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Abstract

Homelessness is a major socioeconomic issue in the United States with more than half a million

individuals homeless on any given night in 2018 (U.S. Department of Housing and Urban Development).

The second highest number of homeless was reported from Los Angeles County with approximately 53,000

individuals, 10% of the national total. Several factors associated with lifetime homelessness include poor

family functioning, socioeconomic disparity, isolation from social network communities, mental health

issues, and addiction problems. Recent interventions such as rapid rehousing, educational programs,

job skills training, and supportive health services have either been ineffective or have had limited scope

over time. In this study, we evaluate the impact of two interventions, such as, vocational training
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and housing assistance programs on the spread and control of homelessness in Los Angeles, using a

system of ordinary differential equations and data from Los Angeles County. Our results show that

housing assistance programs are more effective in a short period of time, however, in order to achieve

sustainability in the long term it is necessary to incorporate vocational training programs. The likelihood

of the spreading of homelessness is influenced by social interactions and the interventions incorporated.

Also, the environmental influence was found to be dominant when the rate of interventions is extremely

low.
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1 Introduction

On any given night in 2018, more than half a million people experienced homelessness in the United States,

and 35% of these people did not spent their night in shelters. Further, although the total number of homeless

people in the United States has dropped 15% from 2007 to 2018, there was a slight increase of 0.7% in the

homeless rate over the last year. [14] These statistics indicate that, despite an overall increase in taxpayers’

money throughout a relatively stable period of economic growth, more effort is required to combat the

problem of homelessness. Homelessness is defined by the Department of Housing and Urban Development

(HUD) as lacking a fixed, regular, and adequate nighttime residence. Furthermore, the factors that make a

person vulnerable to homelessness are living under the poverty line, that is, making less than $12,000 per

year per person, and being over the age of 18. In addition, homelessness is the result of a variety of factors,

including poverty, lack of network support, poor health, mental and physical disabilities, unemployment,

etc [12]. Moreover, socioeconomic factors, such as living in impoverished communities (having an income

less than $50,000 [7]), play fundamental roles in the homelessness process by generating a cycle of poverty,

resulting in a homeless person’s inability to afford housing or rent. For our research, using data from the

U.S. Census Bureau, we focus specifically on lack of social networks via unemployment and poverty as the

principal risk factors for the transition into homelessness.

Los Angeles, California, (L.A.) is one of the most populous counties in the United States with

a population of about 10.1 million people [6]. According to the U.S Department of Housing and Urban

Development , 53, 000 L.A. County residents were homeless on any given night in 2018. For year 2018,

about 15% of Los Angeles County residents live in poverty [6], in contrast to 12.3% percent across the entire

United States [5]. L.A. County’s lowest-income renters spend 71% of income on rent, leaving little left for

food or other basic needs. Furthermore, renters in L.A. County need to earn $46.15/hour, more than four

times the local minimum wage, to afford the median monthly rent of $2,400/month [22]. In 2018, the public

investment targeting homelessness in Los Angeles, surpassed $619 million [8].

To best resolve the homeless problem, we will focus on two intervention strategies with respect

to two of the largest factors contributing to homelessness: high housing costs and unemployment. In Los

Angeles, housing costs have been on the rise for the last eight years with average prices going from $370,000
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in 2012 to $700,000 in 2019 [2]. These combined problems of not earning enough to both pay for housing and

unemployment are the focus of the two interventions strategies: temporary housing assistance and vocational

training programs.

We will follow the vocational training scheme offered by The Roberts Enterprise Development

Fund (REDF) program, an established non-profit organization with extensive work on employment social

enterprises. Within the program, participants are trained to build soft, vocational, or technical skills. At the

same time, they seek to develop basic skills through regular classes. The program provides people who are

currently jobless and above the age of 18 years with an opportunity to rejoin the workforce [1]. The REDF

works with Social Enterprises (SEs), certain job partners that understand the stresses of the workforce and

provide services that alleviate these stresses. These services range from strengthening workplace skills to

financial literacy classes and even to mental health counseling. According to literature from the REDF [24],

individuals in SE programs are more economically self-sufficient; the percentage employed after an SE job

increased from 18% to 51%. In addition, income increased by $570 (268 percent) for all SE workers, from

$213 before the SE job began to $783 one year later.

The scheme that we will be following to incorporate housing assistance programs will be temporary

housing as given by the Continuum of Care (CoC) program [20]. This is a program provided by state

and local governments to quickly rehouse homeless individuals and families while minimizing the trauma

and dislocation costs to homeless individuals. The program assists individuals and families experiencing

homelessness with move into temporary housing if they live under the poverty line or near a disaster area. It

is important to note that this temporary housing will only be covered for a maximum of 24 months [20]. In

a study by Quentin T. Wodon [27] on an optimal control model for providing shelters or low income housing

for the homeless, shelters were found to be short-term safety nets whereas low income housing were more

akin to long-term investments in an economic sense. A steady-state saddle point is found, meaning that the

prioritization of shelter beds and low income housing may not have as clear an effect as expected. In our

study, we will still focus on temporary housing as another form of long-term investment that more effectively

removes homeless individuals from the streets and provides stable living conditions.

Lacey et al. [16] focuses on the impact of council housing on the control of homelessness in the

UK. The authors want to find a way to prioritize the focus on the availability of council (government

assistance) housing for the homeless population, but consider very few dynamical concepts. The population

is stratified into three groups based on whether they are in the private or council housing and seeking

transfer accommodations. The model described keeps the populations in each state constant, and the
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transition between compartments is given by constant rate, giving a simple linear system. With numerical

approximations, the authors determined, that an increase in the constant rate of homeless into council stock

caused the population of homeless to increase dramatically. However, reducing the constant rate of homeless

into council stock has little effect on the sizes of other categories on the waiting list. The research paper

is the only attempt to capture the homeless dynamics even though does not provide a consistent model to

study homelessness highlighting the non-linear dimensions of transitions of this social issue.

The vast majority of the literature focused on homelessness has been from a statistical and em-

pirical perspective. Elliott and Krivo [9] attempted to determine the most crucial structural determinants

of homelessness, rather than looking at personal characteristics of homeless individuals, as had been done

previously. They found that lack of low-cost housing and high poverty rates are some of the leading factors

for homelessness. With respect to high poverty, people must choose between paying for rent and other basic

necessities such as food, clothing, or medical care. The results of this study show that there is a negative

correlation between sensibility and low-cost housing, with a significance of p < 0.01. With respect to poverty

levels, the results were inconclusive about the connection between poverty and homelessness.

In another study, Fusaro et al. [11] investigated the prevalence of homelessness among the Baby

Boomer generation in the United States with respect to demographic characteristics (racial as well as ethnic

disparities). The results of common investigations of the homeless population by the federal government

include point-in-time (PIT) counts from a single night in January showed that 6% of all American adults

from the Baby Boomer generation had experienced at least one episode of homelessness. The most recent PIT

count of homeless individuals was approximately 550,000 people [14], making up some 0.17% of the entire

U.S. population, a drastic difference from the 6% calculated from this study for overall lifetime prevalence

of homelessness.

The focus of our study is to evaluate the impact of temporary housing assistance and vocational

training programs on the spread and control homelessness in Los Angeles, especially under the presence

of disparities in socioeconomic conditions. We also attempt to estimate parameters of a dynamical model

and identify the critical outcomes of each of the two interventions over a long term period. To study our

research objectives, we develop and analyze a compartmental model with a deterministic system of differ-

ential equations and a continuous-time Markov chain (CTMC) model in order to understand the dynamic

characteristics of our homelessness and its interventions.

