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Abstract

Antibiotic resistance is a global health concern that involves animals as well as humans.
In zoonotic diseases, not generally fatal to humans, antibiotic resistance provides a reservoir
from which pathogenic bacteria can gain resistance. Reducing antibiotic resistance in bovine
infections is a key part of any plan to slow resistance in human diseases. A two-stage
mathematical model is constructed in order to find the most ideal combination of isolation,
treatment, and culling that reduces the number of beef cattle with antibiotic resistance at
the time of maturity. New legislation, starting in 2017, will restrict the use of antibiotics in
cattle feed to veterinary prescription. To compare the impact of this legislation with current
practices, an additional set of parameter values is used to simulate the dynamics of antibiotic
resistance among beef cattle populations. Culling rates are shown to have a negligible effect,
but quarantine rates of 0.5-1 per week lead to a decreased ABR rate. We find that under the
new legislation the proportion of cattle with ABR at slaughter decreases by a statistically
significant amount. In addition, the number of cattle colonized with antibiotic susceptible
bacteria increases. However, the proportion of sellable cattle at the time of slaughter remains
roughly the same.
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1 Introduction

When Alexander Fleming received the Nobel Prize in 1945, for his discovery of penicillin,
he acknowledged antibiotic resistance (ABR) as a potential problem [3]. Today, we are faced
with that reality. The Center for Disease Control recognizes ABR as a growing public health
problem, and estimates that more than 23,000 people die each year due to antibiotic resistant
infections [8].

Anytime antibiotics are used, regardless of the species to which they are given, resistant
bacteria can evolve [19]. In the United States, over 24 million pounds of antibiotics are given to
food animals each year [23]. The 2015 President’s Council of Advisors on Science and Technology
report stated that “the risks to human health posed by the agricultural use of antibiotics is [sic]
appropriately a matter of very serious concern” [29]. In beef cattle, antibiotics are used in
three main ways: therapeutically (to treat disease), prophylactically (to prevent sickness), and
for growth promotion (to improve feed efficiency and maximize weight gain) [43]. Because
cattle are kept in groups, antibiotics are often given collectively, in food and water. Antibiotics
play an important role in keeping cattle healthy and in ensuring that meat is safe for human
consumption. However, the development of drug resistant infections undeniably necessitates that
every precaution be taken when distributing antibiotics to animals as well as people [11, 21, 39].

While the link between ABR in humans and animals is complex, it clearly exists [42, 43].
Many zoonotic diseases are not fatal to humans. However, ABR creates a reservoir of bacteria
maintained within cattle and the environment from which other harmful bacteria may gain
resistance through horizontal gene transfer. This is cause for great concern, especially since
there are multiple antibiotics which are used to treat both human and animal conditions [42].

To combat this problem, the United States has allocated over $1.2 billion for 2016 [1]. As
part of the National Action Plan for Combating Drug-Resistant Bacteria, the Veterinary Feed
Directive (VFD) will no longer allow antibiotics used for growth-promotion in cattle and other
food animals beginning January 1, 2017. Furthermore, any antibiotics administered through
feed will require a prescription by a veterinarian [29]. This will be a major change for the cattle
industry, as currently 17% of antibiotics used in food animals are for growth promotion [24].

In the past, to determine whether growth promoters are a significant cause of ABR in bacte-
ria, researchers have employed mathematical models. Volkova et al. found stochastic differential
equations (SDE) conceptually beneficial when modeling underlying dynamics of antimicrobial
resistant E. coli [40]. Zaheer et al. concluded that subtherapeutic levels of antimicrobial drugs
are not a significant cause of ABR Mannheimia haemolytica, although, in the development of
their mathematical model, they found data that suggested the opposite [44]. This discrepancy
shows further work in modeling ABR in M. haemolytica is needed.

Mannheimia haemolytica is the primary cause of Bovine Respiratory Disease (BRD), a con-
dition which is responsible for 70% of morbidity and 50% of mortality in beef cattle [5, 22].
Additional bacterial causes of BRD include Pasteurella multocida, and Histophilus somni, as
well as several viruses [5]. Nyamusika et al., one of the few papers that addresses population
dynamics of beef cattle with respect to BRD, looks at how vaccination lowers the incidence of
BRD by M. haemolytica. The authors discover that vaccination is most effective if administered
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once cattle are brought to the feedlot [28]. However, there is no consideration of the impact of
prolonged exposure to antibiotics throughout the life of cattle.

The topic of ABR in population dynamics has been studied in humans repeatedly [9, 12] and
numerous researchers have demonstrated the need for a connection between ABR in humans
and food animals [11, 39, 43]. Smith et al. used a mathematical model to reveal that antibiotic
use in animals has an impact on ABR in humans [34]. Therefore, it is worthwhile to pursue
reducing ABR in food animals.

While certain strains of bacteria present in beef cattle have been modeled at a molecular
level, this report focuses on an entire cohort of cattle throughout their lifetime at the population
level. Using a mathematical model, we compare strategies to reduce ABR in cattle with and
without the use of growth promoters. We also utilize a combination of isolation, treatment, and
culling to reduce ABR in cattle at the time of slaughter. This model is analyzed in the context
of Bovine Respiratory Disease (BRD) and focuses on resistant and nonresistant strains of M.
haemolytica.

