reduce the effectiveness of the
reform programs.

Our model builds on the studies previously conducted and will use many of the same concepts in
order to model recidivism in Arizona and conduct a cost analysis. Furthermore, our study places great
emphasis on the available transition program that inmates have access once they are released.

We will consider programs that occur outside and inside prison. The program we focus on is the GED
program that takes place inside prison where inmates can take classes in order to earn their degree and
the transition program outside of prison that helps paroled inmates reintegrate into society. The GED
program prepares inmates for life outside of prison and they are also a prerequisite for them to participate
in the work programs offered inside of prison [12]. The GED program is mostly funded through the state
except for the testing that comes at the inmates’ expense. Both programs are completely optional to
the parolee and they do not have to complete them. Studies have shown that inmates who complete
both programs are less likely to return to prison [14]. The analysis of the model shows effectiveness
of the education program inside and the transition program outside. We hypothesize that in order to
reduce the levels of recidivism, the inmates of the Arizona state prisons would need to pass through the
prison programs offered by the state during their sentence and after they are released. The following
sections developed the ideas discussed here. In section 2, we discuss the methods used to develop our
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mathematical model and the dynamics of our model. In section 3, we focus on calculating the parameters
for our model and estimating the ones for which we have limited data. Section 4 focuses on the analysis
of the tools we developed that helped our study. We begin by discussing how we found the education
free equilibrium and how we developed the cost function. Finally, section 5 explores the results we found
by analyzing the education free equilibrium, the equilibrium points associated with the recidivist class,
and the results of the cost equation. Section 6 will conclude our study and state our conclusions.

2 Methods

2.1 Model

The proposed model employs a system of ordinary differential equations, tracking the number of inmates
within one prison that enter without GED and the number of prisoners with GED or higher educational
degrees in a single prison. We then look at the likelihood of the inmate to recidivate once he is re-
leased.Our main objective is to find under what conditions are the available education programs, such as
the GED and Reentry centers in Arizona, the most cost effective in reducing recidivism. We hypothesize
that in order to reduce the levels of recidivism, the inmates of the Arizona state prisons would need to
pass through the prison programs offered during and after their prison sentence.

2.2 Prison and Education Dynamics

In our model, the inside prison dynamics are given by the first-time offenders class which is divided into
two parts: I1 represents the first-time inmates that come in to prison without a GED and I2 are those
that are in prison for the first-time with a GED or higher education levels. The E compartments represent
the inmates that have come back to prison after having already been freed once. These compartments
are also divided into two parts: E1 repeat offenders without GED, and E2 repeat offenders with GED
or more. These compartments allow us to keep the first time offenders separate from the ones that
recidivized to help us calculate the cost. The transition rates between compartments on the inside are
defined by contact rates between the uneducated and educated, assuming that the educated influence the
uneducated to complete their GED. In the T compartments which are outside prison, T1 represents the
released inmates that were not involved in the GED program, but are involved in the reentry program.
Class T2 are the inmates that either have a GED or received one while inside and go to the reentry
program. The O compartments are divided into: O1, the released inmates not currently in a transitional
program (and still at risk); and O2, the released inmates that completed the GED program and are
not currently in a transitional program (and still at risk). Even though the T and O compartments
appear to be similar, the proportion of released inmates that exit from the T compartment are our ideal
released inmate that leave the reentry program and never commit another crime. The O compartments
are designed to catch the proportion of offenders that remain at risk of committing another crime. As
a result, the exit rate from the T compartments is larger than the O compartments because we assume
that the reentry program has a higher rate of effectiveness.

The proposed model assumes a constant recruitment rate (Λi, i=1,2) for each of the incoming popula-
tions of inmates (Ii), taking into account the incoming inmates with no GED, and the incoming inmates
with a level of education of GED or more. It is assumed that a proportion (qi) of inmates who leave
prison after 1

αi
days will go through the transition program (Ti), while (1 -qi) remain at risk of recidivism

(Oi). Among those released inmates, a fraction
(

µ1,2

γi+µ1,2

)
will be rehabilitated due to the effectiveness

of the program, while the rest
(

γi
γi+µ1,2

)
will remain at risk of recidivism. While the inmates are at risk

of recidivism, they can go back to prison at a per capita rate pi or they can rehabilitate at per capita
rate µ3,4.

Our model looks at how peer influence between both of these groups (the group with no GED and
the group with GED or more) affect the population density in the different compartments. The incoming
population of inmates with no GED is represented by Λ1 and the incoming population of inmates with
GED or more is represented by Λ2. Even though both of the prisoner classes can attend a transition
program when released, released inmates with high education levels have less chance of recidivism [5]. In
this case, we are assuming that the infection represents the positive influence that the population with
GED or more has over the population with no GED.

The classes and parameters of the model are explained in further detail in Tables 1, 2.
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Table 1: Definition of variables in the model
Class Description
I1 Inmates with no GED
I2 Inmates with GED or more
E1 Returning offenders without GED
E2 Returning offenders with GED or more
T 1 Released inmates without GED attending the transition program
T 2 Released inmates with GED attending the transition program
O1 Inmates without GED who are still at risk to recidivate
O2 Inmates with GED who are still at risk to recidivate

Table 2: Description of the parameters used in the model

Parameters Description Units
Λ1 Incoming population without GED People per time
Λ2 Incoming population with GED or more People per time
β1 Rate of influence between I2 and I1 Per person per time
β2 Rate of influence between E2 and E1 Per person per time
p1 Rate of people leaving O1 1/time
p2 Rate of people leaving O2 1/time
q1 Proportion of released inmates without GED Dimensionless

who go to the transition program
q2 Proportion of released inmates with GED or more Dimensionless

who go to the transition program
µ1 Per capita rehabilitation rate from T 1 1/time
µ2 Per capita rehabilitation rate from T 2 1/time
µ3 Per capita rehabilitation rate from O1 1/time
µ4 Per capita rehabilitation rate from O2 1/time
γ1 Rate of people leaving T 1 1/time
γ2 Rate of people leaving T 2 1/time
α1 Rate of people leaving I1 1/time
α2 Rate of people leaving I2 1/time

The system of ordinary differential equations (1) captures the aforementioned prison education dy-
namics. It is also represented in Figure 1

dI1
dt

= Λ1 − β1I1(I2 + E2)− α1I1

dI2
dt

= Λ2 + β1I1(I2 + E2)− α2I2

dE1

dt
= p1O1 − β2E1(I2 + E2)− α1E1

dE2

dt
= p2O2 + β2E1(I2 + E2)− α2E2

dT1
dt

= (I1 + E1)(q1α1)− T 1(µ1 + γ1)

dT2
dt

= (I2 + E2)(q2α2)− T 2(µ2 + γ2)

dO1

dt
= γ1T 1 + (1− q1)(α1I1 + α1E1)−O1(p1 + µ3)

dO2

dt
= γ2T 2 + (1− q2)(α2I2 + α2E2)−O2(p2 + µ4)

(1)
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Figure 1: Model

3 Parameters

Our parameters as defined in Table 2 can mostly be calculated from the data that have been gathered
during our investigation. When calculating the parameters, we only focused on one prison therefore
the total population comes from the mean of the total population of the Florence State Prison which is
3, 955 [11]. Our rates of movement from one compartment to another are rescaled to fit this population.
We also focused on the male population older than 18 years of age. While some values were calculated
in a pretty straightforward manner others required estimation as shown below.

3.1 Parameter Calculations

On calculating α1 and α2, we supposed that the exit rates are the same regardless of GED. As stated
on the Arizona Department of Corrections website, the average prison duration term is 24 months [11].
Therefore:

α1 = α2 = 1
Average Length of Stay = 1

24 = 0.04 /month

The direct data for Arizona results were not found for the number of inmates coming in with a GED.
Therefore we used the 2016 data from Florida’s Department of Corrections statistics on TABE, the test
of adult basic education, to calculate Λi, the incoming population with a GED [15]. We decided to use
data from Florida since they have data available about their prisoner’s education level. We find that 44%
of inmates that are being admitted, have no priors, and have GED Literacy [16]. We then calculated
the rate at which male inmates with no priors are being admitted in Arizona. This will be an estimated
calculation since we used data from Florida, since .
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Males without priors admitted
year = x

month ,

10,236 people
12 months = x

1 month ,

x = 853 admissions per month,

853 people
1 month × .44 = 478 people

1 month ,

Λ2 = 478 people per month,

Λ1 = 375 people per month.

p1 represents the rate of recidivism of those without GED. We calculate this rate from a recidivism study
done in Arizona in 2005 [10] which shows that 42.4% of parolees returned to the Arizona Department of
Corrections custody for any reason over a 3 year period. Using this we calculate the rate of recidivism
in Arizona. We will rescale this percentage to reflect our month scale.

p1 = Recidivism Rate
3 years ,

p1 = .424
36 months ,

p1 = 0.0118 per month.

In order to calculate p2 (the rate of recidivism of those with GED or more) we consider the same study
used to derive p1. The study found that those who participate in inmate programs like academic education
reduce the recidivism rates by an average of 25% [10]. As a result, we used the same calculations but
using a recidivism rate of 31.8% which is 25% lower.

New percentage = recidivism rate− (recidivism rate × percentage lowered) = new percentage

(.424− (.424× .25))× 100 = 31.8%

Now running through the same calculations as p1 using our new percentage we find that

p2 = .318
36 months ,

p2 = 0.009 per month.

3.2 Parameter Estimation

In this section we estimated the parameters βi, µi, γi, and qi since the meaning of these parameters
involved various methods that allow them to fit our assumptions.

We will begin with the estimation of µ1 and γ1.The basic structure of the model creates two unique
exit rates that represent the same thing; µ1 is the exit rate from the transition program that assumes
that the parolee will cease to recidivate, and γ1 is incorporating the latency period where the parolee can
still recidivate and become an inmate again. As a result, the calculated rate at which a parolee leaves
the transition program will be split amongst the unknown probability of the program success. We begin
by calculating the rate at which people leave the transition program which we will call η.