The paper is laid out as follows. First, the model’s development is described along with assump-

tions and parameters. Second, the mathematical analysis is detailed with four cases of the general model
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to highlight the effect of the different interventions in the system. Third section presents numerical results,

including parameter estimation, numerical simulations, influence of intervention strategies on homeless pop-

ulation, sensitivity analysis, and the influence of intervention success rates on homeless population. Finally,

discussion presents the main results of the study.

2 Methodology

2.1 Model Development

Individuals are defined as either vulnerable or disaffiliated before entering the homeless class. We define

vulnerable as residents of L.A. County who are over the age of 18 and living under the poverty line, that

is, the annual income is less than $12,000 per year per one individual [19] or near a disaster area [3]. The

disaffiliated class is comprised of those individuals from the vulnerable class that have lost their job. Charles

Grigsby [12] defined disaffiliation as a process of increasing detachment from traditional institutions and

social roles. Thus, in the case of this study, unemployment is one form of disaffiliation from the traditional

workforce. Disaffiliated individuals are more likely to be influenced to become homeless. Grigsby argues

that recently disaffiliated people cope with their distress by re-affiliating with homeless individuals.

Further, the novelty of this study is the consideration of the influence of the environment on

a disaffiliated individual, implemented in a mathematical model. Disaffiliated people lose their job and

struggle paying the rent, moreover, the environment could influence their transition into a homeless stage.

A similar approach can be found in the model presented by Richard Levins in 1969 [17]. His model describes

the time-dependent changes in the population of a species in a certain area and how it varies depending

on the extinction and colonization of sub-populations [18]. In our model, the environmental influence is

represented by the fraction of the city in which people live in high poverty stages, which we define as a

compartment representing an indirect influence affecting the transition from a disaffiliated to a homeless

state. Colonization and extinction rates would be represented by the increase and reduction of the high

poverty areas, respectively.

The Levins Model is an example of patch occupancy metapopulations models, which in our case

are associated with high poverty community areas. In order to adopt the Levins Model, it is necessary to

consider the following assumptions: (1) the suitable habitat occurs in infinitely many patches that are equally

large and of the same quality; (2) the patches have only two possible states, occupied or empty, the area is
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occupied by a high poverty community, not considering higher socioeconomic levels, (3) local extinctions and

colonizations occur independently in different patches, and (4) all local populations are equally connected

to other populations and patches [15].

Figure 1: Compartmental Diagram of the model

Tables 1 and 2 give the standard definitions of the state variables and transition parameters used

in the model (See Figure 1).

Variable Definition

V (t) Individuals in L.A. County over 18 years old, living under the poverty line or
living under near a disaster area.

D(t) Individuals from V (t) who have lost their job.
H(t) Individuals from D(t) who have lost their house.
FD(t) Individuals from D(t) who are in vocational training under the REDF program.
FH(t) Individuals from H(t) who are in temporary housing under the CoC program.

Some parameters as β1 and β2 N(t) Total population at-risk of becoming homeless.

Table 1: State variable definitions.
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Param. Definition Units

µ Per capita death natural rate. years−1

Λ Recruitment rate from at-risk of becoming homeless population into vulnerable class. person
year

σ Per capita transition rate from the vulnerable to disaffiliated class. years−1

β1 Per capita rate of influence to disaffiliated, due to environment (p(t)). years−1

β2 Per capita rate of influence to disaffiliated, due to social interactions (H(t)). years−1

ε Per capita reduction rate of high poverty communities area in L.A. County. years−1

γD Per capita rate of disaffiliated enrolling in vocational training. years−1

γH Per capita rate of disaffiliated enrolling in housing assistance programs. years−1

kD Per capita rate at which individuals leave vocational training programs. years−1

kH Per capita rate at which individuals leave housing assistance programs. years−1

s Proportion of individuals that obtain a job after a vocational training program.
q Proportion of individuals that obtain a house after a housing assistance program.
c Intrinsic growth rate of the high poverty area. (person years)−1

Table 2: Parameter definitions and units.

2.1.1 Assumptions

Before presenting the system of equations, we establish the following assumptions that govern the model:

A1: Λ is the constant recruitment rate of the total population into the system, and everybody dies with

the same per capita death rate µ.

A2: There is no transition from the homeless to disaffiliated compartment, and individuals must obtain a

temporary house (FH) before permanent housing.

A3: To transit back to vulnerable from the disaffiliated compartment, the individual must go through a

vocational training program (FD).

A4: There is sufficient funding available for temporary housing and vocational training programs for home-

less and at-risk homeless population.

A5: There is a chance that individuals accessing the temporary housing and vocational training programs

may return to becoming homeless or disaffiliated.

A6: All the individuals in disaffiliated and homeless state will eventually get involved in the vocational

training or housing assistance program, respectively.

A7: All homeless individuals are unemployed.

A8: Similar to the work done by Grigsby et al. [12], we assume that the presence of homeless community
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affects the transition from disaffiliated to homeless, not as an epidemic, but due to disaffiliated popu-

lation are more prone to be drawn into new communities, since these offer them the bonds they have

lost thought unemployment.

A9: The environmental role influencing disaffiliated to become homeless is modelled according to the Levins

Model assumptions.

The dynamics of the system are represented by the equations (1a) - (2). The model was developed

based on nonlinear interactions, both direct and indirect, in order to explore the principal factors that

push a vulnerable individual into a homeless state and to identify the most effective strategies to move this

population out of homelessness. The time scale will be given in years, with one year as one unit of time

for the deterministic analysis. The previous assumptions and definitions result in the following system of

nonlinear differential equations:

dV

dt
= Λ− σV − µV + kDsFD (1a)

dD

dt
= σV − β(H, p)D − µD − γDD + kHqFH + kD(1− s)FD (1b)

dH

dt
= β(H, p)D − µH − γHH + kH(1− q)FH (1c)

dFH
dt

= γHH − kHFH − µFH (1d)

dFD
dt

= γDD − kDFD − µFD (1e)

dp

dt
= Ω(H)p(1− p)− εp (1f)

Because we assume a non-constant population, we obtain that N = V +D +H + FH + FD and

dN

dt
= Λ− µN (2)
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We define β(H, p) := β1p + β2
H
N . The β1p(t) term incorporates the influence of high poverty

communities, whereas β2
H(t)
N(t) incorporates the influence of homeless on disaffiliated individuals. For Ω(H),

we have a linear definition, Ω(H) := cH, where c is the intrinsic growth rate of the high poverty communities

with respect to incoming homeless individuals. For simplicity, this linear definition of Ω(H) assumes that

as the homeless population of L.A. increases, so do the high poverty communities of L.A. County. However,

with this assumption, we have that the intrinsic growth rate of high poverty communities can grow without

bound.

Following the deterministic analysis, we complete stochastic modelling with a Continuous Time

Markov Chain process (CTMC) and the Gillespie algorithm via MATLAB. Using our rates and transitions

from our deterministic equations, we define probabilities of moving from class to class in the stochastic model.

We can randomly generate events to see how the populations of individuals and impoverished city patches

change over time. The main reason for this work is to be able to compare the deterministic and stochastic

results in order to better understand the effectiveness of temporary housing and vocational training programs.

Additionally, we will run various numerical simulations with our deterministic and stochastic models to view

different scenarios of expected values and dispersion under which, we may be able to provide an answer to

our research question.