This paper addresses the question of what is the best combination of culling and quarantine
to reduce ABR in beef cattle? Also, how will the Veterinary Feed Directive affect ABR? The
remainder of this paper is organized as follows: biological considerations are explained in Section
2 along with the model development, details of the mathematical model and other methods are
included in Section 3, and details of parameter estimation are outlined in Section 4. The results
of numerical simulations are in Section 5. Section 6 contains the discussion, and additional
outputs are included in the Appendix.

2 Model Development

Compartments and Stages

We develop a two-stage model which tracks the development of antibiotic resistant (ABR)
bacteria in a cohort of cattle from birth in a cow-calf operation through weaning at seven months
(Stage 1), to a feedlot until slaughter at 22 months of age (Stage 2). It is becoming increasingly
common to see a cow’s life divided into these two distinct phases, as it limits transportation
of cattle and therefore reduces stress, which makes cattle more susceptible to illness [14]. The
model consists of six compartments, which are shown in Figure 1. We assume that all cattle are
born healthy, and enter the model through compartment H. They may then become colonized
with either antibiotic resistant or susceptible (ABR or ABS) M. haemolytica, and enter latent
compartments Lr or Lw, respectively [25]. From there, they may develop symptoms and enter
infectious compartments Ir or Iw. At any time, cattle from Lw and Iw may develop resistant
bacteria, and move into Lr and Ir respectively [41]. Cattle in Ir are taken to the quarantine
compartment Q or leave the system. Cattle exit the model through culling (the equivalent of
slaughter without profit) at Ir and Q; at 22 months of age, the cattle are slaughtered. Stage 1
is run from birth to 7 months; it is then stopped, and the outputs are used as initial conditions
for Stage 2, which is run from 7 to 22 months. We assume that all cattle are born into Stage
1 at a specific time, move to Stage 2 collectively, and are culled or slaughtered before natural
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death can occur. Therefore, natural birth and death are not accounted for in the model.
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Figure 1: Movement and rates of change between cattle sub-populations with varying levels of
infection. Here i = 1, 2 denotes the stage.

Com. Meaning

H Healthy cattle colonized with harmless amounts of bacteria.

Lr Asymptomatic cattle colonized with ABR bacteria.

Lw Asymptomatic cattle colonized with ABS bacteria.

Ir Symptomatic, infectious cattle colonized with ABR bacteria.

Iw Symptomatic, infectious cattle colonized with ABS bacteria.

Q Quarantined cattle, infected with antibiotic resistant bacteria.

Table 1: Description of state variables

Bacteria Types

After birth, cattle become colonized with a variety of bacteria, generally nonpathogenic. M.
haemolytica is commonly found in healthy cattle. There are three main serotypes (S1, S2, and
S6); each of these may cause Bovine Respiratory Disease (BRD), especially when cattle are
exposed to stress or viruses. Roughly 2-18% of M. haemolytica bacteria is antibiotic resistant
[17, 22], and, of the three serotypes, S1 is the most prone to developing resistance. Cattle become
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colonized with ABR bacteria through contact with other cattle, α and η, the environment φ,
and selective pressure from antibiotics in the feed ω. Cattle become colonized with ABS bacteria
through contact with other cattle β, and the environment ε.

Antibiotic Use

Cattle receive subtherapeutic levels of antibiotics in their food continually. These antibiotics
serve to inhibit the growth of bacteria, as well as to help the cattle process their feed more effi-
ciently (growth promotion). However, constant exposure to antibiotics causes selective pressure
which may lead to the development of antibiotic resistant bacteria. If cattle develop symptoms,
they are treated with therapeutic levels of antibiotics, but due to the cost and time involved,
cattle are not tested before treatment [37]. Thus, all symptomatic cattle, regardless of whether
the infection is resistant or not, are treated with the same antibiotic. A proportion of cattle (p)
from Iw respond to this treatment at rate γ and will return to H. Cattle from Ir will not recover
from this treatment, and it is at this point that their resistance status will be ”discovered.” From
this point, they will either be taken to Q for further treatment, or culled.

Horizontal Transmission

Whether the cattle are on a farm or a feedlot, they are always exposed to other cattle and
environmental factors from which they may develop ABR. Therefore, at any time, cattle from
H and Lw may transfer to Lr. A proportion of cattle from Iw may not respond to treatment,
and instead develop an ABR infection and transfer into Ir, at rate (1− p)γ.