As mentioned before the main difference between our study and previously conducted studies is
that we analyzed the impact of having a transition program once the inmates are released. Currently,
Arizona has the Maricopa Reentry Center and the Pima Reentry center. According to a table presented
in February 2018 to the Appropriations Committee by the Arizona Department of Correction we calculate
η, the rate at which people leave the transition program [13]. The transition program is currently, at a
maximum, 90 days long.

η1 = 1
3 months ,

η1 = 0.3 per month,
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Now in order to incorporate this exit rate properly, we introduced the variable a which will be the
probability of the program’s success, a number for which we have no data. Using this a we can define
µ1 and γ1.

µ1 = a ∗ η,

γ1 = (1− a) ∗ η.

We multiply a by µ1 with the assumption that the program will have a slightly greater success. In order
to begin the process, we will arbitrarily let a = 1

e which is about a 37% success rate. Therefore,

µ1 = 0.12 per month,

γ1 = 0.21 per month.

In this case, we will suppose that γ1 = γ2. Therefore γ2 = 0.21 per month.

The rest of the exit rates µ2, µ3, and µ4 are defined with respect to µ1.

Assumption 1: GED parolee’s have a double chance of reforming completely. This yields the
following result:

µ2 = 2µ1 = 0.24 per month

Assumption 2: Non-GED parolees have half the chance of reforming without the transition program.

µ3 = 1
2µ1 = 0.06 per month

Assumption 3: GED parolees that do not go through the GED program have the same chance as
non-GED parolees that do go through the transition program.

µ4 = µ1 = 0.12 per month

In order to calculate β1, we gathered the data of total monthly enrollments for the GED program
from the Arizona Department of Corrections reports [11]. We compiled the data into a list of data points
and created a graph of the overall enrollment for a total of three years which is typically the length of
time used to measure recidivism.

In our model we assume that the social influence, denoted as β1, is the only way other inmates are
motivated to sign up for the GED classes. Therefore, we expect β1 to reflect our collected data. In order
to achieve this, we used a Monte Carlo Fitting on our data. We consider a simple S-I-R model to get an
approximate value of β1 that will best estimate the data that we have currently. We also supposed that
the length of time that the infected individual has to influence the susceptible one is the average release
rate [11]. After running our simulation of the SIR model under mass incidence conditions, we found that
Re = 1.175 (see fig. 2). In our simplified model Re = Nβ

γ . In our model γ = average rate of release for

inmate = 0.04 per month, N = Total Population of prison. Therefore β = γ∗Re
N = 0.000012 per month.

In our model, the β effect is split between the I classes and the E classes but the β that was calculated
using the simplified version was not. As a result, we make the assumption that the recidivists will have
less motivational powers on other inmates which can be expressed as β1 > β2. Since we have no available
data for social influence, the division of our calculated β will be completely arbitrary.
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β1 = β − β2 =
0.000007 per month,

β2 = β − β1 =
0.000005 per month,

Figure 2: β estimation

Finally, we estimated the values of q1 and q2, the proportion of released GED and non-GED holders
enrolling in a reentry program. In this case we look at the Maricopa Transition Center which has a
maximum capacity of 100 beds and maximum length of stay of 90 days. We begin by calculating the
number of beds available per month.

Beds Available per month = 100 beds
3 months = 33 beds

1 month

Then we looked at the average number of people released per month and multiplied it by the number
of beds available per month to get our maximum proportion of q.

qm = 33 beds
1 month × 1

126people = 0.3

In order to calculate q1 and q2 we define a new equation that takes into account the flow rates of
inmates. Therefore if there are very few people from I1 and. E1 released then more inmates from I2 and
E2 will be recruited.

q1 × α1 + q2 × α2 = qm × (α1 + α2)

We make the assumption that inmates without a GED will need more help and therefore we pick the
numerical value of q2 and let that define q1 which will be larger than qm

q2 = 0.3

q1 = 0.4
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4 Analysis

4.1 Re Analysis

After conducting model analysis under our starting assumptions, we found that our model has an
education-free equilibrium (EFE) (see appendix A). In order to measure the strength of peer influence
on the education rate, we consider the special case where Λ2 = 0, i.e., no one comes in educated. Only
then we find our EFE (in which I∗2 = E∗

2 = T ∗
2 = O∗

2 = 0) which yields the Re, the basic reproductive
number. Then we find the EFE values, including I∗1 and E∗

1 , which appear in the expression 2 for Re.
The education reproductive number, Re, is computed using the next generation operator method [22],
with the following vectors:

F =




β1I1 (E2 + I2) + Λ2

β2E1 (E2 + I2)
0
0


 ,

V =




α2I2 (− (1− q2))− q2α2I2

−α2E2 (1− q2)− α2E2q2 +O2p2
α2E2q2 + α2I2q2 + (−γ2)T2 − µ2T2

α2E2 (1− q2) + α2I2 (1− q2)− µ4O2 −O2P2 + γ2T2




Here, the F vector is composed of the rates at which new inmates are admitted into our initial compart-
ments, and the V vector has the transfers of individuals between compartments. We are then able to
compute the respective matrices F and V :

F =




β1I1 β1I1 0 0
β2E1 β2E1 0 0

0 0 0 0
0 0 0 0


 ,V =




α2 0 0 0
0 α2 0 −p2

−α2q2 −α2q2 γ2 + µ2 0
α2 (q2 − 1) α2 (q2 − 1) −γ2 µ4 + p2




Following the last steps of the next generation matrix [22]( all the steps are shown in Appendix A.1),
we found a matrix with 2 rows that are multiples of each other, and the 2 others are 0 rows:




I1β1

α2
+ I1p2(γ2−q2µ2+µ2)β1

α2(p2q2µ2+(γ2+µ2)µ4)
I1β1(γ2+µ2)(p2+µ4)
α2(p2q2µ2+(γ2+µ2)µ4)

I1p2β1γ2
p2q2α2µ2+α2µ4µ2+α2γ2µ4

I1p2β1(γ2+µ2)
α2(p2q2µ2+(γ2+µ2)µ4)

E1β2

α2
+ E1p2(γ2−q2µ2+µ2)β2

α2(p2q2µ2+(γ2+µ2)µ4)
e1β2(γ2+µ2)(p2+µ4)
α2(p2q2µ2+(γ2+µ2)µ4)

E1p2β2γ2
p2q2α2µ2+α2µ4µ2+α2γ2µ4

E1p2β2(γ2+µ2)
α2(p2q2µ2+(γ2+µ2)µ4)

0 0 0 0
0 0 0 0




The education reproduction number is therefore given by the largest eigenvalue of the matrix above.
After some simplifications we find:

Re =
I∗1β1 + E∗

1β2
α2(1− p2

p2+µ4
(1− q2 ∗ µ2

γ2+µ2
))

(2)

Re =
I∗1β1+E

∗
1β2

α2
( 1
1− p2

p2+µ4
[1−q2( µ2

γ2+µ2
)]

)

All the calculations are shown in Appendix A.1

In order to explain what we got, we define r2 = [ p2
p2+µ4

(1−q2 ∗ µ2

γ2+µ2
)] which can be interprent as the

proportion of released inmates who recidivate. The term p2
p2+µ4

is the proportion of people from O2 who

go to E2, multipliying by (1− q2 ∗ µ2

γ2+µ2
) which is the proportion of people who go to O2. This path can

become a loop, and furthermore if we take into account this whole terms that make up the denominator,

we will realize that it behaves as a geometric series. The behavior of the terms depend on the ratio r2,

which can be understood as the proportion of released inmates who recidivate . Which turns out to give
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us all the different paths from E2 that an inmate can take in order to go back to prison, then:

Re =
I∗1β1 + E∗

1β2

α2

(
1

1− r2

) (3)

At the end, the Re has the term that includes r2, which represents the recidivate proportion being
multiplying by the influence of inmates with GED to the other who don’t have it, divided by the frequency
or rate that this happens. In addition, to analyze the stability conditions for Re, we used the criteria
for Re [7]. We need to keep our reproductive number Re > 1 in order to keep spreading the education
transmission, using the non-simplified form of our Re because is more simple. Also, it can be found
explicitly in Appendix A.1 :

Re =
(β1I

∗
1 + β2E

∗
2 )(γ2 + µ2)(p2 + µ4)

α2(p2q2µ2 + µ4(γ2 + µ2))

The basic reproductive number Re of our discrete model is defined and the dynamical behavior of the
model is studied. It is proved that the education free equilibrium, which is only possible if Λ2 = 0 and
is globally asymptotically unstable if Re < 1, and the persistence of the model is obtained when Re > 1.
It is necessary to focus in the global stability of the endemic equilibrium. Sufficient conditions for the
global stability of the endemic equilibrium are established by using the comparison principle. Numerical
simulations are done to show our theoretical results and to demonstrate the complicated dynamics of the
model1. Re is the average number of secondary infections produced by one infected individual during
the entire course of infection in a completely susceptible population, in our case the infection is the
education. Re often serves as a threshold parameter that predicts whether an infection dies out or keeps
persistence in a population [9].
Therefore, for our model the persistence of education influence is determined by the stability of the
disease free equilibrium and the existence of endemic equilibrium of model1. Re is always positive if:

(β1I
∗
1 + β2E

∗
2 ) <

α2(p2q2µ2 + (γ2 + µ2)µ4)

(γ2 + µ2)(p2 + µ4)

By forthright and mindful calculations shown in Appendix A.2, we know that model 1 has a unique
endemic equilibrium when Λ2 > 0 and Re > 1.

4.2 Cost function

The total cost incurred in implementing control measures by the education programs in the Arizona
Department of corrections is modeled by the function

C = c1(E∗
1 + E∗

2 ) + c2(T ∗
1 + T ∗

2 ) + c3(E∗
2 + I∗2 ) (4)

Where c1 denotes the average cost incurred by the state of Arizona to maintain an incarcerated
person per day, c2 represents the cost incurred by the state of Arizona to maintain a former prisoner in
a non-residential transition program and c3 is the amount that is spent by the state of Arizona in GED
classes per prisoner daily [8]. According to the Arizona Department of Corrections Per Capita Cost
Report of FY 2017, it costs the state $ 68.55 per day to maintain an inmate. While inside the education
classes available for inmates cost the state an average of $ 2.25 per day. The cost to maintain per inmate
in a non-residential transition center is $ 10.71 per day [4].