3 Mathematical Analysis

To provide an appropriate social meaning of the model (1), it is necessary to prove that the population is

bounded from above, suggesting that the number of individuals will not grow to infinity as time tends to

infinity. This assumption can be verified by solving the differential equation for the total population. For

N(t), we obtain the following:

N(t) =
Λ

µ
+ e−µt

(
N0 −

Λ

µ

)
,

where N0 is the initial total population of the system. Then, taking the limit as t→∞:

lim
t→∞

N(t) =
Λ

µ
.

Thus, N(t) is always bounded. Additionally, the system is well-defined since we will never have

negative population and it is bounded to a certain steady state. These facts make the model well-posed with

respect to dynamics of homelessness and its interaction with the environment with respect to the natural
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world. Now we provide the mathematical analysis of four different sub-models of Model (1) to identify the

effect of additional elements such as interventions, starting from the base model until the entire model is

explained.

3.1 Model with no Intervention V DH − P

We begin with a simplified model that does not include intervention strategies, but rather rates of recovery

from homelessness to disaffiliation and disaffiliation to vulnerability. We assume that individuals cannot stay

homeless for their entire life and that there exist mechanisms that induce the movement from the homeless

state to other states. The simplified version of the model is illustrated in Figure (2). The system has been

Figure 2: Case 1: Model diagram with no intervention.

normalized in order to work with proportions of the population in classes. Hence, we use v, d, h, fH , fD,

and p as fractions of the population instead of our original state variables in this case (see Appendix A.2).

The system of equations for this simplified system is as follows:

v̇ = µ+ κd− (σ + µ)v (3a)

ḋ = σv + γh− (κ+ µ)d− β1pd− β2dh (3b)
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ḣ = β1pd+ β2dh− (γ + µ)h (3c)

ṗ = chp(1− p)− εp. (3d)

Model (3) presents three equilibria. The homeless-free equilibrium (HFE) suggests that there is a

community in which, there are neither homeless individuals nor parts of the city under poverty. Addition-

ally, there are two endemic equilibria, one when there is no influence of the environmental component: an

environment-free equilibrium (EFE), that is p∗ = 0 and when it reaches a steady state, as in the case of the

Levins model result, p∗ = 1− ε
ch∗ . Equilibria are summarized as follows:



HFE : (v∗, d∗, h∗, p∗) = ( κ+µ
κ+µ+σ ,

σ
κ+µ+σ , 0, 0)

EFE : (v∗, d∗, h∗, p∗) = (γκ+(β2+κ)µ
β2(µ+σ) , γ+µ

β2
, (1− 1

R∗0
) · σ

µ+σ , 0)
Endemic : (v∗, d∗, p∗) = (µ+ κ(γ+µ)h∗

β1(1− ε
ch∗ )+β2h∗

, (γ+µ)h∗

β1(1− ε
ch∗ )+β2h∗

, 1− ε
ch∗ )

cβ2(2γ − µ)h∗3 + c [(γ + µ)(κσ − κ− µ) + σβ2 + µβ1]h∗2 + [β1(cµσ − γε) + εβ2(γ + µ)]h∗ − σµβ1ε = 0

The EFE exists if and only if R∗0 = σ
σ+µ+κ ·

β2

µ+γ > 1, and endemic equilibrium exists if and

only if h∗ > ε
c . For stability, we compute the Jacobian of the system and further we evaluate it at every

equilibrium point as follows. Eigenvalues are
{
−ε,−µ,−κ− µ− σ, β2σ

κ+µ+σ − γ − µ
}

and hence, HFE is

locally asymptotically stable if and only if β2σ
κ+µ+σ − γ − µ < 0 , that is, R∗0 = σ

σ+µ+κ ·
β2

µ+γ < 1. We define

R∗0 as the basic reproductive number for model (3).

The R∗0 is the general reproductive number when considering the possibilities of homeless becom-

ing disaffiliated (at rate γ) and disaffiliated becoming vulnerable (at rate κ). Without incorporating any

intervention strategies, that is when γ = κ = 0, this reproductive number is given by

R0 =
β2σ

µ(σ + µ)
=

σ

σ + µ
· 1

µ
· β2

As we observe R0 is a product of β2/µ (the inflow over the outflow of the homeless compartment)

and σ
σ+µ , which is the proportion of the population that goes through the vulnerable class and into the

disaffiliated class, i.e. losing their job. Before entering homelessness, an individual must go through the
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disaffiliation of unemployment and not die, hence relating to the fact that σ
σ+µ < 1.

3.2 Temporary Housing Intervention (V DHP − FH)

In this section the housing assistance intervention is incorporated. The corresponding model diagram is as

follows:

V

FH

D H

p

Figure 3: Temporary Housing intervention model diagram.

Then, the system of equations will be as follows:

v̇ = µ− (σ + µ)v (4a)

ḋ = σv + kHqfH − µd− β1pd− β2hd (4b)

ḣ = β1pd+ β2hd− γHh+ (1− q)kHfH − µh (4c)

˙fH = γHh− kHqfH − (1− q)kHfH − µfH (4d)
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ṗ = chp(1− p)− εp (4e)

Similar to Model (3), model (4) presents 3 equilibria listed below:



HFE : (v∗, d∗, h∗, f∗H , p
∗) = ( µ

µ+σ ,
σ

µ+σ , 0, 0, 0)

EFE : (v∗, d∗, h∗, f∗H , p
∗) = ( µ

µ+σ ,
σ

σ+µ ·
1
RH , (1−

1
RH ) · kH+µ

γH+kH+µ ·
σ

σ+µ , (1−
1
RH ) · γH

γH+kH+µ ·
σ

σ+µ , 0)
Endemic : (v∗, d∗, f∗H , p

∗) = ( µ
µ+σ ,

σ
µ+σ −

h∗(γH+kH+µ)
kH+µ , h

∗γH
kH+µ , 1−

ε
ch∗ )

−m2h
∗3 + (β2cm2 + β2m1 + (1− q)kHm3)h∗2 + β2(m1c− εm2)h∗ − β2cm1 = 0

m1 = σ
µ+σ ; m2 = µ+γH+kH

µ+kH
; m3 = γH

kH
; m4 = γH + µ

where HFE (homeless free equilibrium) is defined as the case where the homeless is not present in the

population, EFE (environment free equilibrium) is in the absence of environmental influence. The EFE

exists if and only if RH > 1, and endemic equilibrium exists if and only if h∗ > ε
c .

For stability, we compute the Jacobian of Model (4), which has eigenvalues

{
−ε,−µ,−kH − µ,−µ− σ,

β2σ − γHµ− γHσ − µ2 − µσ
µ+ σ

}
.

Hence, HFE is locally asymptotically stable if and only if β2σ
µ+σ−γH−µ < 0, that is, if and only if β2

γH+µ ·
σ

µ+σ <

1. The control reproductive number for Model (4) is calculated using next generation matrix approach:

RH =
β2(kH + µ)

(µ(γH + kH + µ) + γHkHq)
· σ

σ + µ

We simplify this reproductive number in terms of R0 for better understanding:

RH = R0 · cH ,

where

cH =
kH + µ

kH + µ+ γH + γHkHq
µ

.

cH represents the proportion of individuals who enter the housing assistance program and successfully obtain

permanent housing (kH , γH , and q). As the γH + γHkHq/µ term increases, i.e. the rate of a successful cycle

through the entire housing programs increases, or the proportion of success of the housing programs increases,

RH will decrease. This will minimize the spread of homelessness in an epidemiological sense.
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3.3 Vocational Training Intervention (V DHP − FD)

In this section the vocational training intervention is incorporated. The corresponding model diagram is as

follows:

V

FD

D H

p

Figure 4: Vocational training intervention model diagram.