Bovine Respiratory Disease (BRD)

BRD is the leading cause of morbidity and mortality in cattle. It is a complex disease and
highly infectious. Because stress is a major catalyst, BRD is most commonly seen after major
events such as weaning and transport to a feedlot (which may involve sale at a cattle auction and
cross-country travel). BRD can affect cattle at any time, but the first 30 days after transport
are the most critical [15]. Signs and symptoms of BRD progress from depression, decreased
appetite, increased respiratory rate, fever, and lung lesions. Cattle with BRD should be treated
as early as possible; if roughly 10% of the cattle are sick, mass medication may be given to the
entire herd [16]. The time to develop symptoms varies from several days to two weeks from
exposure [8, 27]. In our model, a proportion of cattle in Lr and Lw pass to Ir and Iw at this
rate, represented by ν and π, respectively. At this point, all symptomatic cattle (Ir and Iw)
are treated with therapeutic doses of the same antibiotic used prophylactically in the general
population. Cattle who remain sick, or who quickly relapse, will be assumed to carry ABR
bacteria. It is assumed that cattle in Lw may develop ABR in all of the same ways as members
of H.
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Quarantine

Many feedlots have a hospital, or quarantine pen where sick cattle are kept for treatment.
We assume that once a cow needs more than a standard round of antibiotics, it is either culled,
or moved to this pen (Q), where further treatment can be administered without the risk that
the disease will be spread to other cattle. From Q, a proportion of cattle recover and rejoin H,
or, if treatment fails, they may be culled.

Culling

Antibiotic treatment is expensive, especially if the entire herd requires treatment. For this
reason and to reduce the spread of antibiotic resistant bacteria, cattle may be culled from either
Ir or Q. Conservative estimates list the mortality rate of BRD at 5-10% of those infected [22].
In addition, the rancher may decide to cull an especially sick cow, or a cow who has already
suffered multiple infections, as these cattle are not worth as much at slaughter [33]. The rate of
cows culled for either of these reasons will be reflected in the culling terms χ and κ.

3 Methods

Stage Structure

We track a single cohort of beef cattle through the two stages of the model, which is sum-
marized by the flow chart in Figure 2, and given by differential equations (1 - 6). The state
variables are summarized in Table 1, and parameter definitions summarized in Table 2.
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Figure 2: Flow chart illustrating stage structure
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The following system of ordinary differential equations (ODEs) is used to examine the change
in ABR M. haemolystica infected cattle:

Ḣi = −αiHi
Iri
Ni
−Hi(φi + ωi)− βiHi

Iwi

Ni
− εiHi + piγiIw + σiQi (1)

L̇ri = αiHi
Iri
Ni

+Hi(φi + ωi) + ηiLwi

Iri
Ni

+ Lwi(φi + ωi)− νiIri (2)

L̇wi = βiHi
Iwi

Ni
+ εiHi − ηiLwi

Iri
Ni
− Lwi(φi + ωi)− πiIwi (3)

İri = νiIri + (1− pi)γiIwi − Iri(ψi + χi) (4)

İwi = πiLwi − γiIwi (5)

Q̇i = ψiIri −Qi(σi + κi) (6)

where i = 1, 2 for Stage 1 and Stage 2 respectively, and N = H + Lr + Lw + Ir + Iw + Q.
At the beginning of the system (t = 0) the population enters the system healthy, therefore
N(0) = H. Both stages use the same set of six equations but with differing parameter values
to account for the change in conditions from the breeder farm to the feedlot. At the end of
Stage 1 (t = 28weeks), the visibly healthy cows from H, Lr, and Lw will be transported to the
feedlot, while the cattle in Ir, Iw, and Q will not [35]. The transition from cow-calf operation to
feedlot is stressful on the cattle, and as a result, a proportion of healthy cattle contract BRD.
The initial conditions for Stage 2 are given by:

H2(t1) = (1− δ)H1(t1)

Lr2(t1) = Lr1(t1) + zδH1(t1)

Lw2(t1) = Lw1(t1) + (1− z)δH1(t1)

where δ is the proportion of H that develop BRD due to the stress of transport, and z is the
proportion of infections with ABR M. haemolytica. The duration of Stage 2 is 68 weeks, at the
end of which the cattle are slaughtered at 22 months (t2) of age [35].

Because the system runs for a fixed time, not indefinitely, usual techniques of finding equi-
librium points, stability analysis, and other analytical techniques are unnecessary. Instead,
numerical techniques such as uncertainty quantification, graphical displays, and perturbation of
parameters are used to determine the characteristics of the system.

Addition of Natural Variation

In a biological system such as a cattle feedlot, there is a lot of natural variation. This
occurs in the form of farming practices, immune systems of individual cows, weather and sea-
sonal changes, among other things. ODE systems provide information on how average behavior
changes over time. However, slight changes in parameters will result in different deterministic
outputs. Therefore, an ODE system may show differences that are not significant once de-
mographic variation is taken into account [20]. In order to expand upon the results from our
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deterministic model and ensure that observed differences are meaningful, a system of stochastic
differential equations (SDE) is used. The stochastic equations are created from a combination
of the ordinary differential equations and additional terms comprised of a random proportion of
the standard deviation of each transition rate in the system [2]. Each drift term, calculated us-
ing Wiener processes, encompasses all expected variations in a given transition. The stochastic
differential equations are as follows:

Ḣi = − αiHi
Iri
Ni
−Hi(φi + ωi)− εiHi − βiHi

Iwi

Ni
+ piγiIw + σiQi −

√
αiHi

Iri
Ni

W1

−
√
Hi(φi + ωi) W2 −

√
εiHi W3 −

√
βiHi

Iwi

Ni
W4 +

√
piγiIw W4 +

√
σiQi W6

(7)