Since the parameters are measured in months, we need to convert this values of per person per day
into per person per month:

c1 =
cost/day ∗ 365

12
=

68.55 ∗ 365

12
= 2085.06 per person per month

c2 =
cost/day ∗ 365

12
=

10.71 ∗ 365

12
= 325.76 per person per month

c3 =
cost/day ∗ 365

12
=

2.25 ∗ 365

12
= 68.44 per person per month
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To estimate the numbers for the values of E∗
1,2, T ∗

1,2, and I∗2 , we would need to use the endemic
equilibrium equations and their numerical values, this section can be found on Appendix A.2. When we
evaluate for each parameter we find that the value of E1 is ≈ 89 E2 ≈ 704, T 1 ≈ 98, T 2 ≈ 372, and I2
≈ 19,237. Replacing these values in the original equation 4 we get:

C = 2085.06(89 + 704) + 325.76(98 + 372) + 68.44(704 + 19237) ≈ $3, 171, 900 (5)

We want to consider how the participation rates in transition programs affect this cost, so we write
our function C as:

C = f(q1, q2) (6)

The concept of cost-effectiveness is used to compare strategies in terms of cost per inmate education
achieved in implementing a particular strategy. In this case an inmate has the opportunity to get
education classes while in prison and go through a transition program. The aim is to find which strategy
is the most cost-effective when the Department of Corrections of Arizona is willing to spend a certain
amount per unit increase in effectiveness. In general, finding the most cost-effective model is a two-step
process [8]. First, we need to check if offering inside education only is most cost effective compared
to offering inside education and the outside program and second, we try to find the most cost-effective
strategy among all cost-effective strategies. Although the inside education program only strategy may
prove more cost effective, it may not be as effective as our second option over a certain period of time
since data suggest higher levels of recidivism for people who have only taken only education programs
inside [1]. The inmates who take the education programs inside and when released go through the
transition program seem to have a large cost. However, further studies have suggested that it is efficient
in lowering recidivism [1].

Only counting the inside program we find from 2017 data:

C = c1(E∗
1 + E∗

2 ) + c3(E∗
2 + I∗2 ) = 2085.06(89 + 704) + 68.44(704 + 19237) ≈ $3, 018, 210 (7)

5 Results

In this section we provide the discussion, due to the selection process used we attempted to achieve a cost
analysis for the implementation of Education programs with 2017 data. In addition we also obtained a
numerical value for the reproductive number and we show numerical simulations of the model.

5.1 Numerical Analysis of Re

Using the parameter calculations and the values for the variables found in the appendix we assigned
numerical values to I1,E1,β1, β2, γ2, µ2, µ4, α2. This allowed us to create a function for Re in order to
analyze the effects of our parameters p2, the recidivism rate of educated prisoners, and q2, the proportion
of educated inmates that enter the GED program. The function for Re is as follows

Re =
0.310375

1− p2∗(1−0.827586∗q2)
0.12+p2

(8)

We then graphed a contour plot and found the effect of recidivism on education. We found that as the
recidivism rate increases Re becomes greater than 1. The proportion of inmates that have a GED and
leave the prison has to be below 0.35 otherwise Re falls below 1. In our model, we want Re to be greater
than 1 because our infection is education and the goal is for people to get educated.
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Figure 3: Re Contour Plot

5.2 Equilibrium Analysis

We now look at the effect of education on recidivism. In order to observe this, we look at the two
compartments that compose the recidivist class.

R = E1 + E2

In order to analyze the recidivist class we used the equilibrium points:

E∗
1 = r1(α2(−i2)+λ1+λ2)

α1β2(α2i2−λ2)
β1(α2(−i2)+λ1+λ2)

+α1(1−r1)

E∗
2 = α1(α2i2−λ2)

β1(α2(−i2)+λ1+λ2) − I∗2

I∗2 is located in the Appendix A.2.

The following graph of this function gives us the behavior of the recidivism independent of the initial
conditions of our system.

Figure 4: Re Recidivism Behavior
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We begin by looking at the behavior of γ which represents the length of the transition program.
Since we have an inverse proportion, we see that as the length of the transition program increases, the
recidivist population is reduced.

For the proportion of uneducated inmates, we see that as the proportion of uneducated inmates going
into the transition program gets larger, the recidivist population is also reduced.

Our graph also shows a point where the proportion of uneducated inmates leaving the prison and
entering the transition program combined with a long enough program will make it possible to completely
remove recidivism.

5.3 Cost Analysis

The cost function is C = c1(E∗
1 + E∗

2 ) + c2(T ∗
1 + T ∗

2 ) + c3(E∗
2 + I∗2 ). This represents the sum of the

cost of recidivism (c1(E∗
1 + E∗

2 ), cost of training program outside the jail(c2(T ∗
1 + T ∗

2 )), and the cost of
GED inside the prison(c3(E∗

2 + I∗2 )). This function depends on the number of released inmates(q1 and
q2) going through the transition program.
If q1 = q2 = 1 (all released prisoners go through the transition programs) , The total cost is:
C = c1(E∗

1+E∗
2 )+c2(T ∗

1 +T ∗
2 )+c3(E∗

2+I∗2 ) = 2085.06(66+416)+325.76(264+1745)+68.44(416+19211) =
$3.00272 ∗ 106 Comparing to the original cost when q1 and q2 are different, there is $169,180 saving.
If q1 = q2 = 0 (Absence of transition programs so T1 = T2 = 0), the total coast is:
= 2085.06(104 + 808) + 68.44(808 + 19246) = $3.27407 ∗ 106 We can notice that the cost is even more
than the original, there is an increment of $102,170.

Since the cost depends on the quantities q1 and q2, and our ultimate goal is to minimize the cost, we
graphed the cost function while varying both quantities (q1 and q2). The following graph depicts this
variation and shows where the cost is at its minimum.

Figure 5: Total cost as function of the participation on re-entry programs

In figure 5, we can see that that cost function is at its minimum when q2 = q1 = 1. This can be
translated to universal transition program where all released inmates go through it. According to our
model, this will lead to a minimum cost comparing to other situations. In addition to that, this has the
potential to generate more income since people with higher education earn more on average which will
result to higher contribution to taxes and less dependency on government assistance [2].

6 Conclusion

Education is typically defined as something that occurs during youth it does not become a choice until
you become an adult. Education doesn’t need to be traditional it can also take on many different forms
that involve learning. In our study we look at both aspects of education, the academic GED side which
we suppose will give the inmate an advantage when it comes to job hunting, and the non-academic
side or the transition program which creates opportunities for the parolee that will help the inmate
avoid going to back to prison. Because of this, we have to look at Re, the transmission of education,
from a unique perspective. We assume that education would help a paroled inmate succeed and avoid
returning to prison and with enough peer influence they will be convinced to join the educated inmates.
We calculated Re as being 1.175, which means that every educated inmate can influence at least 1
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uneducated inmate. From the equilibrium points we reached the conclusion that it is possible to reduce
recidivism to 0 given that enough uneducated inmates enter the transition program and the length of the
program is long enough. Therefore we conclude that allocating more resources to the transition program
will aid in helping the state of Arizona reduce recidivism.

In order to better make a statement about the cost we conducted a cost-analysis and found that
transition programs in Arizona eventually pay for themselves because the total cost of is minimized
when every released inmate enters a reentry program. This conclusion agrees with our conclusion above
that reducing recidivism requires a large proportion of prisoners to enter the transition programs upon
release. This proves our hypothesis that was postulated. Therefore we make the recommendation that
more resources and funding needs to be allocated to transition programs. We also recommend that
the state of Arizona conduct further studies in order to identify characteristics of successful transition
programs in order to further strengthen the qualitative analysis of the programs.

There are other factors that affect recidivism like mandatory minimums, work-program agreements,
and felony laws concerning sentencing. There are also demographic factors, length of time served, and
type of offense that can be further explored within the population. Therefore, in order to strengthen our
study we would want to incorporate more variables and parameters that can affect recidivism, not just
education, and create a more exhaustive and comprehensive model that can truly help us understand
the more complex dynamics of prisons.
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A Appendix

A.1 Appendix A: Education free equilibrium and Re

This equilibrium only exits if we are assume Λ2 = 0. Then, considering all the 8 equilibrium conditions,
we got as a result that E2, O2, T2, I2 = 0 in order to stop the transmission: So, the remaining equations
are:

1. dI1
dt = Λ1 − α1I1

2. dE1

dt = p2O1 − α1E1

3. dT1

dt = q1α1(I1 + E1)− T 1(µ1 + γ1)

4. dO1

dt = γ1T 1 + (1− q1)α1(E1 + I1)−O1(µ3 + p1)

Using Mathematica we set the equations to zero and solve for the Education free equilibrium(EFE).
After this, we get the following values and we added at star as an exponent to differentiate them.

