
The effect of rain seasonality and migration on the emergence

of Dengue in the Northwestern Argentina

Javier A Gutierrez1

and

Emmanuel J Morales-Butler2

1 Instituto de Investigaciones en Energía no Convencional, INENCO, CONICET-UNSa - Departamento de Física,

Universidad Nacional de Salta, Salta, Argentina

2 Department of Mathematics-Physics, University of Puerto Rico at Cayey, Puerto Rico

Abstract

The dengue fever virus (DENV) is transmitted to humans by the bite of a female Aedes

mosquito. In the last two decades, all countries in the tropical regions of Latin America have

experienced marked increases in incidence of DENV. Currently, not endemic in many parts

of Latin America including in the northwestern Argentina, DENV is grappling with its worst

outbreak in last decade as the population of Aedes Aegypti mosquitoes expands in Argentina

and there is continuous fear of in becoming endemic in low incidence regions. Seasonal

patterns of DENV infection are well marked by seasonal rainfall, human migrations, and

abundance of Aedes Aegypti. In particularly, outbreaks are caused by the migration of rural
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workers who regularly travel from endemic areas (i.e Santa Cruz de la Sierra, Bolivia southern

region, northern border with Argentina). The goal of this study is to identify mechanisms

responsible for establishment of infection at endemic levels. A simple vector-host model with

periodic forcing is developed and analysed to evaluate the impact of relationship between the

population heterogeneity and the recurrent migrations flow on the transmission dynamics of

DENV. The study results indicates that the fluctuations in the amount of movement and the

populations size throughout the year are adequate to account for changes in the DENV fever

only when epidemiological heterogeneity is low.
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1 Introduction

Dengue is a viral disease maintained within a cycle that involves humans and Aedes genus mosquitoes.

The main vector in dengue transmission is Aedes aegypti, a domestic day biting mosquito with

preference for human blood [11]. In Argentina, isolated cases of dengue have been recorded be-

tween 1905 and 1911 [8]. During the first half of the century, Aedes aegypti, was present in the

north and centre of the country [12]. Around 1960, the vector was eradicated from Argentina by

the Panamerican campaign in response to the appearance of urban yellow fever epidemics. After

a long absence in the region, isolated cases of dengue were detected during the autumn of 1997 in

Salta Province [17], in areas located near the Bolivian border. Brazil, Bolivia, Paraguay and neigh-

bouring countries of the northern region of Argentina, are known to have endemic dengue [16].

In the city of San Ramón de la Nueva Orán in 2009 the largest outbreak of dengue occurred in

recent years [9], this city is located at the north of the province of Salta. The city has a high risk

of dengue transmission, due to the high rate of migration to endemic areas (southern Bolivia) [1]

and to favourable factors for the presence of the mosquito [7]. In San Ramón de la Nueva Orán

each year circulates a single strain [7]. The presence of mosquito in this city is seasonal, mainly

the rains are seasonal in this region [2] , because only in the wettest months appropriate conditions

for the presence of vector area reached [18] for the vector. The city of Orán is one of the most

populated in northern Argentina, it concentrates most of immigrants from southern Bolivian [1], a

endemic region [6].

Dengue cases is seasonal in Orán and it is a not endemic region [9]. In the present work we pro-

pose, in addition to seasonality of mosquito in the force of infection, consider the migration as a
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perturbation in the variations of infected, immigrations to Orán (from epidemic zone) is mainly

due to two major factors: crop rotation (swallow work) and seasonality of holiday (summer va-

cations). In this work we want to expose the effects of there two seasonality in the dynamics of

dengue in Orán.

2 Method

2.1 Data Source

In the Figure 2.1, it is possible to see the time series of new cases reported for each epidemiological

week. In this data, permanent resident and temporary resident are not differentiated, all cases were

confirmed by laboratory (blood test). Although cases were all confirmed, these not necessarily are

all existent cases, since not all patients go to hospital. The used time series does not discriminate

strain type. The data starts in week 26 (during winter) of 2009. During the week 14 (in March) on

2010, 40 weeks later, there is the first peak, this occurs within the wettest months. The difference

between peak times is each 52 weeks (already), that shows the seasonality of incidence of Dengue.

In Figure 2.1, the average annual rainfall [2] is showed, dry months, from May to September

occurs during Winter. Although the average temperature is around of 20 oC, during dry months the

presence of Aedes is low [7], for that reason Aedes is found mainly in the wet months. Sometimes

in winter it rains, these fluctuations in the climate aer know to be due to the Zonda effect [2].
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Figure 1: New cases reported (confirmed for laboratory) for each epidemiological week from to 26 week
of 2009 to 25 week of 2013 in the city San Ramón de la Nueva Orán - Salta - Argentina
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Figure 2: Climatological data of the city of San Ramón de la Nueca Orán. The blue bars are the levels of
precipitation, the red line is the average temperature.