L̇ri = αiHi
Iri
Ni

+Hi(φi + ωi) + ηiLwi

Lri

Ni
+ Lwi(φi + ωi)− νiIri +

√
αiHi

Iri
Ni

W1

+
√
Hi(φi + ωi) W2 +

√
ηiLwi

Iri
Ni

W7 +
√
Lwi(φi + ωi) W8 −

√
νiIri W9

(8)

L̇wi = βiHi
Iwi

Ni
+ εiHi − ηiLwi

Iri
Ni
− Lwi(φi + ωi)− πiIwi +

√
βiHi

Iwi

Ni
W4

+
√
εiHi W3 −

√
ηiLwi

Iri
Ni

W7 −
√
Lwi(φi + ωi) W8 −

√
πiIwi W10

(9)

İri = νiIri + (1− pi)γiIwi − Iri(ψi + χi) +
√
νiIri W9 +

√
(1− pi)γiIwi W11

−
√
Iri(ψi W12 −

√
χiIri W13

(10)

İwi = πiLwi − γiIwi +
√
πiLwi W10 −

√
γiIwi W6 (11)

Q̇i = ψiIri −Qi(σi + κi) +
√
ψiIri W13 −

√
σiQi W6 −

√
κiQi W14 (12)

where i = 1, 2 for Stage 1 and Stage 2, and j = 1, 2, ..., 14 for the Wiener trajectories where each
transition rate has a corresponding W . See Table 4 in the appendix for a layout of the transitions
for each random event. Each Wj corresponds to a random number from a iid Wj ∼ N(0, 1).
For a more complete theoretical discussion of the stochastic process used in this paper, refer to
Allen et al. [2].

9



4 Parameter Estimation

Figure 3: Daily incidence of BRD for 31,243 calves and 18,112 feedlot cattle (data from [36, 37])

Parameter values were found primarily in literature. Those that were not found were esti-
mated using the data provided in Snowder et al. (2005) and (2006) for Stage 1 and 2 respectively
[36, 37]. All values were assumed to be the same for Stage 1 and Stage 2 unless otherwise stated.

Terms α, β and η represent effective contact rates between infectious and healthy or latent
cattle respectively. M. haemolytica is not directly contagious between cattle [38]. Instead, Bovine
Respiratory Disease (BRD) is spread through a population via the contagiousness of viruses.
Viruses associated with BRD have a 30% chance of causing enough damage for M. haemolytica
to develop into BRD [30]. We assume that 1 contact per week per cow is sufficient to transmit
the virus. Therefore, assuming that each cow comes into contact with at least 1 other cow
once per week and that proportions of sick cattle are similar in each pen, α, β and η will be
represented by: (3 BRD cases

10 contacts )(1 contacts
week ) = 0.3BRD cases

week .
The rate at which cattle develop antibiotic resistance (ABR) due to selective pressure by

medicated feed (ω) was calculated by observing the change in antibiotic susceptibilities over
several years. Based on these changes, rate of developing ABR ranges from 0.0002

week to 0.001
week [17].

An arbitrary value of 0.0005
week was selected.

The proportion of successful treatments, p, was found to range from 0.71 to 0.86 with a best
estimate of 0.86 [17, 41]. Average duration of treatment ranges from 3 days to 2 weeks [4, 8, 26].
A recommended treatment duration of 2 weeks was selected, resulting in a value of 1

2weeks for γ
[27]. This value was also used for ψ as it is assumed that after 1 round of treatment fails, cattle
will be brought to quarantine.

Average amount of time spent in quarantine was found to be 30 days [31] while the prob-
ability of successful treatment was found to be 0.389 [41]. A value of σ was calculated to be:
(0.389)( 7

30weeks)=
0.091
weeks while the κ was calculated to be (1− 0.389)( 7

30weeks)=
0.142
weeks .

The culling rate from Ir, χ, varies greatly as it is up to a farmer’s discretion whether or not
a cow should be quarantined or killed. A minimal value of 0.001

weeks was arbitrarily selected.
Data fitting using least square analysis was used to estimate values for φ, ε, and π. Rates
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of developing symptoms from the latent classes π and ν, were assumed to be equal. Parameter
estimation for Stage 1 revealed the following: π = ν = 0.1156

week , φ = 0.0000175
week and ε = 0.0089

week . For
Stage 2, the values were estimated to be: π = ν = 0.00429

week , φ = 0.000492
week and ε = 0.00967

week . Values
were fitted to data shown in Figure 3.

Alternative values of ω and ε were also estimated to predict changes in incidences of ABR
and illness that will occur after 2017 legislation is put into action. ω̂ was set to 0

weeks as it would
be ideal that selective pressures would be completely removed once antibiotics are no longer
included in feed. Additionally, ε is increased by a factor of 1.3 as that is the estimated rate
increase for developing bacterial infections in the absence of daily antibiotics. Therefore, ε̂i =
1.3 εi [18].
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Parm. Definition Estimate Reference

α1, α2 Effective rate of contact from Lr to H 0.3/week [30, 38]

β1, β2 Effective rate of contact from Lr to Lw 0.3/week [30, 38]

η1, η2 Effective rate of contact from Iw to H 0.3/week [30, 38]

φ1
Rate of contracting ABR infection from environment

.0000175/week

φ2 .000492/week

ω1, ω2
Rate of spontaneous development of resistance due to
interaction with antibiotics