I∗1 =
Λ1

α1

E∗
1 =

Λ1

α1
p1

µ1(1− q1) + γ1
µ3(γ1 + µ1) + µ1q1p1

T ∗
1 = Λ1

q1(p1 + µ3)

µ3(µ1 + γ1) + p1q1µ1

O∗
1 = Λ1

µ1(1− q1µ1) + γ1
µ3(γ1 + µ1) + p1q1µ1

To compute the basic reproductive number, we use the next generation operator. First, from the
original equations of our model we create the F vector that is based on new criminals infections that
will help to find the F matrix

F =




x1

x2

x3

x4




=




I1β1 (I2 + E2) + Λ2

E1β2 (I2 + E2)

0

0




Then, we compute the F matrix

F =




∂(x1)
∂(I2)

∂(x1)
∂(E2)

∂(x1)
∂(T2)

∂(x1)
∂(O2)

∂(x2)
∂(I2)

∂(x2)
∂(E2)

∂(x2)
∂(T2)

∂(x2)
∂(O2)

∂(x3)
∂(I2)

∂(x3)
∂(E2)

∂(x3)
∂(T2)

∂(x3)
∂(O2)

∂(x4)
∂(I2)

∂(x4)
∂(E2)

∂(x4)
∂(T2)

∂(x4)
∂(O2)




=




β1i1 β1i1 0 0

β2e1 β2e1 0 0

0 0 0 0

0 0 0 0




From the terms of the original equations that are left, we are able to create the V vector, which
follows the inflow and outflow of criminals from each compartment
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V =




y1

y2

y3

y4




=




−q2α2I2 − (1− q2)α2I2

p2O2 − (1− q2)α2E2 − q2α2E2

−γ2T2 − µ2T2 + q2α2I2 + q2α2E2

(1− q2)α2I2 − µ4O2 + γ2T2 − P2O2 + (1− q2)α2E2




Here is the computation of the V matrix

V =




∂(y1)
∂(I2)

∂(y1)
∂(E2)

∂(y1)
∂(T2)

∂(y1)
∂(O2)

∂(y2)
∂(I2)

∂(y2)
∂(E2)

∂(y2)
∂(T2)

∂(y2)
∂(O2)

∂(y3)
∂(I2)

∂(y3)
∂(E2)

∂(y3)
∂(T2)

∂(y3)
∂(O2)

∂(y4)
∂(I2)

∂(y4)
∂(E2)

∂(y4)
∂(T2)

∂(y4)
∂(O2)




=




α2 0 0 0

0 α2 0 −p2
−α2q2 −α2q2 γ2 + µ2 0

α2 (q2 − 1) α2 (q2 − 1) −γ2 p2 + µ4




Then we compute the inverse of V using Wolfram Mathematica:

V −1 =




1
α2

0 0 0

p2(γ2−q2µ2+µ2)
α2(p2q2µ2+(γ2+µ2)µ4)

(γ2+µ2)(p2+µ4)
α2(p2q2µ2+(γ2+µ2)µ4)

p2γ2
p2q2α2µ2+α2µ4µ2+α2γ2µ4

p2(γ2+µ2)
α2(p2q2µ2+(γ2+µ2)µ4)

q2(p2+µ4)
p2q2µ2+(γ2+µ2)µ4

q2(p2+µ4)
p2q2µ2+(γ2+µ2)µ4

p2q2+µ4

p2q2µ2+(γ2+µ2)µ4

p2q2
p2q2µ2+(γ2+µ2)µ4

γ2−q2µ2+µ2

p2q2µ2+(γ2+µ2)µ4

γ2−q2µ2+µ2

p2q2µ2+(γ2+µ2)µ4

γ2
p2q2µ2+(γ2+µ2)µ4

γ2+µ2

p2q2µ2+(γ2+µ2)µ4




In order to find Re we evaluate both matrices F and V −1 at our DFE and find the largest eigenvalue
of the product of the two matrices

Re = ρ
(
FV −1

)

ρ




I1β1

α2
+ I1β1p2(γ2+µ2−µ2q2)

α2(µ4(γ2+µ2)+µ2p2q2)
I1β1(γ2+µ2)(µ4+p2)
α2(µ4(γ2+µ2)+µ2p2q2)

I1β1γ2p2
α2γ2µ4+α2µ4µ2+α2µ2p2q2

I1β1p2(γ2+µ2)
α2(µ4(γ2+µ2)+µ2p2q2)

E1β2

α2
+ E1β2p2(γ2+µ2−µ2q2)

α2(µ4(γ2+µ2)+µ2p2q2)
E1β2(γ2+µ2)(µ4+p2)
α2(µ4(γ2+µ2)+µ2p2q2)

E1β2γ2p2
α2γ2µ4+α2µ4µ2+α2µ2p2q2

E1β2p2(γ2+µ2)
α2(µ4(γ2+µ2)+µ2p2q2)

0 0 0 0

0 0 0 0




Re = (γ2+µ2)(µ4+p2)(β2E1+β1I1)
α2(µ4(γ2+µ2)+µ2p2q2)

This expression can be simplified by dividing whole expression of Re by the constant part in the
numerator

= β2E1+β1I1
α2(µ4(γ2+µ2)+µ2p2q2)

Manipulating the denominator(Den) with some algebra, we obtain a reduced expression of it. We
can also apply the reciprocal of some terms and sum them all to get a final expression

Den = α2[ µ2p2q2
(p2+µ4)(γ2+µ2)

+ 1− p2
p2+µ4

]

Den = α2[ p2q2
(p2+µ4)

(1− γ2
(γ2+µ2)

) + 1− p2
p2+µ4

]

Den = α2[ p2q2
(p2+µ4)

− p2q2γ2
(γ2+µ2)(p2+µ4)

+ 1− p2
p2+µ4

]

Den = α2[1− p2
p2+µ4

(1− q2 + q2γ2
γ2+µ2

)]
After this, we can put the whole term together to lead up to:
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Re = ( I1β1+E1β2

α2
) 1
1− p2

p2+µ4
(1−q2+ µ2

γ2+µ2
)

A.2 Endemic Equilibrium

In this case, our recidivism model is considered with Λ2 > 0. So we arranged the original equations, the
8 equations we have below, in terms of I2, I1, E2, E1:

1. dI1
dt = Λ1 − β1I1(I2 + E2)− α1I1

2. dI2
dt = Λ2 + β1I1(I2 + E2)− α2I2

3. dE1

dt = p1O1 − β2E1(I2 + E2)− α1E1

4. dE2

dt = p2O2 + β2E1(I2 + E2)− α2E2

5. dT1

dt = (I1 + E1)(q1α1)− T 1(µ1 + γ1)

6. dT2

dt = (I2 + E2)(q2α2)− T 2(µ2 + γ2)

7. dO1

dt = γ1T 1 + (1− q1)(α1I1 + α1E1)−O1(p1 + µ3)

8. dO2

dt = γ2T 2 + (1− q2)(α2I2 + α2E2)−O2(p2 + µ4)

We added e as an exponent to denote the new equations we got for the endemic equilibrium

T e1 =
q1α1

µ1 + γ1
(I∗1 + E∗

1 )

T e2 =
q2α2

µ2 + γ2
(I∗2 + E∗

2 )

Oe1 =
α1

µ3 + p1
[(1− q1) + q1

γ1
µ1 + γ1

](Ie1 + Ee1)

Oe2 =
α2

µ4 + p2
[(1− q2) + q2

γ2
µ2 + γ2

](Ie2 + Ee2)

Λ1 = Ie1(α1 + β1(Ie2 + Ee2))

Λ2 = α2I
e
2 − β1Ie1(Ie2 + Ee2)

p1O
e
1 = Ee1(α1 + β2(Ie2 + Ee2))

α2E
e
2 = p2O

e
2 + β2E

e
1(Ie2 + Ee2)

Next, we can add the 2 equations for O1 :

α1
p1

µ3 + p1
[1− q1µ1

µ1 + γ1
](Ie1 + Ee1) = Ee1(α1 + β2(Ie2 + Ee2)) (9)

and calling r1 = p1
µ3+p1

[1− q1µ1

µ1+γ1
], to make it simple for later.

Same process for the 2 more for O2:

α2
p2

µ4 + p2
[1− q2µ2

µ2 + γ2
](Ie2 + Ee2) + β2E

e
1(Ie2 + Ee2) = α2E

e
2 (10)

with r2 = p2
µ4+p2

[1− q2µ2

µ2+γ2
]

For the next step we simplify and add O1 and O2 and setting the respective r1 and r2, we get:

α1r1I
e
1 + α2r2I

e
2 = α1(1− r1)Ee1 + α2(1− r2)Ee2
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In order to derive Ee1 :

α1r1I
e
1 = α1(1− r1)Ee1 + β2E

e
1(Ie2 + Ee2)

Ee1 =
r1(Λ1 + Λ2 − α2I

e
2)

α1(1− r1) + β2(Ie2 + Ee2)

We also added Λ1 and Λ2 in order to get a value for Ie1

Ie1 =
Λ1 + Λ2 − α2I

e
2

α1

This will help us to find Ee2 ,

Ee2 =
α1(α2I

e
2 − Λ2)

β1(Λ1 + Λ2 − α2Ie2)
− Ie2

Now, we can plug in Ee2 into Ee1 and add equations 9 and 10 to simplify some terms and end up with
this:

r1(Λ1 + Λ2) + (1− r1)α2I
e
2 =

r1(1− r1)(Λ1 + Λ2 − α2I
e
2)2

(1− r1)(Λ1 + Λ2 − α2Ie2) + β2/β1(α2I∗2 − Λ2)
+
α1α2(1− r2)(α2I

e
2 − Λ2)

β1(Λ1 + Λ2 − α2Ie2)

setting x = −Λ2 + α2I
e
2 we obtain a cubic equation that can be solve in Wolfram Mathematica

numerically, just plugging in the parameters values mentioned in previous sections.

(Λ2 + Λ1r1 + (1− r1)x)((1− r1)(Λ1 − x) +
β2x

β1
)(Λ1 − x) =

r1(1− r1)(Λ1 − x)3 +
α1α2

β1
(1− r2)x((1− r1)(Λ1 − x) + (β2/β1)x)

Using Mathematica to solve this cubic equation will lead you to 3 values for Ie2 but the one that
works for this study is just when Ie2 = 19236.9 because, it’s the value that give us all positive numbers
whenever we replace it on the other equations expressed in terms of I2. The following values for the
other variables of the endemic equilibrium after replacing the parameters values are:

Ie1 =
−α2 (I2) + λ1 + λ2

α1
= 2088.1

Ee2 =
α1 (α2I2 − λ2)

β1 (−α2 (I2) + λ1 + λ2)
− I2 = 89

Ee1 =
r1 (−α2 (I2) + λ1 + λ2)

β2 (E2 + I2) + α1 (1− r1)
= 704.4

T e1 =
(E1 + I1) (α1q1)

γ1 + µ1
= 98

T e2 =
(E2 + I2) (α2q2)

γ2 + µ2
= 372

Oe1 =
α1E1 − β2E1 (E2 + I2)

p1
= 1, 050

Oe2 =
α2e2 − β2e1 (e2 + i2)

p2
= 2, 149

These values are the ones which allow us to construct the cost analysis.
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Abstract

E. coli O157:H7 bacteria tends to contaminate leafy green vegetable farms
regularly, therefore promoting a recurrence in foodborne disease outbreaks. In
previous studies, E. coli in water has been a focus. However, the farming industry
is just now understanding the danger of E. coli in soil. In spring 2018, lettuce farms
in the Yuma region contracted the E. coli bacteria and caused 210 human cases
nationwide. As a result of this study, a new mathematical framework is proposed
to capture the dynamics of the spread of E. coli in lettuce due to contaminated soil
and equipment. In particular, this framework explores the impact of soil treatment
and equipment sanitation since they are essential to the growing process of lettuce.