Then, the system of equations will be as follows:

v̇ = µ− (σ + µ)v + skDfD

ḋ = σv − γDd+ (1− s)kDfD − µd− β1pd− β2hd

ḣ = β1pd+ β2hd− µh

˙fD = γDd− kDsfD − (1− s)kDfD − µfD

ṗ = chp(1− p)− εp

(5)
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Doing some algebra we found the following equilibria for the Model (5):



HFE : (v∗, d∗, h∗, f∗D, p
∗) = ( µ(γD+µ)+kD(µ+γDs)

(γD+µ)(µ+σ)+kD(µ+γDs+σ) ,
σ(kD+µ)

(γD+µ)(µ+σ)+kD(µ+γDs+σ) , 0,
γDσ

(γD+µ)(µ+σ)+kD(µ+γDs+σ) , 0)

EFE : (v∗, d∗, h∗, f∗D, p
∗) = (β2µ(kD+µ)+µsγDkD

β2(µ+σ)(kD+µ) , µβ2
, (1− 1

RD ) · σ
σ+µ ,

γDµ
(µ+kD)β2

, 0)

Endemic : (v∗, d∗, f∗D, p
∗) = ( γDkDs

(kD+µ)(µ+σ)
µh∗

β2
− β1

β2h∗
(1− ε

ch∗ ) + µ
µ+σ ,

µh∗

β2
− β1

β2h∗
(1− ε

ch∗ ), γD(β1+µ)
β2h∗(kD+µ)

(
ε
ch∗ − 1

)
,

1− ε
ch∗ )

c4h
∗5 + (σc1 − (β1 + γD + µc5)c4)h∗4 + (c3 − (c2 + β1εc4

c + β2c2)h∗3 + ( εc2c (1− β2)

−c2(β1 + γD + µc5)− c4c5)h∗2 − εc2
c (2β1 + γD + c5(µ− c6

c2
))h∗ − ε2c2

c2 = 0

c1 = γDkDsµ
(kD+′mu)(µ+σ)β2

; c2 = β1

β2
; c3 = µ

µ+σ ; c4 = µ
β2

; c5 = (1− s)kD; c6 = γD(β1+µ)
β2(kD+µ) ;

Because all parameters are positive, the HFE always exists, with the existence of EFE dependent

on RD = β2σ(kD+µ)
µ((γD+µ)(σ+µ)+kD(µ+γDs+σ)) . In fact EFE exists if and only if RD > 1. We call RD as the control

reproductive number for Model (5). In order to determine the stability of the system we compute the general

Jacobian matrix. The computed eigenvalues of this matrix are negative, if and only if

β2σ(kD + µ) < µ((γD + µ)(σ + µ) + kD(µ+ γDs+ σ))

or equivalently, RD = β2σ(kD+µ)
µ((γD+µ)(σ+µ)+kD(µ+γDs+σ)) < 1. We can rewrite RD as

RD = R0 · cD

where

cD :=
kD + µ

kD + µ+ γD + kDγDs
σ+µ

.

cD term can be interpreted as: the proportion of individuals who enter intervention programs and successfully

exit them. The γD and kDγDs
σ+µ terms represent a successful cycle through the vocational training program.
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3.4 Full Model (V DHP − FHFD)

Now we analyse our original model, Model (1), represented in Figure 1. Similar to previous reduced models,

the full model (1) has three equilibria calculated as follows:



HFE : (v∗, d∗, h∗, f∗H , f
∗
D, p

∗) = ( µ(γD+µ)+kd(µ+γDs)
(γD+µ)(µ+σ)+kd(µ+γDs+σ) ,

σ(kD+µ)
(γD+µ)(µ+σ)+kd(µ+γDs+σ) , 0, 0,

γDσ
(γD+µ)(µ+σ)+kd(µ+γDs+σ) , 0)

EFE : (v∗, d∗, h∗, f∗H , f
∗
D, p

∗) = ( µ
σ+µ + kDs

σ+µ ·
γD

kD+µd
∗, c1β2

, c2c3 d
∗ − σµ

c3(σ+µ) ,
γH

kH+µ ( c2c3 d
∗ − σµ

c3(σ+µ) ), γD
kD+µd

∗, 0)

c1 = γH + µ− γHkH(1−q)
kH+µ ; c2 = γD + µ− σ · kDsσ+µ ·

γD
kD+µ −

γDkD(1−s)
kD+µ ; c3 = γHkHq

kH+µ .

EE : (v∗, d∗, f∗H , f
∗
D, p

∗) =
(
µ(kd+µ)+γDkDs

(kD+µ)(σ+µ) ·
c1h
∗

F (h∗) ,
c1h
∗

F (h∗) ,
γH

kH+µh
∗, γD
kD+µ ·

c1h
∗

F (h∗) , 1−
ε
ch∗

)
, where

c1 := (γH+µ)(γD+µ)−γHkH(1−q)
kH+µ , F (h∗) := β1(1− ε

ch∗ ) + β2h
∗, and h∗ is a root

of the polynomial a1h
2 + a2h+ a3, where

a1 = β2γHkHq
kH+µ − β2c1

a2 = β1γHkHq
kH+µ − c1(µ(µ(β1+γD+µ)+σ(β1+γD))+β1kDσ+kDµ(β1+µ+γDs))

(kD+µ)(µ+σ)

a3 = β1ε(c1(kH+µ)−γHkHq)
c(kH+µ) .

EFE exists if and only if the following conditions hold:

1. (γD+µ)(kD+µ)
σ

σ+µkDγDs+kDγD(1−s) > 1

2. (γH+µ)(kH+µ)
γHkH(1−q) > 1

3. c1c2(σ+µ)
σµβ2

> 1.

Due to complexity of the system, stability of the equilibria has to be incorporated numerically (see

Appendix A.1). Using next generation approach we calculated the control reproductive number of the Model

(1) as

RHD =
β2σ(kH + µ)(kD + µ)

(µ(γH + kH + µ) + γHkHq)((γD + µ)(σ + µ) + kD(µ+ γDs+ σ))
,

which can be written as

RHD = R0 · cH · cD,

that is, we were able to simplify RHD in terms of our other two intervention strategies independently. Thus,

the two intervention strategies, when incorporated together, both work to decrease the basic reproductive

number R0 with their respective mechanisms as described in the previous subsections.
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We conclude Section 3 by summarizing stability analysis of all different models in Table (3). Gen-

erally, our analysis shows that in order for a homeless outbreak to die out, the corresponding reproductive

numbers need to be less than one, otherwise, endemic equilibria will exist and homelessness will stay in the

population.

4 Numerical Results

4.1 Parameter Estimation

In order to analyze the performance of the numerical simulations, we provide some values for each parameter.

Some of them could be taken directly from the literature (census, reports, scientific journals) while others

were estimated according to the best fit to the data found. In the case of Λ, the value could be estimated

taking the amount of people that enter into the vulnerable stage in one year. For instance, this would be

the number of people per year whose income goes under the poverty line or that live near a natural disaster

area, as defined above for our vulnerable population. For the estimation of the µ parameter, we took the

time an individual spends in each compartment before going out of the system. This would be the inverse of
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the average life expectancy of an standard individual in the U.S. In order to estimate σ we took the amount

of people going unemployed in a year, given that previously they were in a low wage job, σV . Then, in order

to obtain just the value of σ, we divided that value by the amount of people in the vulnerable stage in that

year.