0.0005/week
[17]

ε1 Rate of developing ABS infection due to environment, .0089/week

ε2 stress, etc (amplification of bacteria) .00967/week

γ1, γ2 Rate of treatment in Iw 0.5/week [4, 8, 26, 27]

p1, p2, Proportion of successful treatment in Iw 0.86 [17, 41]

σ1, σ2 Rate of successful treatment in Q 0.091/week [31, 41]

ν1
Rate of developing symptoms from Lr

.1156/week

ν2 .00429/week

π1
Rate of developing symptoms from Lw

.1156/week

π2 .00429/week

ψ1, ψ2 Rate of going to Q from Lr 0.5/week [4, 8, 26, 27]

χ1, χ2 Culling rate from Ir 0.001/week

κ1, κ2 Culling rate from Q 0.142/week [31, 41]

Transition to Stage 2

δ Proportion of cattle infected due to travel 0.105 [10, 32]

z Proportion of travel-induced ABR infections 0.02 [17, 22]

2017 Legislation

ω̂
Rate of spontaneous development of resistance due to
interaction with antibiotics

0/week

ε̂1 Rate of developing ABS infection due to environment, 1.3 ε1/week
[18]

ε̂2 stress, etc (amplification of bacteria) 1.3 ε2/week

Table 2: Parameter Descriptions and Values
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5 Numerical Simulations

ODE Results

Figure 4 shows the number of cattle in each compartment over time using parameter values
representative of current practices (Table 2). This pattern is compared to Figure 5, which
displays the predicted number of cattle in each compartment after the new legislation is put
into place. Comparisons between the two figures predict an increase in the number of cattle
colonized with latent antibiotic susceptible (ABS) bacteria along with a drop in the number of
healthy cattle and cattle colonized with latent antibiotic resistant (ABR) bacteria. An increase
in the latent class size indicates an increased risk of cattle developing ABS infection after 2017.
These results are consistent with previous predictions that after new legislation is implemented,
the number of cattle with some level of bacterial colonization will increase [24].

Figure 4: Change in classes during current practices

Figure 5: Change in classes under new legislation

13



Additional numerical analysis of the model focused on the proportion of observably healthy
cattle colonized by ABR M. haemolytica, Ω, the ratio of cattle with ABR to the observably
healthy cattle, Λ; and the proportion of the total herd that appear healthy, Θ.

Ω =
Lr

H + Lr + Lw

Λ =
Lr + Ir +Q

H + Lr + Lw

Θ =
H + Lr + Lw

H + Lr + Lw + Ir + Iw +Q

Minimizing Ω at t1 (28 weeks) results in the fewest number of cattle colonized with ABR
bacteria that are moved to the feedlot. At t2 (96 weeks), minimizing Ω results in the smallest
proportion of ABR bacteria to possibly get into food. Minimizing Λ reduces the contribution
of cattle to the reservoir of ABR. Because fewer than 1% of cattle are in both the Ir and Q
classes at any point in time, the difference between Λ and Ω is negligible; therefore, results focus
only on Ω. In Stage 1, Θ is the proportion of cattle that move to the feedlot at time t1, and in
Stage 2 Θ is the proportion of cattle that get slaughtered at time t2. Maximizing Θ at t1 and t2
results in the highest proportion of profitable cattle, but not necessarily the highest number as
minimizing death is not taken into account. Furthermore, each proportion is relative to the stage
and number of other cattle in the system at each point in time and not to the initial number of
cattle entered into the system. Therefore, all graphical representations of Θ are analyzed in the
context of Ω.

Under current antibiotic use, the objective functions reveal that over 22 months, the propor-
tion of cattle with ABR increases while the proportion of observably healthy cattle decreases
slightly (Fig. 6). Additionally, comparing outputs of objective functions under current legis-
lation to predictions for 2017 reveals a drop in the proportion of cattle with ABR bacteria at
slaughter (Ω) after legislation is put into place. However, the proportion of observably healthy
cattle (Θ) only shows a slight difference in Stage 1, with no discernible differences in Stage 2
when comparing 2016 to 2017.
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Figure 6: Outputs of ODE Solved Numerically

Uncertainty Quantification & Sensitivity Analysis

Uncertainty Quantification (UQ) is a global sensitivity analysis that assesses the impact of
variation in each parameter on the output of interest. This report uses Latin Hypercube Sam-
pling (LHS) along with Partial Rank Correlation Coefficient (PRCC) to analyze how sensitive
Ω and Θ are to a change in each parameter [6, 7]. Intervals of ±10% of nominal values found in
Table 2 were used for the LHS and assumed to be uniformly distributed.