1 Introduction

The name Escherichia coli encompasses a large group of bacteria. Most strains of this
bacteria are harmless to humans, but strains such as the Shiga toxin-producing E. coli
(STEC) O157:H7 are pathogenic to humans [8]. In this study, mention of E. coli equates
to the STEC O157:H7 strain. E. coli spreads to humans through contaminated food,
usually ground beef and produce [9]. The Centers for Disease Control and Prevention
(CDC) estimate that each year 96,534 individuals are infected with the strain STEC
O157:H7 [25] and that 46% of outbreaks in the United States occur because of contam-
inated produce [5]. Leafy greens are the most common produce that are contaminated
with E. coli [7], which is supported by the E. coli outbreaks from 2011, 2012, 2013, 2017,
and 2018 [6]. The 2018 E. coli outbreak in romaine lettuce was linked to farms in the
Yuma region. The commercial lettuce farms in Yuma, Arizona are responsible for 90%
of the nations leafy greens [3] during the winter. As a result, this outbreak had wide
reaching consequences. As of June 28, 2018, there were 36 states affected by the Yuma
lettuce outbreak as seen in Figure 1. In this study, we focus specifically on the dynamics
of the spread of E. coli in lettuce.
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Figure 1: In this United States case count map of E. coli, a total of 210 human cases
across 36 states were linked to romaine lettuce [18].

Although STEC O157:H7 is not the most common foodborne illness, it causes some
of the most severe symptoms. When people consume E. coli contaminated food, they
become infected and can experience severe symptoms such as bloody diarrhea, abdom-
inal cramping, and vomiting [9]. Approximately, five to ten percent of E. coli cases
lead to hemolytic-uremic syndrome (HUS) which can cause kidney failure and death [9].
Furthermore, these numbers do not encompass the full impact of the disease as cases
are not reported when the illness is not linked to E. coli or the person does not go to
the doctor. Only 20% of illnesses due to a foodborne outbreak are reported [8]. While
the lettuce, itself, is unharmed by the presence of STEC O157:H7 [26], it can transmit
E. coli to humans.

E. coli lives in the lower intestines of humans and animals as a part of the digestive
system [23]. Cattle are the main source of contamination [10]. Infected cattle can
contaminate their feces with E. coli from their intestines; this is called shedding. Cows
can shed as many as 106 to 109 colony forming units (CFU) per gram of feces [16]. The
waste from the infected cow is processed to use as manure for growing crops including
lettuce. If this waste is improperly composted, it will still contain E. coli which will
spread to the soil when manure is applied [17]. Consequently, this contaminated manure
infects the lettuce that is being cultivated. Unknowingly, the E. coli-infected lettuce
is grown, harvested, processed, and shipped out to stores for consumers to eat and
become ill [17]. Farming equipment is an important mechanism of transmission [11].
Agricultural equipment enters the farming process at different times during the life cycle
of the lettuce; they are used for the laying of manure, pre-planting ground preparation,
planting, thinning, and harvesting [21]. Farm vehicles used in the growing season include
the chisel plow, disk harrow, stanhay type planter, rotary spiker, and harvesting vehicle
[21]. In addition, farm tools like long knives are used to cut heads of lettuce during
harvesting. During these times, if equipment is used on contaminated soil or used to
manipulate contaminated manure, it can transmit E. coli to uninfected soil and spread
the infection.

There are several points of intervention throughout this process. Lettuce can be
sanitized and disinfected within the normal process of preparing lettuce for consumers.
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However, this will not be effective if the lettuce has internalized the bacteria. Internal-
ization occurs when a lettuce seed is planted in contaminated soil and uptakes E. coli
in its roots as it grows [26]. If this happens, then, it is nearly impossible to remove
the bacteria from the lettuce. As a result, other points of intervention that prevent
E. coli from coming into contact with soil at any point must be taken into account to
limit internalization. One way to do so would be to prevent equipment from touching
contaminated soil and manure.

Previous studies have shown that prevention during the preharvest process is cru-
cial for reducing contamination. Past work by Franz, et. al. (2008) focused on the
ecological factors that lead to the growth of STEC O157:H7 in lettuce. The probabilis-
tic model concentrated on manure-amended soil through the production process. This
study considered variables, such as herd density, manure storage time intervals, and ma-
nure quantity in order to estimate the probability of E. coli infected lettuce. The results
show manure and soil management to be influential in preventing pathogenic E. coli in
lettuce. Furthermore, the study states that there is a high correlation between the initial
prevalence of contaminated manure and the probability of contaminated lettuce [17].

Our research focuses on testing and treatment methods to identify and treat con-
taminated soil and on sanitation methods of contaminated farm equipment through
mathematical modeling. Some of the current procedures and standards of soil testing
in a commercial farm setting include sending in soil samples to test in labs and at home
soil testing kits [20]. If STEC O157:H7 is discovered in soil, then the soil is treated by
no longer planting lettuce and letting the soil dry out from the sun via UV rays [20].
The standard for cleaning farm equipment consists of four stages. The first stage in-
volves washing to loosen the soil on the surface. The second stage incorporates the use
of detergent and scrubbing to break up the adhesion of the microorganisms. The next
stage is rinsing that removes the loosened soil and detergent. The last stage is applying
sanitizer to kill as much microorganisms as possible [27]. The frequency of sanitation
is at the discretion of the farm, but the Food and Drug Administration (FDA) recom-
mends that each farm develops their own sanitation standard operating procedures and
schedules for sanitation [14].

As a result, we develop and analyze a mathematical model that describes the interac-
tion of infected manure, contaminated soil, farm equipment, and lettuce. Our analysis
uses sensitivity analysis of the basic reproduction number to determine the effect of
treatment and sanitation on the yield of healthy lettuce.

2 Methods and Model

In our model, we first consider four state variables. The first two are clean equipment
(Ec) and contaminated equipment (EI). The other two state variables are healthy
lettuce (LS) and contaminated lettuce (LI). The dynamics between the state variables
are described in the following paragraphs.

We then assume a proportion of contaminated manure, ρ,is applied to the soil for
fertilization. Consequently, we assume that E. Coli then colonizes the rest of the soil
as a rate, r. In our model, the equation for the change in the proportion of infected
soil, P , over time, t, is based off the Levins Model. The Levins model was developed
to implement migration and extinction of a population in patches by utilizing a logistic
growth equation [22]. We modified the Levins model to incorporate Mρ into our model
to reflect the proportion of infected manure that contaminates a proportion of soil at the
start of cultivation. We assume that the infected manure infects the soil at the following
rate,

rMρP (1− P ).
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Additionally, soil is treated at a rate tAP and the E. coli in the contaminated soil
naturally dies out at rate dP . Manure and soil are essential in the growing process of
lettuce.

The change in P over time t is shown below,

dP

dt
= rMρP (1− P )− (d+ tA)P.

The germination of healthy lettuce plants occurs at a rate, αM . Germination occurs
when a seed sprouts under favorable conditions such as appropriate water intake and
temperature. We assume lettuce becomes contaminated in two ways. When the lettuce
seed or plant comes into contact with infected soil, E. coli transmits to the lettuce at
a rate of βLS

. As a result, lettuce can internalize the E. coli from the soil and then
the seed or plant becomes contaminated. In addition, healthy lettuce becomes infected
when it comes in contact with infected equipment and the bacteria transmits at a rate
β̂LS

. The per capita death rate of lettuce is µL which occurs at different stages of the
growing season like during the thinning and harvesting process [21].

We consider farm equipment as our vector for E. coli spreading during the farming
process. It is further assumed that new equipment such as tools and farm vehicles are
acquired at a rate, ΛE . Equipment moves from the clean, Ec, to contaminated, EI ,
compartment when it comes in contact with E. coli contaminated manure and trans-
mits E. Coli at a rate, βM . Likewise, the term βEc

P Ec

NE
, shows how clean equipment is

contaminated as a result of its interaction with contaminated soil per unit time. The
contact between equipment and soil occurs during the preplanting, thinning, fertiliza-
tion, and harvesting stages. We consider all of the equipment and tools mentioned in
Section 1 as the total population of equipment, NE . The cleaning rate, γc, describes
the rate at which a farmer randomly cleans infected equipment without knowing which
ones are contaminated and moves equipment from the EI to Ec compartment given that
the farmer can only clean a certain amount of equipment per unit time, γc. However,
if contaminated equipment cannot return to a clean state then it is discarded from the
system at a rate, δE . Additionally, clean and contaminated equipment are considered
to have gone through a per capita disposal rate, µE , when they are no longer usable.
For example, dulled or broken knives that are discarded during harvest. Furthermore,
homogeneous mixing of equipment and lettuce is assumed.

All of the dynamics are described in equations (1 – 4) and represented in Figure 2.

dP

dt
= rMρP (1− P )− (d+ tA)P, (1)

dEc
dt

= ΛE + γc
EI
NE
− βEc

P
Ec
NE
− βMMρEc − µEEc, (2)

dEI
dt

= βEcP
Ec
NE

+ βMMρEc − γc
EI
NE
− (µE + δE)EI , (3)

dLI
dt

= βLS
PLS + β̂LS

EI
NE

LS − µLLI , (4)

dLS
dt

= αM − βLS
PLS − β̂LS

EI
NE

LS − µLLS , (5)

where NE = Ec + EI .
Because the total population of lettuce, NL is assumed to approach αM

µL
= k, the

lettuce population is asymptotically constant.
From equation (1), we can see that P is between 0 and 1 because dP

dt

∣∣
P=0

= 0, and
dP
dt

∣∣
P=1

< 0. From equation (2) and (3), we can see that 0 < Ec + EI ≤ ΛE

µE
= kE
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(carrying capacity of equipment). So the triangle region ∆ = {0 ≤ EI +Ec ≤ kE , EI ≥
0, Ec ≥ 0} is positive invariant. Similarly, from equation (5 – 4), we know 0 ≤ LI ≤ k.
Therefore, the domain of interest of our model is

Ω = [0, 1]×∆× [0, k]

which is a positive invariant for the system (1 – 4). We will analyze the model within
this domain.