2.2 Model Description

Dengue is usually studied by analysing a coupled mosquito-human model [5], using a S.E.I.

model for the mosquito population and a S.E.I.R model for human population. The choice of

a S.E.I. model for mosquitoes is due to the mosquitoes biology, there are three well-defined states:

mosquitoes are all born Susceptible, Dengue virus is not transmitted vertically (in reality the prob-

ability is extremely low) after that, a mosquito (female adult) might becomes Infected, when it

bites an infected human. There is a delay until it becomes infectious, for this reason the Exposed

state is added. It’s also important to include demographics dynamics of the mosquitoes, particu-

larly the mosquito lifetime is smaller than it’s recovery time, therefore once a mosquito is infected

it die infected.
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The S.E.I.R. model for the human population has similar considerations, when a susceptible hu-

man is bitten by an Infected mosquito there is a delay before the individual jumps to the Infectious

state. Since our model it’s considered a single strain of virus, we have to add the Recovery state,

because once a human has been infected and then recovered, the individual acquires lifelong im-

munity to that strain.

Model equations are then

ṠV = ΛV (t)− βV
NV

SV IH − µV SV (1)

ĖV =
βV
NV

SV IH − (σV + µV )EV (2)

İV = σVEV − µV IV (3)

ṠH = ΛH −
βH
NH

SHIV − µHSH (4)

ĖH =
βH
NH

SHIV − (σH + µH)EH (5)

İH = σHEH − (γH + µH)IH + εNHg(t, ωp) (6)

ṘH = γHIH − µHRH (7)

In this system of equations we use the sub index V to refer to the vectors and H for the humans.

ΛV (t) represents mosquito seasonality in the model. The parameter ε is positive and less than one,

it represents the proportion of migrants in terms of the local population, while the function g(t, ωp)

allows us to model the flux of migrations, and ωp is the frequency which appear the maximum of

migrations. βV , βH are the rate at which a susceptible mosquito become in infected and the rate

at which a susceptible human become in infected, respectively. The parameters 1/σH , 1/σV are
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the mosquito and human mean period of exposure to virus respectively. The seasonality shown by

Table 1: Parameter used in the model mosquito-human
Table of parameter

1
µV

mean lifetime of mosquito (days)
1
µH

mean lifetime of humans (years)
1
σV

expose mean period of mosquito (days)
1
σH

expose mean period of human (days)
1
γV

infected mean period of mosquito (days)
1
γV

infected mean period of human (days)
βV new infect rate of mosquito (per mosquito)
βH new infect rate of human (per human)
ΛH human birth rate
NV mosquito population
NH human population

precipitation levels and the presence of mosquitoes are well know. The mosquito is only present in

the wet months, hence we can model this phenomenon as a sinusoidal function, with a frequency

ω0. This value is related to seasonality of the peak times of mosquito presence. therefore we can

considerer the growth of mosquito as ΛV (t) ∝ Λ0
V cos2 ω0t, in this way ω0 ≈ π

52 , so we get a

maximum in a wet months.

We consider immigrations as a series of delta function, there is migration each week, in this way

we can approximate the migration as non continuous form.

The system (1 - 7) by eliminatino the mosquito equations, can be done in different ways [14] [15],

mosquito dynamics is included incidence term [15], the exposed state is removed for simplify,
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only we have time series of incidence. The system can be reduced to

ṠH = ΛH − fI(t)SH − µHSH (8)

İH = fI(t)SH − (γH + µH)IH + εNHg(t, ωp) (9)

ṘH = γHIH − µHRH (10)

where the force of infection or transmission rate at time t is defined as [15]

fI(t) = ba2c

∫ t

t0

M(s)

N(s)

IH(s)

N(s)
x(s)p(t− s)ds (11)

with x(s), the fraction of uninfected mosquitoes at a previous time s; M(s), total number of

mosquitoes at time s;N(s), total number of humans at time s; IH(s)/N(s), fraction of infected

humans at time s; and p(.), a delay distribution that describes the mosquito stage of the virus life

cycle and vector survival. We could choose p(.) to be a Γ(κ, τ/κ) density.

Suceptible mosquitoes become infected with dengue with a probability c when they bite (at a rate

a) an infected human. The infected mosquitoes then contribute to dengue infection in humans

when they again bite an suceptible human (at a rate a) and infect humans with a probability b.

2.2.1 Modelling the force of infection

For vector transmitted human infectious diseases, the seasonality plays an important dynamical

role [10], especially in the mosquito population. As first case, we will study the case of only

consider seasonality in incidence, i.e when ε = 0, in other words, this case of immigrations is not
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conciderer and therefore the population constant.