UQ reveals that under current legislation, the proportion of slaughtered cattle colonized
by antibiotic resistant (ABR) bacteria (Ω) is most sensitive to the probability of successful
treatment (p), the rate at which infectious cattle are brought into quarantine (ψ), and the rate
of developing ABR M. haemolytica through feed and the environment (ω and φ) (Fig. 7).
Therefore, the most meaningful changes would result from decreasing parameters φ, and ω and
increasing p and ψ (Fig. 7).
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Figure 7: Uncertainty Quantification for Ω and Θ for 2016 and 2017, specific PRCC values can
be found in the Appendix in Tables 5, 6, 7, and 8
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Normalized Sensitivity Analysis (SA) shows changes in the output’s sensitivity over time
as a result of a 1% change in one input parameter. Observed parameters include: ε, φ, ψ, χ
and κ (Fig. 8). These values were selected due to their ability to be biologically manipulated
through sanitation, changes in quarantine rates or capacity, as well as culling rates. SA values
show at what point measures to reduce ABR would be most effective. In Stage 1, environment
(ε) and quarantine (ψ) have the largest impact on Ω. After the 2017 legislation is put into
place, ε is predicted to influence the cattle earlier and with greater impact. Therefore, efforts
to decrease rates of ABR from the environment via sanitation should be directed towards cow-
calf operations, especially after 2017. In Stage 2, ABR bacteria from the environment (φ) and
quarantine (ψ) have the largest impact on Ω.

Figure 8: Sensitivity analysis for Ω in both 2016 and 2017

Parameter Perturbation

The practice of quarantine and culling are arguably the most simple parameters to alter
as both are already in practice at cow-calf operations and feedlots. In order to examine their
influence on the system, parameters ψ and χ are varied while numerically analyzing the changes
in Ω and Θ. The minimum value of each function is then estimated to find the rates of ψ and
χ that result in the most ideal outputs.

Figure 9 reveals that culling and quarantine rates have an effect on reducing Ω. The propor-
tion of slaughtered cattle with ABR decreases as ψ increases; for values of ψ < 0.5 per week a
sharp decrease is observed. The decrease is less dramatic for ψ > 1 per week. Similar patterns
are observed for χ. Therefore, values between 0.5 and 1 per week would be ideal for maximizing
efficiency in reducing incidences of ABR in cattle.

After new legislation is enacted, parameter perturbations predict an overall drop in Ω. Val-
ues between 0.5 and 1 per week are still most efficient for ψ and χ. However, values below 0.5
per week show marked improvement over current scenarios. This is beneficial because risk of
infection with antibiotic susceptible M. haemolytica is increased without suppression of bacte-
rial growth by antibiotics. Therefore, while increased rates of quarantine or culling may not
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be realistic, the ratio of cattle with latent ABR bacteria at slaughter should still decrease in
comparison to current practices.

Figure 9: Parameter perturbations and changes in Ω over time

SDE Results

Cattle are often exposed to the elements; thus, changes in weather and seasons affect the
health of the cattle. To account for this variation in circumstances, and therefore to ensure
that the differences in results obtained using the ODE system are meaningful, and not due to
random chance, an SDE system is employed. The model is run through both stages for each
iteration of the stochastic process, and the initial conditions for the second stage are obtained
via the same method used for the ODE system. The distribution of both outputs at t2 (Fig.
10) allows for assessment of the difference between outputs before and after new legislation.
Along with the distribution of Ω and Θ, Table 3 gives the summary statistics for each output for
both years. The Kolmogorov-Smirnov (KS) two-sample test is employed to test the differences
[13]. The difference between the distributions Ω before and after 2017 legislation significantly
differ (D = 1, p = 2.2E-16). However, for Θ, no statistical or practical differences are found
(D = 0.12, p = .8693). Similar results can be obtained through other statistical tests such as a
t-test for differences between the means of each distribution.

The proportion of slaughtered cattle with antibiotic resistant (ABR) bacteria (Ω) signifi-
cantly decreased from 2016 to 2017. The model also predicts that the proportion of observably
healthy cattle does not decrease after legislation is implemented, and thus profit may not de-
crease due to health of cattle.
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Variable Year Mean Std. Dev. Min. Med. Max.

Ω 2016 0.0847 0.0031 0.0747 0.0847 0.0928
2017 0.0524 0.0027 0.0433 0.0523 0.0605

Λ 2016 0.0886 0.0032 0.0779 0.0886 0.0974
2017 0.0558 0.0029 0.0457 0.0558 0.0656

Θ 2016 0.9919 0.0009 0.9889 0.9920 .9955
2017 0.9917 0.0010 0.9883 0.9917 0.9943

N 1000

Table 3: SDE output summary statistics for 2016 and 2017, where N is the number of different
stochastic runs.

Figure 10: Comparison of distributions of Ω, and Θ at t2 between 2016 and 2017.
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6 Discussion

Antibiotic resistance and the potential spread of ABR bacteria between humans and animals
is an important but complex issue. ABR M. haemolytica in beef cattle is just one small part
of the issue. However, using mathematical models, it is possible to better understand the
spread of resistance and formulate targeted strategies to combat the issue. After January 1,
2017, the Veterinary Feed Directive (VFD) will restrict the use of antibiotics to prescription
by a veterinarian. This model shows that decreasing or eliminating antibiotics in cattle feed
will successfully reduce the proportion of cattle with ABR at slaughter by an average of 3.2%.
However, this change comes with the possibility of increased levels of infection throughout the
cattle population. This model predicts that after 2017, efforts to reduce ABR in cattle will
be most effectively placed in improving successful treatment rates, detecting infectious cattle
earlier, and increasing sanitation of the environment.