The data used for this estimations come from the U.S. census from the years 2018 and 2017. We

took the poverty rate, homeless population, unemployed population and total population per state of U.S

in 2018 and then took the difference with respect to 2017, in order to obtain the change with respect to one

year, that is our unit of time. In order to estimate parameters as β1 and β2 we need to do some assumptions,

since some of the data needed can not be currently found in the census. First we are assuming that the

high poverty areas grow at the same rate as people fall under the poverty line. Second, we consider that the

influence produced by β1 (environmental) and β2 (social interactions) are independent, so the presence of

one of them do not have an effect on the other. We take the following simplified formula for the estimation

of the parameters:

∆H

∆t
≈ β1pD + β2

H

N
D (6)

First, to estimate β1 we just take the first term of the equation 6 that is: ∆H
∆t ≈ β1pD, since we

are assuming that each influence is independent on each other. Then have to proceed as it follows:

• Estimate p, that is the change of the poverty rate per year.

• Estimate D, that is the number of unemployed individuals per state.

• Estimate ∆H
∆t that is the change of homeless individuals per state per year.

We multiply our estimates for p and D and make a linear regression with respect to ∆H
∆t . Then,

β1 will be the slope of that linear regression 5(a). For β2 we follow a similar approach, considering just the

second term of the equation 6 that is ∆H
∆t ≈ β2

H
ND. Then we proceed as it follows:

• Compute the proportion of homeless population over the total population per state (HN ).

• Estimate D, that is the number of unemployed individuals per state.

We multiply our estimates for HN times D and make a linear regression with respect to ∆H
∆t . Then,β2

will be the slope of that linear regression 5(b).
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(a)

(b) (c)

Figure 5: A set of three subfigures: (a) β1 estimation using linear fitting; (b) β2 estimation using linear
fitting; (c) ε estimation using linear fitting;

In the case of ε and c, the parameters related to our high poverty communities, we found data on

the poverty proportions of L.A. county from 2012 to 2017 [6] We fit a linear regression and find the reduction

rate of poverty, ε, and intrinsic growth rate c. Because the poverty information from the census is total net

change of poverty, we calculate the slope values over 2016 and 2017, along with the current poverty levels

at those years to arrive at a system of equations in terms of r := cH and ε, in terms of our dp
/ dt equation.

Once we have these values for ε and r, we divide r by the total number of homeless to arrive at c.

For the estimation of γH and γD, we took the inverse of the average time that an individual remains

in the homeless and disaffiliated state before going into the temporary housing assistance or vocational train-

ing programs, respectively. Similarly, for kD and kH , we took the inverse of the average time an individual

remains in the temporary housing and vocational training programs, before moving to the disaffiliated and

vulnerable stage, respectively. The estimation of q and s was obtained in the same literature as kD and kH ,

since each program has statistics about the percentage of individuals that finish the program with their own

permanent house or job. Analogously, (1− q) and (1− s) represent the proportion of individual that failed
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and went back into the homeless and disaffiliated states. A summary of these values can be seen in Table 3.

Parameter Estimate Reference

µ 1/78.6 ≈ 0.013 year−1 [23]
Λ 37000 people · year−1 [6]
σ 7000/28000 ≈ 0.25. year−1 [6]
β1 0.367 year−1 estimated
β2 0.051 year−1 estimated
ε 0.012 year−1 estimated
γD 1/0.5 = 2 year−1 [13]
γH 12/7 ≈ 1.71 year−1 [10]
kD 1/0.25 = 4 year−1 [24]
kH 1/2 = 0.5 year−1 [20]
q 0.65 [21]
s 0.56 [24]

Table 3: Parameter estimations.

4.2 Numerical Simulations

Here we present our result of simulations performed via both deterministic and stochastic continuous time

Markov chain (CTMC) approaches. We mention that state p is continuous, therefore, in order to keep

this state variables discrete, we discretize the variable p(t) into Np patches instead of thinking about p(t)

as a fraction of L.A. County. Therefore, we define the random vector of six discrete states, based on the

deterministic model:

X(t) = [V (t), D(t), H(t), FH(t), FD(t), p(t)]

The transition probability function for all the events in Model (1) is explained in Appendix A.4. For this

numerical simulation, note that we simplified our intrinsic growth rate Ω(H) to H(t)
N(t) instead of cH(t) as in

the deterministic equation. For the simulations, we arbitrarily take a population of N = 500 individuals and

discretize the city into Np = 500 patches for Levins model considerations as well. All of the simulations start

at a balanced equilibrium obtained with the model baseline parameters in Table 3, unless stated otherwise.

For the stochastic simulations we will perform an ensemble of runs by seeding the same initial condition.

4.2.1 Influence of Intervention Strategies on Homeless Population

To answer our research question, we first consider the general effect that the proposed intervention strategies

have on the homeless population of L.A. County through numerical simulation of the time series and plotting

the deterministic solution numerically for different models defined in Section 3. We select initial condition
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as (V (0), D(0), H(0), FH(0), FD(0), p(0) = (400, 50, 50, 0, 0, 50).

(a) (b)

(c) (d)

Figure 6: Time-series of fraction of homeless individuals: The light areas are the result for 200 different
stochastic simulations the dark curve is the mean value of those simulations.

In Figures 6 and 7, we present the time series of the fraction of homeless population with different

combinations of our intervention strategies along with distributions of endemic homeless prevalence for the

200 simulations. With no interventions, the prevalence of homelessness tends to anywhere from 28% to 36%

of the entire vulnerable population after 10 years, according to our distributions, within 2 standard devia-

tions of the mean. These results makes mathematical sense because in our special case with no interventions,

individuals cannot leave the homeless class. Including only the vocational training intervention, we have a

marked decrease in the prevalence of homelessness after 10 years: some 12% to 17% of the vulnerable popula-

tion is homeless. However, this is still an undesirable increase of the homeless population. With the inclusion

of the temporary housing intervention program, we have a decrease in the prevalence of homelessness. After

10 years and beyond, 0 to 6% of the population is homeless. In fact, after some two years with temporary
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(a) (b)

(c) (d)

Figure 7: Distributions of endemic homeless prevalence
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housing assistance programs, the homeless population reaches a minimum of approximately 2%. Further-

more, when both intervention strategies are included, the homeless population reaches a low prevalence of 0

to 1% after 10 years. Clearly, this would be the case with both intervention strategies in place. Surprisingly,

there is a quick initial decrease in homeless prevalence when the temporary housing program is in use. The

major conclusion from this stochastic work is that to treat the problem of homelessness in the short term,

housing assistance programs are the most effective. On the other hand, to reduce homeless prevalence in

the long term, disaffiliated individuals need to be provided with a steady income, a sustainable approach to

ending homelessness. We examine this further in the subsequent section with sensitivity analysis.

4.2.2 Sensitivity Analysis

Sensitivity analysis can be defined as how the uncertainty in the output of a mathematical model or system

can be divided and allocated to different sources of uncertainty in its parameters, [25]. In order to determine

the role that each parameter plays in the dynamics of the system, it is necessary to do sensitivity analysis

considering the parameters involved in it. In this subsection we conduct a sensitivity of reproductive numbers

and quasi-stationary state for homeless people with respect to all involved parameters.