The force of infection is defined

f(t) =
β0
N

(1 + δsin(ω0t))IH(t) (12)

sorchid where the parameter β0 denotes the baseline or average transmission rate, ω0 is seasonal

period and δ is the amplitude of seasonality which is restricted to the unite interval [13], in the

particular case where δ = 0 we have the usual definition to the force of infection f(t) = β0
N I(t),

β0 include all the parameters related to probability of a mosquito become infected (c), the bitting

(a) and the probability a human become infected (b). The term f(t)S(t) is the incidence at time t.

Fitting the time series it is posible to estimate the set of parameters (δ,ω0, β0).

Thus, we can re-write the system (8-10) as

Ṡ = µN − β0
N

(1 + δ sin(ω0t))I(t)S − µS (13)

İ =
β0
N

(1 + δ sin(ω0t))I(t)S − (γ + µ)I (14)

R(t) = N − S(t)− I(t) (15)

where we can define [13] β(t) = β0(1 + δsin(ω0t)) The equilibrium point is

(S∗, I∗, R∗) =

(
N

R0
,
µN

β̄
(R0 − 1), N − N

R0
− µN

β̄
(R0 − 1)

)
(16)
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whereR0 = β̄ 1
γH+µH

is a result agreement whit the usual definition to basic reproductive number.

We define β̄ = β0 + δ 1t
∫ t
0 sin(ω0s)ds, when t → ∞ β̄ → β0, that is an usual result for disease

whit seasonality [3]

If the system (8 - 10) is linearized with δ << 1 and using a change of variable I = I∗(1 + y) and

S = S∗(1 + x), for the equation (9) we obtain

d2y

dt2
+ µR0

dy

dt
+ µβ0y = δω0γ cos(ω0t) (17)

The linear solution of the system (17), will always be the oscillatory type, it’s behaviour is similar

to the forced oscillator with frequency ω0. The proposed solutions to S(t) and I(t) are

S(t) ≈ S(0)e−at sinω1t (18)

I(t) ≈ I(0)e−at sin (ω1t+ φ) (19)

There is a gap between susceptible and infected, because when the susceptible is max, the infected

curve doesn’t. So, we can approximate the incidence as

f(t)S(t) = Ae−bt(1 + δ sin (ω0t)) sin (ω1t) sin (ω1t+ φ) (20)

11



where A = β0S(0)I(0)
N and b = 2a

By fitting using the time series, then

Ae−btj (1 + δ sin (ω0tj)) sin (ω1tj) sin (ω1tj + φ) = Tj , (21)

parameters A, b, δ, ω0, ω1, φ. We have information on the order of some parameters, i.e |δ| ≤

1, because this parameter is a seasonality measure [13], ω0 > π
26 , because it is the minimum

frequency at which seasonality mosquito can be modeled. The parameter |φ| < π
2 , this is for

periodicity. Without less of generality, we chose to do the fitting of data the time series 2013.

Using min square algorithm’s Matlab [4] and fitting that, we could find the mean value of the

parameters A, b, δ, ω0, ω1, φ, but before to do it, we are going to model immigration.

2.2.2 Modelling the Immigration

In the system (13-14) we add the term εNg(t, ωp) in the equation (14). We propose ε = 1/N ,

in this way we obain a minum value of immigration, then we are modelling the immigration as

perturbed term. We going to consider different situations to immigration of infeted individual. In

the table 2 we show to Case 1, when g(t, ωp) = 0 (no immigration). In the case 2, we add to the

system a infected indvidual every week, in the cases 3 and 4, we add a new infected individual in

periodic form. To case 3 we considere a new infeted individual in alternative week, that is to say,

the first week theres a new infected, but the next not. Finally in the case 4, we don’t know how is

the appear frecuency of new infected individual. Fitting the time series to different case we obtain

the following result.
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Table 2: Different case to immigration
Different model to g(t, ωp)

Case 1 Case 2 Case 3 Case 4
0 1 1 in alternative weeks 1 + sin(ωpt)

Table 3: Parameter estimates, Standard errors, and 95% Confidence intervals: Case 1
Table of parameter: Case 1

parameter mean SE 95% C I
A 10.1598 8.3354 (−6.6184, 26.9381)

b 0.035792 0.063146 (−0.091315, 0.1629)

δ 0.8758 0.46042 (−0.050986, 1.8026)

ω0 0.12308 0.024221 (0.074325, 0.17183)

ω1 0.13102 0.016396 (0.098019, 0.16402)

φ 0.21357 0.68459 (−1.1644, 1.5916)

2.2.3 Case 1

We don’t conciderer immigrations in this case, only fitting the time series with seasonality by

precense of mosquito. In table 3 we show the mean value, standard deviation and confidence

interval ffor each parameter estimated. In the Figure 2.2.3 we ploted the fitting incidence to year

2011 with confidence band.