The ideal rate of isolation occurs within two weeks of cattle showing symptoms. After the
VFD is put into place, ideal quarantine rates will continue to be 0.5 to 1 per week, with an
overall drop in the proportion of cattle with ABR at slaughter. Distributions of the proportions
of cattle with ABR at slaughter in 2016 and 2017 are statistically different, with 2017 being
visibly lower. Our model predicts that not only will the VFD significantly reduce the spread of
ABR bacteria within a cattle population, but that overall health of herd will not significantly
decline.

Accuracy of this model could be improved by better parameter estimations. Biological
accuracy of parameters were affected by the lack of data. Inclusion of a spontaneous recovery
rates could help provide a more accurate picture. Because cattle spend a majority of their lives
outdoors, environmental factors such as weather and seasonal conditions play a major role in
BRD. Additionally, the majority of cattle with asymptomatic BRD are not discovered until
after slaughter. While current options are cost prohibitive, testing cattle for ABR periodically
during the two stages of life would provide a basis for understanding the progression of resistance
through the cohort. Future directions may include incorporating reinfection history as well as
profit according to the number of times cattle have been infected.

Although this model is a simplification of reality, results indicate that isolation and culling,
as well as early detection of disease and sanitation, are effective in slowing ABR in beef cattle.
These strategies make a significant difference, not just in the cattle population, but in the
environment which affects humans. This conclusion provides motivation to continue efforts to
better understand and address BRD and antibiotic use in cattle. By diligent and deliberate care
of food animals, the spread of antibiotic resistant bacteria can be slowed, saving antibiotics for
the life-saving measures for which they were first designed.
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Appendix

Event Transition Rate Wiener Trajectory

H → Lr (-1 1 0 0 0 0) α Ir
N W1

H → Lr (-1 1 0 0 0 0) φ+ ω W2

H → Lw (-1 0 1 0 0 0) η Iw
N W3

H → Lw (-1 0 1 0 0 0) ε W4

Iw → H (1 0 0 0 -1 0) pγ W5

Q→ H (1 0 0 0 -1 0) σ W6

Lw → Lr (0 1 -1 0 0 0) β Ir
N W7

Lw → Lr (0 1 -1 0 0 0) φ+ ω W8

Lw → Iw (0 0 -1 0 1 0) π W9

Lr → Ir (0 -1 0 1 0 0) ν W10

Iw → Ir (0 0 0 1 -1 0) (1− p)γ W11

Ir → Q (0 0 0 -1 0 1) ψ W12

Ir → out (0 0 0 -1 0 0) χ W13

Q→ out (0 0 0 0 0 -1) κ W14

(H Lr Lw Ir Iw Q)

Table 4: Description of transitions including rates and random Wiener trajectory used in the
stochastic differential equations. For a more theoretical discussion of the transitions and break-
down of the stochastic process, look to Allen et al. (2008) [2]
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Ω Λ Θ

Par. PRCC P-Value Par. PRCC P-Value Par. PRCC P-Value

α −0.6497 1.9920e− 119 α 0.8556 5.3596e− 284 α 0.8733 6.3284e− 310
β −0.7676 1.7584e− 192 β 0.5634 9.6252e− 84 β 0.4420 1.8414e− 48
φ 0.0430 1.7679e− 01 φ −0.0089 7.7908e− 01 φ 0.0050 8.7570e− 01
ω −0.2127 1.4501e− 11 ω 0.3630 4.2024e− 32 ω 0.3894 4.3109e− 37
ε −0.8080 1.4052e− 228 ε 0.6109 5.1195e− 102 ε 0.4940 7.4433e− 62
p 0.9849 0.0000e+ 00 p −0.9908 0.0000e+ 00 p −0.9846 0.0000e+ 00
γ 0.9036 0.0000e+ 00 γ −0.4695 2.9209e− 55 γ −0.3297 1.8908e− 26
σ 0.2889 1.9747e− 20 σ −0.2307 2.1457e− 13 σ −0.0349 2.7308e− 01
η −0.1084 6.4638e− 04 η 0.2380 3.5642e− 14 η 0.2650 2.4920e− 17
ν −0.2085 3.6791e− 11 ν −0.3799 3.1217e− 35 ν −0.7114 4.6930e− 153
π −0.4263 7.5035e− 45 π 0.2893 1.7797e− 20 π 0.2200 2.7549e− 12
χ −0.0123 6.9996e− 01 χ 0.0086 7.8698e− 01 χ −0.0073 8.1883e− 01
ψ 0.7903 9.7871e− 212 ψ −0.9047 0.0000e+ 00 ψ −0.8974 0.0000e+ 00
κ 0.3623 5.6053e− 32 κ −0.2358 6.1072e− 14 κ 0.0865 6.5486e− 03