Table (5) gives the relative sensitivity indices for the change in the reproductive numbers with

respect to the model parameters at the baseline parameter values. If the parameter p changes by x%, then

R will change by xSRp %, where R here stands for a general reproductive number. For no intervention

Model (3), or when the resources are invested in vocational training programs only–Model (5)–the most

sensitive positive parameter is the per capita rate of transition from disaffiliated to homeless via homelessness

influence (β2), followed by rate of transition from vulnerable to disaffiliated (σ). These results indicate that

in the absence of any intervention strategies, the most effective way to control homeless spread is through

decreasing β2, which corresponds to an increase in the time a person stays unemployed under the influence

of homeless environment. The next most effective one under the same conditions would be decreasing σ,

which is increasing the amount of time people remain in the vulnerable stage before becoming disaffiliated

via unemployment. Another effective strategy for Model (5) is increasing γD , that is, increasing recruitment

into a vocational training program. However, when the resources are invested in temporary housing programs

only– Model (4)–the parameter σ plays a more significant role than β2. Also, decreasing the time that an

individual remains homeless before going to a housing assistance program has a non-negligible impact, γH .

Finally, for the full model of combining both programs, the most sensitive positive parameter is β2, followed

by kH . The most sensitive negative parameter is γH , followed by kD and γD. This shows us that in a system
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where both strategies are combined, the most effective parameter is β2, which is increasing the time a person

remains disaffiliated when it is being influenced by homelessness. Otherwise, we decrease kH , or in other

words, increase the time a person remains in the housing program before going to disaffiliated state.

In addition, we conduct sensitivity of quasi-stationary state of homeless population for four different

presented models, Figure (8). For the no intervention system when there is no environmental influence

(p = 0) (Model (3)), we have that the most sensitive positive parameter is the per capita rate of transition

from disaffiliated to vulnerable (κ). The most sensitive negative parameter is the rate of transition from

disaffiliated to homeless (β2), followed by the rate of transition from vulnerable to disaffiliated (σ). This result

tells us that, in a system where no interventions strategies are implemented the most effective parameter to

reduce endemic homelessness is increasing the time that a person remain in disaffiliated stage before going

to the vulnerable state.

For the case where there is no intervention but the environmental influence is present (p 6= 0)

(Figure 8(b)), we have that the most sensitive positive parameter is the per capita rate of transition from

disaffiliated to vulnerable (κ). The most sensitive negative parameter is the per capita death rate (µ). In

this case since the homeless endemic equilibrium expression is dependent of the disaffiliated population we

set up D = 100. This result tells us that the most effective strategy is increasing κ, that is decreasing the

time a person remains disaffiliated before going to the vulnerable state.

For the case where we only have the temporary housing assistance intervention and no environmental
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influence (p = 0) (Figure 8(c)), the most sensitive positive parameter is the per capita rate of transition

from a housing program to the disaffiliated stage (kH), followed by the rate of transition from homelessness

to housing program(γH). The most sensitive negative parameter is the per capita rate of transition from

disaffiliated to homeless state. This result tells us that the most effective strategy is decreasing kH that is

increasing the time a person remain in the housing assistance program before going to disaffiliated state.

For the case where we only have the vocational training intervention and no environmental influence

(p = 0) (Figure 8(d)), the most sensitive positive parameter is the per capita death rate (µ), followed by

the rate of transition from disaffiliated to vocational training program (γD). The most sensitive negative

parameter is the per capita rate of transition from disaffiliated to homeless (β2), followed by the rate of

transition from vulnerable to disaffiliated (σ). This result tells us that the most effective strategy is decreasing

(γD) that is decreasing the time a person remain in the disaffiliated state before going to a vocational training

program.

Overall, σ and β2 are most effective at preventing new homelessness incidence, while kH and γD

are most effective for reducing endemic homelessness.
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(a) (b)

(c) (d)

Figure 8: Sensitivity analysis of the Homeless Endemic Equilibrium points: (a) No interventions homeless
equilibrium with P = 0 (V DHP ); (b) no interventions homeless equilibrium with P 6= 0 (V DHP ) and
D = 100; (d) homeless equilibrium with vocational training intervention (V DHP − FD) and, (c) homeless
equilibrium with temporary housing intervention interventions (V DHP − FH).

Besides one-dimensional sensitivity analysis, we examine the effects of different combinations of

parameters on homelessness at the quasi-stationary state, Figure(9). To begin with, we have our primary

parameters in the transition from disaffiliation to homelessness, the influence of an impoverished environment

(β1) and the influence of social interactions between disaffiliated and homeless individuals (β2). The left

panel of Figure (9) suggests that the influence of an impoverished environment (β1) is almost negligible in

comparison with the influence of social interactions of disaffiliated with homeless individuals (β2). However,

in the right panel, we observe an optimal point for kH while changing kD. That is increasing the time of hous-

ing assistance monotonically does not necessarily reduces the number of homeless people. We are guessing

this trend is because of competition between the two programs, housing assistance and vocational training;

more vocational training may attract more individuals from FH and then D compartment. Therefore, more

people lose the risk of being homeless.
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Figure 9: (Left) Homelessness v.s β1 v.s β2: the influence of an impoverished environment (β2) is
almost negligible in comparison with the influence of social interactions β2 (Right) Homelessness v.s kH
for different kD values: Increasing the time of housing assistance does not reduce the number of homeless

4.2.3 Influence of Intervention Success Rates on Homeless Population and Cost Analysis

In Figure 10, as stated earlier, s and q stand for the proportion of individuals successfully moving from FD to

V (the vocational training class to vulnerable) and FH to D (temporary housing to disaffiliated) respectively.

For each of the line graphs, the assumption is that one variable is controlled for, or held constant, while the

variable labelled in the x-axis is graphed. Thus, in the case of q = 0, the fraction of homelessness after 10

years is .035 and decreases steadily to .05 when q = 1, all while s is held constant. Further, the optimal

number of individuals to decrease homelessness is determined by the maximum slope of the graph. Thus, for

the graph of q, it appears as though the optimal number of individuals to reduce homelessness is between

5-10 percent of those in temporary housing. Similarly, for the graph of s, the optimal ratio of individuals

may be at 10 percent of those in the vocational training class. Further, since both graphs appear to plateau

at around .4 to .5, we can conclude that the cutoff for the effectiveness of each type of intervention is around

40 percent of the designated population. In addition, as the proportion of individuals increases for both

values, it appears as though both types of interventions exhibit diminishing marginal reductions, with each

graph showing horizontal asymptotes.

In terms of cost analysis, Los Angeles Homeless Services Authority estimates that the total cost

to house the individuals and youth homeless population in L.A. County per day is approximately $194,100,

which translates to $21 per person per day [8]. On the other hand, [26] estimates the complete cost structure

of providing job assistance taking into consideration fixed and variable costs to maintain a vocational training

program. The estimate of this study is $1.37 dollars per student for three large cities in the US in 1968

which, corresponds to $11.80 per student per day once they have been adjusted to inflation, using information

from the Federal Reserve Bank. Other estimates about the cost to provide job assistance and training is
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Figure 10: Fraction of homeless individuals vs. the successful proportion of individuals after a housing
assistance (s) or a vocational training program (q).

approximated from the statistics of the SEs of the REDF program, started in 2011 in San Francisco which

are similar to the mentioned cost.

5 Discussion

Homelessness still poses a heavy social burden for cities like L.A. County, where more than fifty thousand

individuals were identified as homeless during 2018 [8]. We developed a compartmental model, in order to

study the effectiveness of temporary housing assistance and vocational training programs in controlling the

dynamics of homelessness in L.A. County, assuming an impoverished environment. We consider both a de-

terministic as well as a stochastic approach to analyze the sequence of events including different combinations

of the two discussed intervention strategies.