Figure 2: Flow diagram describing the interactions from equations (1 - 4). P is the
proportion of infected soil, Ec clean equipment, EI contaminated equipment, LS healthy
lettuce, and LI infected lettuce.

3 Parameters

The first assumption we make for our parameters is that we define the size of a field to
be 1 km2. The Food Safety Modernization Act states that if a farm’s water is known
to be infected with E. coli, then the water is to be tested four times within a growing
season [15]. We assume that this is the same for soil and calculated our treatment rate
by dividing the number of times soil is tested by the number of days in a growing season,
152 days [21]. The parameter, δE , was calculated based on a strategy of some farmers
for replacing their equipment. This particular strategy consists in replacing one or two
pieces of equipment every year [19]; consequently, we divided the 2 pieces of equipment
by the total number of days in a year to get, 2

365 ≈ 0.005. ΛE , the equipment acquired
per day, is estimated to be some amount of equipment, less than 25. µE has to be
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less than ΛE , because when µE is computed it is multiplied by the total population of
equipment. The cleaning rate of equipment, γc, was calculated based on the presumption
that farmers clean 10 pieces of equipment weekly, biweekly, monthly, or never, which
is shown by dividing 1 by the number of days between the cleaning, 10

7 , 10
14 , 10

30 , and 0
respectively. Therefore, the range of γc is between 0 and 10

7 .
Between 25,500 to 41,500 seedlings of lettuce are planted at the start of the lettuce

growing season per acre [28], which we use to calculate the germinating rate of healthy
lettuce, α, by first dividing by 0.004 to convert it to the number of lettuce per km2,
6,375,000 to 10,375,000. Then, we divide 6,375,000 and 10,375,000 by the amount of
manure times the number of days in our growing season, 6375000

2300000∗152 ≈ 0.0182 and
10375000

2300000∗152 ≈ 0.03. We can also use these numbers to compute the per capita death rate
by multiplying the amount of manure by α and then dividing by the number of lettuce
per km2, 2300000∗0.0182

6375000 ≈ 0.0066 to 2300000∗0.03
10375000 ≈ 0.0067. All of the β values can be

varied. The parameters, ρ and r are assumed to be proportions, 0 to 1. Parameter values
M and d were found from other sources [17], [1] and the only computations involving
these parameters are conversions to be consistent with the units used in this study.

Symbol Parameters Estimations Reference

r Growth rate of infected soil ( 1
kg×day ) [0,1] Estimate

M Quantity of manure (kg) 2, 300, 000 [17]

ρ Proportion of infected manure [0, 1] Estimate

tA Treatment rate of soil as a result of testing ( 1
day ) Varies Estimate

d Per capita death rate of E. coli in soil ( 1
day ) 0.3326 [1]

ΛE Rate equipment is acquired ( equipmentday ) 0.164 [19]

α Germinating rate of healthy lettuce ( lettuce
day×mass ) [0.0182, 0.03] [28]

βEc
Rate of transmission per equipment ( 1

equipment×day ) Varies Estimate

βM Transmission rate of manure ( 1
mass×day ) Varies Estimate

βLS
Contamination rate of healthy lettuce due to infected soil ( 1

day ) Varies Estimate

β̂LS
Contamination rate of lettuce due to infected equipment ( 1

day ) Varies Estimate

γc Cleaning rate of equipment ( equipmentday ) Varies Estimate

µE Per capita disposal rate of equipment ( 1
day ) 0.164 [19]

µL Per capita death rate of lettuce ( 1
day ) 0.0066 [28]

δE Removal rate of infected equipment due to inability to clean ( 1
day ) Varies Estimate

Table 1: Symbols, Definitions, and Parameter Estimates.

4 Analysis

In order to facilitate our mathematical analysis, we begin by re-scaling our model. Then,
we find equilibria for the system and determine the conditions for their existence and
stability as well as determining the important threshold, RS0 expression. Finally, we
examine the global dynamics for our system.
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4.1 Re-scaled Model

Since LI + LS = k, we reduce the system (1 – 4) in terms of the following system of
four equations

dP

dt
= rMρP (1− P )− (d+ tA)P, (6)

dEc
dt

= ΛE + γc
EI
NE
− βEcP

Ec
NE
− βMMρEc − µEEc, (7)

dEI
dt

= βEc
P
Ec
NE

+ βMMρEc − γc
EI
NE
− (µE + δE)EI , (8)

dLI
dt

= βLS
P (k − LI) + β̂LS

EI
NE

(k − LI)− µLLI , (9)

where NE = Ec + EI and k = αM
µL

The equations (6 – 9) are re-scaled using the following equivalences.

t =
τ

ρMr
, P =

γc
βEc

x, Ec =
γc
ρMr

y, EI =
γc
ρMr

z, and LI = kw.

The nondimensionalized system of (6 – 9) becomes

dx

dτ
= x(1−Ax)−G0x, (10)

dy

dτ
= G1 +

z

y + z
− xy

y + z
−G2y, (11)

dz

dτ
=

xy

y + z
+G4y −

z

y + z
−G6z, (12)

dw

dτ
= G7x(1− w) +G8

z

y + z
(1− w)−G9w, (13)

where, A = γc
βEc

, G0 = d+tA
ρMr , G1 = ΛE

γc
, G2 = βMMρ+µE

ρMr , G4 = βM

r , G6 = µE+δE
ρMr ,

G7 =
βLS

γc
βEcρMr , G8 =

β̂LS

ρMr , and G9 = µL

ρMr .

The domain of interest, Ω, is changed to Ω
′

= [0, 1/A]×∆
′ × [0, 1] where ∆

′
= {0 ≤

x+ y ≤ kEMrρ
γc
}.

4.2 Contamination-Free Equilibrium of Soil

We will now do a full analysis of our re-scaled model (10–13). Firstly, the contamination-
equilibrium of soil is (x∗ = 0, y∗, z∗, w∗) where,
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y∗ =
−(1 + 2G1)G2 +G4 +G1(G4 +G6)

2G2(G4 +G6 −G2)

+

√
G2

2 − 2G2(G4 +G1G4 −G1G6) + (G4 +G1G4 +G1G6)2

2G2(G4 +G6 −G2)

z∗ =
G1 + (G4 −G2)y∗

G6
,

w∗ =
G8z

∗

G9(y∗ + z∗) +G8z∗
.

Given that y∗ exists, z∗ exists if y∗ < ΛEMrρ
γcµE

. Also, w∗ exists if both y∗ and z∗

exist. To determine the stability of the contamination-free soil equilibrium, we find the
Jacobian matrix




−G0 + 1 0 0 0

− y∗

y∗+z∗ −G2 − z∗

(y∗+z∗)2 − y∗

(y∗+z∗)2 0
y∗

y∗+z∗ G4 + z∗

(y∗+z∗)2 −G6 − y∗

(y∗+z∗)2 0

G7(1− w∗) G8(−1+w∗)z∗

(y∗+z∗)2 −G8(−1+w∗)z∗

(y∗+z∗)2 −G9 − G8z
∗

y∗+z∗




and, solve for the eigenvalues,

λ1 = 1−G0 and λ2 = −G9 −
G8z

∗

y∗ + z∗
.

After reducing the Jacobian to a 2× 2 matrix:
(
−G2 − z∗

(y∗+z∗)2 − y∗

(y∗+z∗)2

G4 + z∗

(y∗+z∗)2 −G6 − y∗

(y∗+z∗)2

)
.

In order to determine stability, we want to determine the conditions for when λ1 and
λ2 are negative. In particular, −G0 + 1 is negative when G0 > 1 or tA+d

Mrρ > 1, and

−G9 − G8z
∗

y∗+z∗ is always negative. To determine when the other two eigenvalues have
negative real parts we check when the trace of the 2 × 2 matrix is negative and the
determinant is positive. Obviously, the trace, −G2 − z∗

(y∗+z∗)2 −G6 − y∗

(y∗+z∗)2 is always

negative. The determinant

G2y
∗ −G4y

∗ +G6z
∗ +G2G6(y∗ + z∗)2

(y∗ + z∗)2
,

is positive because G4 < G2 since βM

r < βMMρ+µE

ρMr . Therefore, the equilibrium is locally
asymptotically stable when G0 > 1. We collect the above analysis into the following
theorem.

Theorem 1. The contamination-free equilibrium of soil of system (10-13) is asymptot-

ically stable when RS0 = 1
G0

= rMρ
tA+d < 1.
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Definition 1. RS0 is the basic reproductive number for soil.

4.3 Endemic Equilibrium of Soil

The other equilibrium for equation (10) is x∗2 = 1
A (1−G0) which exists if RS0 > 1. Let

(x∗2 = 1
A (1−G0), y∗2 , z

∗
2 , w

∗
2) be the endemic equilibrium of soil. Here, y∗ is given by the

following quadratic equation
ay2 + by + c = 0 (14)

where,

a = G2(G2 −G4 −G6) = −δE(βMMρ+ µE)

ρMr
,

b = G6

(
G1 −

1

A
+
G0

A

)
+G4(G1 + 1)−G2 − 2G1G2 =

µE(ΛE − βEc
+ γc − 2ΛEβMMρr) + δE(−βEc

+ ΛE) + ρβMΛEM

ρMrγc

+ (µE + δE)(d+ tA)(βEc
)(ρMr)2γc,

c = G1(G1 + 1) =
ΛE
γc

(
ΛE
γc

+ 1

)
.