2.2.4 Case 2

We have immigrations in this case, a new infected by pertubation in each week. In table 4 we show

the mean value, standard deviation and confidence interval ffor each parameter estimated. In the

Figure 2.2.4 we ploted the fitting incidence to year 2011 with confidence band.
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Figure 3: Fitting the model to case 1. Red dotted : Incidence to 2011; blue dotted with line is the
parameter estimation; green dotted whit line is the confidence band

Table 4: Parameter estimates, Standard errors, and 95% Confidence intervals: Case 2
Table of parameter

parameter mean SE 95% C I
A 10.1598 8.3354 (−6.6184, 26.9381)

b 0.035792 0.063146 (−0.091315, 0.1629)

δ 0.8758 0.46042 (−0.050986, 1.8026)

ω0 0.12308 0.024221 (0.074325, 0.17183)

ω1 0.13102 0.016396 (0.098019, 0.16402)

φ 0.21357 0.68459 (−1.1644, 1.5916)
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Figure 4: Fitting the model to case 2. Red dotted : Incidence to 2011; blue dotted with line is the
parameter estimation; green dotted whit line is the confidence band

Table 5: Parameter estimates, Standard errors, and 95% Confidence intervals: Case 3
Table of parameter

parameter mean SE 95% C I
A 9.9753 7.9962 (−6.1201, 26.0708)

b 0.034012 0.060479 (−0.087726, 0.15575)

δ 0.87439 0.45993 (−0.0514, 1.8002)

ω0 0.12434 0.02279 (0.078469, 0.17022)

ω1 0.13196 0.016872 (0.097997, 0.16592)

φ 0.52551 0.11714 (0.28971, 0.7613)

2.2.5 Case 3

Immigration occur in alternative week, a new infected apear in a week, the in the next week

there isn’t. In table 5 we show the mean value, standard deviation and confidence interval ffor

each parameter estimated. In the Figure 2.2.5 we ploted the fitting incidence to year 2011 with

confidence band.
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Figure 5: Fitting the model to case 3. Red dotted : Incidence to 2011; blue dotted with line is the
parameter estimation; green dotted whit line is the confidence band

Table 6: Parameter estimates, Standard errors, and 95% Confidence intervals: Case 1
Table of parameter

parameter mean SE 95% C I
A 9.975 0.7635 (8.2149, 11.2886)

δ 1.00 0.099952 (0.7988, 1.2012)

ω0 0.21173 0.0055484 (0.20056, 0.2229)

ω1 0.077333 0.0025073 (0.072286, 0.08238)

φ 0.52551 0.11714 (0.28971, 0.7613)

ωp 0.73479 0.0047379 (0.72525, 0.74433)

2.2.6 Case 4

We don’t know the frecuency ωp of appear a new infected. In this case we are fitting the parameter

ωp. In table 6 we show the mean value, standard deviation and confidence interval ffor each pa-

rameter estimated. In the Figure 2.2.6 we ploted the fitting incidence to year 2011 with confidence

band.
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Figure 6: Fitting the model to case 4. Red dotted : Incidence to 2011; blue dotted with line is the
parameter estimation; green dotted whit line is the confidence band

2.3 Comparing Models

To compare the result of different model, is necessary [4] calculate the selection score ρ, this value

we can calculate followings these steps:

• Choose the model parameters to be estimated.

• Calculate the mean value and the standard deviation of each parameter.

• For each parameter, the standard deviation divided by the mean value.

• Calculate the norm for the set of values obtained in the previous point

Repeating the steps for each case, we obtain the table 7.

A selection score ρ near zero indicates lower uncertainty pesk possibilities in the estimation, while
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Table 7: Selection Score
Comparative table

Case 1 Case 2 Case 3 Case 4
ρ 1.35 3.79 3.981 0.2984

large values of ρ suggest that one could expect to find substantial uncertainty in at least some of

the components of the estimates in any parameter estimation attempt.

3 Discussion

We can see, like mosquito hypothesis seasonality and Immigration of infected people, it is a good

hypothesis to reproduce the data series for three years. To do a better analysis a more rigorous

analysis of the model is necessary, but a non-autonomous system presents different challenges

that are specific for each particular system [19].

It is also necessary to estimate the basic reproductive number for a qualitative idea of the size of

epidemics.

In the table 7, we can see a better result for the case 4, because it has the lowest value of ρ, there-

fore the relationship between seasonality is needed to understand recurrent outbreaks in Orán.

As future work, it is necessary to have a model more realistic to Orán, because in the present work

we only consider the incidence, so we have to add more realistic value to the mosquito dynamical.

We have to consider the dynamical to different strain (1 and 2) and strengthen the discussion on

biological form for the estimated parameters. Acknowledgments
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