We constructed a stochastic model to capture the variation of results, considering both demographic

and environmental stochasticity. The results suggest that there should be a focus of efforts on temporary

housing programs in L.A. County in the short term (one to two years) but that vocational training is necessary

for sustainable reduction of homeless prevalence in the long term (10+ years). Although vocational training

programs do lead to additional reduction in the prevalence of homelessness, they pale in comparison to the

benefits that temporary housing brings. Housing assistance programs, as mentioned by Wodon [27], are seen

as a short term investment versus long term investments such as vocational training programs for the control
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of homeless prevalence. Providing housing will remove individuals from the streets, but only after providing

disaffiliated individuals with a source of income will the problem be best treated in the long term.

With respect to the likelihood of an outbreak of homelessness, the parameters β2 and kH have a

positive relationship, whereas γH , kγD, and kD all have a negative relationship. Because β2 corresponds to

the social interactions drawing disaffiliated individuals into homelessness, there is neither a clear nor simple

method of lowering this parameter value. For kH , though, it is necessary to increase the time individuals

remain in temporary housing programs. Sociologically, this represents protecting the most vulnerable in-

dividuals from both disaffiliation and homelessness. On the other hand, with our parameters of negative

relationships, it is necessary to decrease the average time individuals remain homeless or disaffiliated, not a

shocking revelation. But with kD, it is also advisable to reduce the time individuals remain in vocational

training programs as well; unlike those in housing assistance programs, individuals in vocational training

programs will be better prepared and more likely to re-enter the vulnerable population.

In Section 4.2.3, we considered the success rate of our intervention strategies on the prevalence of

homelessness after 10 years. For each variable q and s, the optimal proportion for reducing homelessness was

found, which corresponded to the largest slope of the graph and indicated the points where the interventions

would bring about the most change in endemic homeless prevalence. Additionally, due to diminishing

marginal returns of each programs, after certain thresholds of successful individuals the programs cease to

decrease endemic homeless prevalence. In fact, this lower limit of 2 percent signifies that both intervention

strategies are ineffective in reducing homelessness beyond this small number. In addition, based on the data

from the REDF studies and the Los Angeles Homeless Authority, the cost per person was also calculated for

each intervention strategy. In the future, using this data, a cost analysis could be conducted to determine

the costs of the optimal proportions for q and s found in the results sections. Adding the cost factor would

be useful in broadening the sociological interpretation of our research. Finally, a comparison could be drawn

between the daily or yearly costs of each intervention program to also aid in social significance.

To synthesize our analytical and numerical results succinctly, we have that the likelihood of a

homeless outbreak will occurring in a city with a minor homeless population depends primarily on social

interactions and interventions such as housing assistance and vocational training programs. Moreover, con-

trary to our hypothesis about the Levins model considerations, the impact of impoverished environments on

the prevalence of homelessness are relatively negligible. Under current intervention rates or higher, Social

interactions are the leading factor that can influence the likelihood of an outbreak. However, with extremely

low or no interventions, environmental influence does seem to play a larger role than social interactions.
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With our time series and work with sensitivity analysis, we have that housing assistance programs are the

most effective at lowering the likelihood of an outbreak in cities with low homeless population. However,

if the goal is to lower endemic levels of homelessness, a focus on vocational training programs is the most

appropriate aproach.

5.1 Conclusions

Homelessness is a major socioeconomic issue in the United States, especially in L.A. County, where the

homeless population is about 53,000 individuals [8], which is almost 10 percent of the total homeless popula-

tion [14]. Studies have suggested several factors associated with lifetime homelessness including poor family

functioning, regional socioeconomic disparity, isolation from and association with social network communi-

ties, mental health issues, and addiction problems. However, what has made the homeless issue difficult is

the inability to clearly target a vulnerable population and then implement a set of strategies or interventions

to keep them from being homeless. The purpose of this study was to properly determine the efficiency of

two types of interventions, temporary housing and vocational training, on the overall homeless rate in L.A.

County. To this end, a compartmental model was used to separate the poor population into three stages:

vulnerable, disaffiliated, and homeless, all based on the Levins biological model developed in 1969. Over-

all, our results indicate that temporary housing is a more effective way to reduce the homeless rate than

vocational training.

One of the largest challenges we faced during our study was with respect to our mathematical

analysis of the most general model. We were able to find limited endemic equilibria for each of the smaller

cases and struggled with finding closed form expressions for stability of such equilibria. To add, when we

attempted time scale analysis to reduce the dimension of our model, our resultant system equations was

increasingly complex. The existence of a homeless-free equilibrium was dependent on parameter relations

and also only existed when p∗ = 0. Attempting to find endemic equilibria or stability information was almost

as lengthy as the general model. Another limitation during the entirety of our study was our decision on a

research question and a general specificity of our research scope.

In order to compute more detailed behavior related to the endemic homelessness equilibrium and

stability it is necessary to look more deeply into the different time scales that our model presents in order

to do a better analysis from that point of view. Another possible research approach would be analyzing the

dynamics of the system under a limited budget scenario, in order to have a more realistic representation
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of the system. In that scenario we would look for the optimal investment forwarded to each strategy that

makes for the most effective combination. For further research we would be like to investigate how the

dynamics or parameters might change when we limit our population to just one race, focusing on African

Americans. Concentrating on just African Americans may affect both our dynamics and parameters because

the targeted population would then be more homogeneous. Additionally, the reason for this approach is that

African Americans are an over-represented proportion in the homeless population. Finally, in order to keep

track of how effective the interventions are over time at large time scales, we would make the transitions

between stages dependent on time, perhaps based on seasonal fluctuations of homelessness, to better identify

the most optimal time to strengthen each of them.

Acknowledgements

We would like to thank Dr. Carlos Castillo-Chávez, Founding and Co-Director of the Mathematical and

Theoretical Biology Institute (MTBI), for giving us the opportunity to participate in this research program.

We would also like to thank Co-Director Dr. Anuj Mubayi as well as Coordinator Ms. Rebecca Perlin and

Management Intern Ms. Sabrina Avila for their efforts in planning and executing the day to day activities of

MTBI. We also want to give special thanks to our mentors Dr. Viswanathan Arunachalam, Dr. Christopher

Kribs, Dr. Carlos M. Hernández-Suárez, Dr. José Flores, Dr. Asma Azizi, and Cesar Montalvo. This

research was conducted as part of 2019 MTBI at the Simon A. Levin Mathematical, Computational and

Modeling Sciences Center (MCMSC) at Arizona State University (ASU). This project has been partially

supported by grants from the National Science Foundation (NSF – Grant MPS-DMS-1263374 and NSF –

Grant DMS-1757968), the National Security Agency (NSA – Grant H98230-J8-1-0005), the Office of the

President of ASU, and the Office of the Provost of ASU.