We know that a < 0 and c > 0, then the product of the two roots is less than zero.
Therefore, equation (14) has one positive and one negative root and the positive root is
the endemic solution. Then y∗2 is a positive root. We get

y
∗
2 =

√
−4(−G1 − G2

1)(G2
2 − G2G4 + G2G6) + (−G1G6 −

G0G6−G6
A

− G4G1 − G4 + G2 + 2G1G2)2

2(G2
2 − G2G4 + G2G6)

+
−G1G6 −

G0G6−G6
A

− G4G1 − G4 + G2 + 2G1G2

2(G2
2 − G2G4 + G2G6)

and direct computation gives us

z∗2 =
G1 + (G4 −G2)y∗2

G6
,

w∗2 =
(1−G0)G7y

A + (1−G0)G7z
A +G8z

(1−G0)G7y
A +G9y + (1−G0)G7z

A +G8z +G9z
.

Since there exists a positive y∗2 , z∗2 is positive when the positive y∗2 is plugged in. In
order for z∗2 > 0, the condition for existence y∗2 <

ΛEMrρ
γcµE

and (x∗2, y
∗
2 , z
∗
2 , w

∗
2) exists when

RS0 > 1.
Similarly to the contamination-free equilibrium of soil stability, we can use a Jacobian

to determine the stability of the endemic equilibrium corresponding to x∗2 = 1
A (1−G0)
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−1 + G0 0 0 0

− y∗2
y∗2+z∗2

(−1+G0)z∗2−A(z∗2+G2(y∗2+z∗2 )2)

A(y∗2+z∗2 )2
(1+A−G0)y∗2
A(y∗2+z∗2 )2

0

y∗2
y∗2+z∗2

z∗2−G0z∗2+A(z∗2+G4(y∗2+z∗2 )2)

A(y∗2+z∗2 )2
−G6 +

(−1−A+G0)y∗2
A(y∗2+z∗2 )2

0

G7(1 − w∗2) −G8(1−w∗2)z∗2
(y∗2+z∗2 )2

−G8(−1+w∗2)y∗2
y∗2+z∗2 )2

(−1+G0)G7
A

− G9 −
G8z∗2
y∗2+z∗2




.

Two eigenvalues of this 4× 4 matrix are

λ1 = −1 +G0 and λ2 =
(−1 +G0)G7

A
−G9 −

G8z
∗
2

y∗2 + z∗2
.

The eigenvalues λ1 and λ2 are negative with the condition that G0 < 1. Similar to
the contamination-free equilibrium of soil, we can analyze a simplified 2 × 2 version of
the Jacobian matrix

J =




(−1+G0)z∗2−A(z∗2+G2(y∗2+z∗2 )2)
A(y∗2+z∗2 )2

(1+A−G0)y∗2
A(y∗2+z∗2 )2

z∗2−G0z
∗
2+A(z∗2+G4(y∗2+z∗2 )2)
A(y∗2+z∗2 )2 −G6 +

(−1−A+G0)y∗2
A(y∗2+z∗2 )2


 .

Since the two outermost eigenvalues are negative, we only need to show that the trace of

the 2× 2 matrix is negative and the determinant is positive for the endemic equilibrium

to be stable

Trace(J) =
(−1 +G0)z

∗
2 −A(z∗2 +G2(y

∗
2 + z∗2)

2)

A(y∗2 + z∗2)
2

−G6 +
(−1−A+G0)y

∗
2

A(y∗2 + z∗2)
2

< 0

when G0 < 1. The determinant is

Det(J) =
y∗2((1 +A−G0)(G2 −G4) +AG2G6y

∗
2) +G6(1 +A−G0 + 2AG2y

∗
2)z

∗
2 +AG2G6z

∗
2

A(y∗2 + z∗2)
2

Since we have already set the condition that G0 < 1 and G4 < G2, the determinant
is positive. Based on the condition that RS0 > 1 then Trace(J) < 0 and Det(J) > 0.
Therefore, the endemic equilibrium is stable.

Theorem 2. The endemic equilibrium of soil of system (10-13) is asymptotically stable

when RS0 = 1
G0

= rMρ
tA+d > 1.

4.4 Global Dynamics

The contamination-free equilibrium of soil, x∗ = 0 and the endemic equilibrium of soil
x∗2 = 1

A (1 − G0) are globally stable when RS0 < 1 and RS0 > 1 respectively. By the
limiting equation theorem [4], we can substitute x∗ and x∗2 into equations (11 – 12).
Equations (11 – 12) are a closed planar system. If we can rule out that our system
has closed trajectories in our domain of interest, Ω′, then our local equilibrium stability
becomes globally stable. We can prove this by using the Dulac Criterion [2, 172].
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Theorem 3. Dulac’s Criterion: If D(y, z) in C1 in a region B ⊆ R2 (simply connected)

and ∂
∂y (DF ) + ∂

∂z (DG) 6= 0 in B, then y′ = F , z′ = G has no periodic orbits contained

in B.

Theorem 4. There is no closed trajectory for system (11 – 12).

Proof. We use the Dulac function to analyze whether equations (11) and (12) have a

limit cycle. By making D(y, z) = 1
y+z , then we get

∂

∂y
(DF ) +

∂

∂z
(DG) = −1 +G1 + x+ (G4 +G6)y +G2z

(y + z)2
< 0.

Hence, we do not have a limit cycle or closed trajectories and (y∗, z∗) is global. Because
this is true, w’s value is also global because equation (13) is a one dimensional system.

Figure 3: Global phase portrait of system (11 – 12) when x∗ = 0
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Figure 4: Global Phase Portrait of System (11 – 12) when x∗ = 1
A (1−G0)

Correspondingly, the phase portraits in Figure 3 and 4 show that the equilibria for
equations (11 – 12) are globally stable for contamination-free equilibrium of soil and en-
demic equilibrium of soil respectively. This means that the trajectories will always head
toward a positive equilibria for both contamination-free soil (x∗ = 0) and contaminated
soil equilibria

(
x∗ = 1

A (1−G0)
)

regardless of the initial values.

5 Results

5.1 Impact of Control Parameters on RS
0

We look at how the control parameters impact RS0 . Figure 5 shows how RS0 is influenced
by tA and ρ. The graph of RS0 intersects with the flat plane where RS0 = 1. The line
that is generated by the intersection of planes is shown in Figure 6, which suggests that
as the treatment rate of soil increases, the proportion of contaminated manure required
to maintain RS0 = 1 increases. We interpreted that as the proportion of infected manure
increases, the need for treatment increases in order to get RS0 < 1. The region above
the line represent when the treatment is sufficient enough relative to the proportion of
infected manure for RS0 to be less than 1. The region below the line represents points
for when the amount of treatment is not sufficient for the proportion of contamination
in the manure. In this region, RS0 > 1.
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Figure 5: Graph of RS0 as a function of tA and ρ.

Figure 6: Bifurcation curve of RS0 in (ρ, tA) – plane.

5.2 Sensitivity Analysis

We carry out a sensitivity analysis on RS0 with respect to M , r, ρ, tA, and d. In Figure
7 the most significant parameters are M , ρ, and r, which increase RS0 . However, an
increase in tA and d will decrease the RS0 , which is favored to reach a contamination-free
equilibrium of soil.
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Figure 7: Sensitivity indices of RS0 with respect to M , r, ρ, tA, and d.

Figure 8 gives the sensitivity indices for the endemic equilibrium for P ∗. As the values
for r and M increase, P ∗ increases. When the values for tA and d increase the value
of P ∗ decreases. A smaller value for P ∗ means there is a smaller proportion of infected
soil.

Figure 8: Sensitivity index of P ∗ with respect to r, M , tA, and d.

Figure 9 describes the endemic equilibrium for E∗c and E∗I . The most significant
parameter that increases equipment is δE , while r decreases equipment.

Figure 9: Sensitivity index of E∗c with respect to r, ρ, tA, d, βEc
, γc, δE , βM , µE , ΛE
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The sensitivity indices for contaminated lettuce, L∗I , are very small when looking at
the y–axis. The values for M and α are much larger than all the other parameters.
Therefore, we separated M and α from the rest of them. We see that an increase in M ,
α has the greatest impact on L∗I when compared to the other terms as can be seen in
10.

Figure 10: Sensitivity index of L∗I . The values for parameters M and α are much larger
than the rest so the two were extracted to their own plot (right), while the rest are
shown on the left.

5.3 Simulations

We determine that increasing the cleaning rate of equipment will result in a decrease in
the proportion of infected lettuce, as depicted in the nonlinear curve in Figure 11.

Figure 11: As the cleaning rate (γc) increases, the number of contaminated lettuce
decreases.

Similarly, in Figure 12 we can show that the higher the rate of testing and treatment
of soil for E. coli, the lower the proportion of infected equipment. Figure 13 shows this
can lead to a higher population of healthy lettuce. Next, we run simulations of the
proportion of infected soil, equipment, and lettuce over a time span of 20 days changing
parameter values.
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Figure 12: As treatment rate (tA) increases, the number of contaminated equipment
decreases.

Figure 13: As contaminated equipment increases, contaminated lettuce increases.

In order to increase the amount of clean equipment, the removal rate of contami-
nated equipment due to inability to clean (δE) is increased. In Figures (14 – 16) the
initial conditions for the proportion of infected soil, cleaned equipment, contaminated
equipment, healthy lettuce and contaminated lettuce are P0 = 0.9, Ec0 = 9, EI0 = 1,
LS0

= 1, LI0 = 0, respectively for all the simulations. In addition, the following param-
eters are ρ = 9.91 × 10−7, r = 0.09, tA = 0.9, γc = 10/7, βEc

= 1, βM = 0.5, βE = 1,

µE = 1, βLs
= 0.5, µL = 0.9, β̂LS

= 1, µE = 1, ΛE = 10, δE = 0.005, and all other
values (M , d, βLS

) come from table 1. Hence RS0 < 1 and as a result the proportion
of infected soil eventually reaches zero as seen in Figure 14. In Figure 15, there are
more clean equipment than contaminated equipment and Figure 16 shows that healthy
lettuce is dominating.