Table 5: Uncertainty quantification for Stage 1 in 2016

Ω Λ Θ

Par. PRCC P-Value Par. PRCC P-Value Par. PRCC P-Value

α −0.6650 3.7333e− 127 α 0.8469 1.1728e− 272 α 0.8708 2.6626e− 306
β −0.8101 7.5661e− 231 β 0.6125 8.6387e− 103 β 0.5233 1.5171e− 70
φ 0.0281 3.7833e− 01 φ 0.0176 5.7982e− 01 φ 0.0074 8.1584e− 01
ε −0.8564 2.2181e− 285 ε 0.6842 2.5185e− 137 ε 0.5862 2.9639e− 92
p 0.9902 0.0000e+ 00 p −0.9935 0.0000e+ 00 p −0.9900 0.0000e+ 00
γ 0.9336 0.0000e+ 00 γ −0.5407 4.3898e− 76 γ −0.4219 6.4494e− 44
σ 0.3510 4.9933e− 30 σ −0.2332 1.1512e− 13 σ −0.0162 6.1126e− 01
η −0.0804 1.1518e− 02 η 0.2605 8.7320e− 17 η 0.3011 3.8018e− 22
ν −0.1727 4.6647e− 08 ν −0.3583 2.7200e− 31 ν −0.6731 2.4827e− 131
π −0.5896 1.5381e− 93 π 0.3878 8.3678e− 37 π 0.3187 9.2152e− 25
χ 0.0214 5.0080e− 01 χ −0.0047 8.8190e− 01 χ −0.0014 9.6569e− 01
ψ 0.7936 5.5007e− 215 ψ −0.8992 0.0000e+ 00 ψ −0.8971 0.0000e+ 00
κ 0.3629 3.9900e− 32 κ −0.2382 3.2646e− 14 κ 0.0668 3.5843e− 02

Table 6: Uncertainty quantification for Stage 1 in 2017
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Ω Λ Θ

Par. PRCC P-Value Par. PRCC P-Value Par. PRCC P-Value

α −0.0519 1.0288e− 01 α 0.5103 1.5036e− 66 α 0.5363 1.3418e− 74
β −0.0712 2.5373e− 02 β −0.0375 2.3974e− 01 β −0.0356 2.6355e− 01
φ −0.2879 2.7304e− 20 φ 0.9374 0.0000e+ 00 φ 0.9454 0.0000e+ 00
ω −0.3832 6.9694e− 36 ω 0.9400 0.0000e+ 00 ω 0.9478 0.0000e+ 00
ε NaN NaN ε NaN NaN ε NaN NaN
p 0.9880 0.0000e+ 00 p −0.9663 0.0000e+ 00 p −0.9514 0.0000e+ 00
γ 0.9170 0.0000e+ 00 γ 0.0105 7.4160e− 01 γ 0.0220 4.9037e− 01
σ 0.4479 7.2597e− 50 σ −0.0967 2.3661e− 03 σ −0.0351 2.7070e− 01
η −0.0316 3.2097e− 01 η 0.2841 8.7907e− 20 η 0.3055 8.9933e− 23
ν −0.6870 8.9231e− 139 ν −0.1858 4.0672e− 09 ν −0.3372 1.1473e− 27
π −0.9470 0.0000e+ 00 π 0.4613 3.6316e− 53 π 0.4037 5.6643e− 40
χ 0.0085 7.8980e− 01 χ 0.0524 9.9931e− 02 χ 0.0482 1.3043e− 01
ψ 0.5674 3.6619e− 85 ψ −0.6776 1.3282e− 133 ψ −0.6646 8.5915e− 127
κ 0.6120 1.7853e− 102 κ −0.0639 4.4734e− 02 κ 0.0479 1.3303e− 01

Table 7: Uncertainty quantification for Stage 2 in 2016

Ω Λ Θ

Par. PRCC P-Value Par. PRCC P-Value Par. PRCC P-Value

α −0.0322 3.1213e− 01 α 0.4988 2.8516e− 63 α 0.5151 4.6606e− 68
β −0.1525 1.4580e− 06 β 0.0119 7.0938e− 01 β 0.0089 7.7944e− 01
φ −0.2540 5.1392e− 16 φ 0.9565 0.0000e+ 00 φ 0.9603 0.0000e+ 00
ε −0.9056 0.0000e+ 00 ε 0.5419 1.7617e− 76 ε 0.4783 1.2856e− 57
p 0.9889 0.0000e+ 00 p −0.9853 0.0000e+ 00 p −0.9774 0.0000e+ 00
γ 0.9210 0.0000e+ 00 γ 0.0276 3.8585e− 01 γ 0.0274 3.8989e− 01
σ 0.3228 2.1557e− 25 σ −0.0313 3.2532e− 01 σ 0.0474 1.3651e− 01
η −0.0249 4.3349e− 01 η 0.3572 4.2058e− 31 η 0.3601 1.2654e− 31
ν −0.4661 1.9930e− 54 ν −0.0706 2.6511e− 02 ν −0.1775 1.9484e− 08
π −0.9512 0.0000e+ 00 π 0.6391 1.6253e− 114 π 0.5574 1.0248e− 81
χ −0.0026 9.3533e− 01 χ 0.0079 8.0442e− 01 χ 0.0105 7.4277e− 01
ψ 0.4850 1.9564e− 59 ψ −0.7216 1.1346e− 159 ψ −0.7047 3.9121e− 149
κ 0.4678 7.2265e− 55 κ −0.1362 1.7318e− 05 κ −0.0293 3.5806e− 01

Table 8: Uncertainty quantification for Stage 2 in 2017
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