202



0 5 10 15 20
Time (days)

0

0.2

0.4

0.6

0.8

1

P
ro

po
rt

io
n 

of
 In

fe
ct

ed
 S

oi
l

Infected Soil (P
0
 = 0.9)

Figure 14: Infected soil over time.
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6 Discussion

Similar studies investigated the probability of E. coli infection in lettuce, as well as
prevention strategies, to reduce the chance of contaminated produce. Specifically, an
article by Franz et al. (2008), focuses on modelling the likelihood that manure-amended
soil from cattle infects lettuce. As a result, the “density of E. coli O157:H7 in manure-
amended soil at the time of planting lettuce was most highly correlated to the storage
time of the manure...and the initial concentration in manure...” [17]. This conclusion
corresponds with our model in that once the manure becomes contaminated, then in-
evitably, the lettuce will become contaminated as well. Therefore, prevention efforts are
suggested to take place early in the growing process. Examples would include proper
composting and setting a minimum manure storage time to decrease the probability of
infection. Another study concentrates on different models that help indicate the exis-
tence of E. coli O157:H7 in lettuce fields. When a scenario analysis was applied to a
stochastic model, results showed that as time passed, the percentage of E. coli contami-
nated units decreased in the population [24]. In the same way, our simulation in Figure
14 shows that when RS0 < 1, the proportion of infected soil decreases over time and
eventually tends to 0.

Using our basic reproductive number for soil, RS0 = Mrρ
tA+d , we can analyze the impact

of testing and treatment of soil on the E. coli infection. Figures 5 and 6 indicate the tA
values for when the E. coli infection will die out in manure, meaning that more testing is
needed to keep E. coli from becoming endemic. The positive correlation between ρ and tA
in Figure 6 demonstrates how much testing is required to reduce ρ in order for RS0 < 1. In
addition, Figure 7 illustrates that RS0 is sensitive to tA in a negative way such that when
tA is increased, the value of RS0 becomes smaller. This is further evidence that testing
and treatment of soil decreases E. coli; therefore, also impacting the yield of healthy
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lettuce. Furthermore, in analyzing Figure 8, we know that the proportion of infected
soil, P , is influenced by tA, similar to the impact of tA on RS0 . Not only does tA affect RS0
and P , but also the proportion of clean equipment. As previously demonstrated, when
tA is increased, P decreases which reduces the proportion of contaminated equipment,
as shown in Figure 12. The collective influence of testing and treatment of contaminated
soil proves that tA is an important parameter in controlling the spread of E. coli and
preventing the infection from reaching lettuce.

The cleaning of contaminated equipment is another parameter that can aid in in-
creasing the yield of healthy lettuce. Based on Figures 9 – 10, we know that Ec is
positively impacted by γc and LI is negatively effected by γc which is what we would
expect to see. This indicates that by increasing the cleaning rate of equipment, we
can control the spread of the E. coli infection from reaching the population of healthy
lettuce. As the cleaning rate of farm equipment increases, there is also a decline in
the proportion of contaminated lettuce; therefore, increasing γc helps to prevent E. coli
from transmitting across the lettuce field and promotes the growth of healthy lettuce,
as shown in Figure 11.

In addition to tA and γc being control parameters in our system, ρ is also a parameter
that has an overall effect. If we can reduce the value of ρ, then the proportion of infected
soil, number of contaminated equipment, and number of contaminated lettuce are all
reduced.

There are limitations in our study due to the lack of information; therefore, it was
challenging to accurately determine parameters and fully represent the dynamics of E.
coli in soil. Although we were unable to find exact transmission parameters, we used
our best judgment to estimate values based on information from literature. Addition-
ally, it was difficult to find current standards for testing and treatment of the E. coli
infection in soil. However, this information may be available in the future because the
FDA announced a projected start date for farms to incorporate regular water and soil
testing in spring 2019 [12]. Finally, to more accurately capture the complexity of the
transmission of E. coli to lettuce, other factors could be considered in our model such
as the role of cattle and irrigation as well as soil nutrition. Despite these limitations,
the development of our model has still given us insight into how E. coli interacts with
different elements of a farm setting including manure, soil, and equipment. The lack of
studies on this topic indicates that in the future there needs to be more research on the
role of equipment in the transmission of E. coli on farms.

In future studies, we would like to incorporate irrigation water to see how this mech-
anism contributes to the spread of E. coli in lettuce. The irrigation system is of high
interest because of the water contamination risk. It is common for canals and rivers to
be near farms, so it serves as a water source in the planting season. Sprinklers are used
routinely during preharvest to assist the growth of lettuce and could potentially include
serious contaminants like the Shiga toxin-producing E. coli. In 1995, the foodborne out-
break in lettuce was linked to E. coli bacteria found in irrigation water in Montana [13].
Cattle feces, surface runoff, and groundwater can enter into nearby water sources and
further infect water that is used for irrigation [7]. Additionally, we can include more
terms such as the infection in soil because of contaminated equipment into equation (1)
to aid in capturing the complexity of E. coli. Finally, we could conduct a cost analysis
on several scenarios within an E. coli outbreak. One scenario is what could happen to a
farm when it receives bad publicity from an outbreak and the monetary impact of that
on the farm. Another scenario we could analyze would be to optimize costs of testing
and treatment of contaminated soil and cleaning of contaminated equipment for farmers
in order for them to prevent an E. coli infection on the farm.
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coli O157:H7 Population Dynamics. Foodborne Pathogens and Disease, (4(6),
pp.461-470), 2009.

[2] Bauer F., and Castillo-Chavez C. Mathematical Models in Population Biology and
Epidemiology. Springer Science+Business Media, LLC, New York, NY, 2 edition,
2010.

[3] Arizona Farm Bureau. Yuma county: Americas winter vegetable capi-
tal. https://arizonaexperience.org/land/yuma-county-americas-winter-vegetable-
capital.

[4] Carlos Castillo-Chavez, Horst Thieme, et al. Asymptotically autonomous epidemic
models. 1994.

[5] CDC. Surveillance System Overview: National Shiga toxin-producing Escherichia
coli (STEC) Surveillance Overview. Atlanta, Georgia: US Department of Health
and Human Services, CDC, 2012.

[6] CDC. E.coli (Escherichia coli). https://www.cdc.gov/ecoli/reporting-
timeline.html, Dec 2014. Accessed: 2018-07-09.

[7] CDC. Irrigation Water Issues Potentially Related to Multistate E. coli Out-
break on Spinach. https://www.cdc.gov/nceh/ehs/activities/irrigation-water-ecoli-
spinach.html, Oct 2014. Accessed: 2018-07-19.

[8] CDC. E.coli (Escherichia coli). https://www.cdc.gov/ecoli/general/index.html,
Feb 2018. Accessed: 2018-07-09.

[9] CDC. Symptoms and Sources of Food Poisoning.
https://www.cdc.gov/foodsafety/symptoms.html-symptoms, Apr 2018. Accessed:
2018-07-09.

[10] Fairbrother J.M. and Nadeau E. Escherichia coli: On-Farm Contamination of
Animals. Rev Sci Tech, (25(2), pp.555-559), 2006.

206



[11] FDA. Final Qualitative Assessment of Risk to Public Health from On-
Farm Contamination of Produce. https://www.fda.gov/downloads/Food/

FoodScienceResearch/RiskSafetyAssessment/UCM470780.pdf, Nov 2015. Ac-
cessed: 2018-07-25.

[12] FDA. FSMA Final Rule on Produce Safety. https://www.fda.gov/food/

guidanceregulation/fsma/ucm334114.htm, Jun 2018. Accessed: 2018-07-25.

[13] Fonseca, J.M. and Fallon, S.D. and Sanchez, CA and Nolte, KD. Escherichia
coli survival in lettuce fields following its introduction through different irrigation
systems. Journal of Applied Microbiology, 110(4):893–902, 2011.

[14] Food and Drug Administration. Commodity Specific Food Safety Guidelines for
the Lettuce and Leafy Greens Supply Chain. https://www.fda.gov/downloads/

food/guidanceregulation/ucm169008.pdf, Apr 2006. Accessed: 2018-07-05.

[15] Food and Drug Administration. Food Safety Mod-
ernization Act Final Rule on Produce Safety.
https://www.fda.gov/Food/GuidanceRegulation/FSMA/ucm334114.htm, July
2018. Accessed: 2018-07-14.

[16] Food Chain Crisis Management Framework. Preventing Escherichia coli
in Food. http://www.fao.org/fileadmin/user_upload/fcc/news/1_FAO_

Preventing-E.Coli-inFood_FCC_2011.06.23.pdf. Accessed: 2018-07-09.

[17] Franz E., Semenov A.V., Van Bruggen A.H.C. Modelling the contamination of
lettuce with Escherichia coli O157: H7 from manure-amended soil and the effect
of intervention strategies. Journal of applied microbiology, 5(105, pp.1569-1584),
2008.

[18] Interagency Food Safety Analytics Collaboration. Foodborne illness source attri-
bution estimates for 2013 for Salmonella, Escherichia coli O157, Listeria monocy-
togenes, and Campylobacter using multi-year outbreak surveillance data, United
States. Dec 2017.

[19] Iowa State University Extension and Outreach. Replacement Strategies for Farm
Machinery. https://www.extension.iastate.edu/agdm/crops/html/a3-30.

html, May 2018. Accessed: 2018-07-15.

[20] Kansas Healthy Yards and Communities. Home Soil Testing for
E. Coli , note=Accessed: 2018-07-10, howpublished=”http://www.
kansashealthyyards.org/index.php?option=com_allvideoshare&view=

video&slg=home-soil-testing-for-e-coli&Itemid=340”,.

[21] Kerns D.L., Matheron M.E., Palumbo J.C., Sanchez C.A., Still D.W., Tickes
B.R., Umeda K., Wilcox M.A. Guidelines for Head Lettuce Production in
Arizona. https://cals.arizona.edu/crop/vegetables/cropmgt/az1099.html,
Feb 1999. Accessed: 2018-07-09.

[22] Levins R. Some Demographic and Genetic Consequences of Environmental Hetero-
geneity for Biological Control. The ISME journal, (pp. 173-183), Feb 2011.

[23] Mayo Clinic Staff. E. coli. https://www.mayoclinic.org/diseases-conditions/
e-coli/symptoms-causes/syc-20372058. Accessed: 2018-07-10.

207
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