A Appendices

A.1 Jacobian Calculations and Numerical Stabilities

For our cases which need numerical values for our eigenvalues, we give them here after substituting our

equilibria and parameter values into the corresponding Jacobians. For Case 1, our endemic equilibrium

is dependent on the roots of a cubic polynomials, which only yielded one real root and thus one set of
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eigenvalues. We give the Jacobians and then numerical eigenvalues:

JM1 =



−µ− σ κ 0 0

σ −β1p− β2h− κ− µ γ − β2d −β1d

0 β1p+ β2h β2d− γ − µ β1d

0 0 cp(1− p) ch(1− 2p)− ε


Substituting at HFE, the Jacobian matrix is

JM1(HFE) =



−µ− σ κ 0 0

σ −κ− µ γ − β2σ
κ+µ+σ − β1σ

κ+µ+σ

0 0 −γ − µ+ β1σ
κ+µ+σ

β1σ
κ+µ+σ

0 0 0 −ε



EFE = {−271.234,−0.01272,−0.3333, 10.9029} (Unstable)

EE = {−22.4029,−4.7756,−0.2685,−0.0127} (Stable)

In Case 2, we have our eigenvalues for the EFE. However, our endemic equilibrium does not exist,

as it depends on h∗ being the root of a cubic polynomial; our parameter values only gave negative or complex

roots.

JM2 =



−µ− σ 0 0 0 0

σ −β1p− β2h− µ fHqkH − β2d hqkH −β1d

0 β1p+ β2h β2d− γH + fH(1− q)kH − µ h(1− q)kH β1d

0 0 γH −kH − µ 0

0 0 c(1− p)p 0 ch(1− 2p)− ε


Substituting at HFE, we get

JM2(HFE) =



−µ− σ 0 0 0 0

σ −µ − β2σ
µ+σ 0 − β1σ

µ+σ

0 0 γH − µ+ β2σ
µ+σ 0 β1σ

µ+σ

0 0 γH kH − µ 0

0 0 0 0 −ε
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EFE = {−4.9445,−1.1587, 0.1506 + 0.3529i, 0.1506− 0.3529i,−0.2627} (Unstable)

In case 3, we give the general Jacobian, the Jaobian at HFE, and stability information for our EFE

and EE:

JM3 =



−µ− σ 0 0 kDs 0

σ −β1p− β2h− µ− γD −β2d kD (1− s) −β1d

0 β1p+ β2h β2d− µk − γH 0 β1d

0 γD 0 −µ− kD 0

0 0 cp (1− p) 0 ch(1− 2p)− ε


Then, replacing the HFE equilibrium we can find the following Jacobian matrix

JM3(HFE) =



−µ− σ 0 0 kDs 0

σ −µ− γD −β2σ (µ+kD)
c1

kD (1− s) −β1σ (µ+kd)
c1

0 0 β2σ (µ+kD)
c1

− µ− γH 0 β1σ (µ+kD)
c1

0 γD 0 −µ− kD 0

0 0 0 0 −ε


where c1 = µ2 + (σ + γD + kD)µ+ (sγD + σ) kD + σ γD.

EFE = {−3.6869,−2.4846, 0.0136,−0.0130,−0.012} (Unstable)

EE = {−54.1356,−6.1931,−1.2858 + 3.4452i,−1.2858− 3.4452i, 0.0176} (Unstable)

For our general model:
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J =



−σ − µ 0 0 0 kD s 0

σ −β1 p− β2 h− γD − µ −β2 d kH q kD (1− s) −β1 d

0 β1 p+ β2 h β2 d− γH − µ kH (1− q) 0 β1 d

0 0 γH −kH − µ 0 0

0 γD 0 0 −kD − µ 0

0 0 cp (1− p) 0 0 ch (1− 2p)− ε



HFE = {−5.0834,−1.9260,−1.1921,−0.3010,−0.0127,−0.012} (Unstable)

EFE = {−5.0978, 1.4837,−1.1626 + 0.2106i,−1.1626− 0.2106i,−0.0251,−0.0127} (Unstable)

EE = {−5.2835,−5.2342,−1.6190 + 0.5156i,−1.61890− 0.5156i,−0.2459,−0.0127} (Stable)

after substituting our disease-free equilibrium and parameters. So our HFE in the general model is stable

and for our EFE is unstable.

A.2 RHD Calculations

Before beginning our work, we take our equilibrium as t → ∞ so that our population is assumed constant.

Then, we can normalize our system and work with proportions of our original state variables with respect to

the entire population. These variables will be lowercase in contrast of our original uppercase state variables.

We consider our calculation for the R0 of the whole system, which includes v, d, h, fH , fD, and p. The

other three R0 values were calculated similarly and are therefore omitted. We start with the disease-free

equilibrium, or in our case the homeless-free equilibrium, by considering the six equations for the whole

system and setting h, the homeless variable, equal to 0.

Our homeless-free equilibrium is found by setting h∗ = 0. Thus, from here, the sixth equation

reduces to:

0 = 0− εp −→ p∗ = 0
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And by equation 3, we have

0 = (1− q)kHfH −→ f∗H = 0

From equation 1,

0 = µ− σv + kDsfD − µv −→ v∗ =
µ+ kDsfD
σ + µ

From equation 5,

0 = γDd− kDfD − µfD −→ d∗ =
fD(kD + µ)

γD
(1)

by substitution, we get:

v∗ =
µ(γD + µ) + kD(sγD + µ)

(γD + µ)(µ+ σ) + kD(sγD + µ+ σ)

d∗ =
(kD + µ)σ

(γD + µ)(µ+ σ) + kD(sγD + µ+ σ)

f∗D =
(γD)σ

(σD + µ)(µ+ σ) + kD(sγD + µ+ σ
)

Now, the Homeless Free Equilibrium is (v∗, d∗, h∗, f∗H , f
∗
D, p

∗)

X = [h, fH , p]
T

Y = [v, d, fD]T

F =


β1pd+ β2hd

0

chp(1− p)

 , V =


−(1− q)kHfH + γh + µh

−γHh+ kHqfH + (1− q)kHfH + µfH

εp


Taking the Jacobians of these vectors gives:

F =


β2d 0 β1d

0 0 0

cp(1− p) 0 ch(1− 2p)

 V =


γH + µ −(1− q)kH 0

−γH kH + µ 0

0 0 ε


Now, substituting our HFE into F and V :

FHFE =


β2(kD+µσ)

(γD+µ)(µ+σ)+kD(sγ+µ+σ) 0 β1(kD+µσ)
(γD+µ)(µ+σ)+kD(sγD+µ+σ)

0 0 0

0 0 0
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VHFE =


γH + µ (q − 1)kH 0

γH kH + µ 0

0 0 ε


Now we multiply to get FV −1 and find our largest eigenvalue to achieve our R0:

FV −1 =


β2σ(kH+µ)(kD+µ)

J(µ(γH+kH+µ)+γHkHq)
β2kH(kD+µ)σ(1−q)

J(µ(γH+kH+µ)+γHkHq)
β1(kD+µ)σ

Jε

0 0 0

0 0 0



A.3 Time Scale Analysis

In order to supplement our analysis with respect to our inability of solving large systems for equilibria and

stability, we utilize a methodology in Brauer [4] in the study of vector-transmitted diseases. To simplify

large, complex systems, one can consider the various time scales present in the overall system. In our case,

our intervention strategies and disaffiliated class last on anywhere from three months [24] to two years at the

longest [20]. These would be considered fast, short term time scales in the general picture of homelessness.

On the other hand, the influence or growth of poverty may be seen on the time scale of decades [6]; this

would function as our slow, long term time scale. Existing in between these two time scales is our main focus

for mathematical analysis: the transition between vulnerable and homeless classes, this whole cycle lasting

up to approximately ten years [12] and is our medium speed time scale.

With our fast and slow time scale segments of the population and environmental factors, we wish

to collapse them so that they might be substituted within our vulnerable and homeless classes, generating

a smaller two-dimensional system, albeit with more complex equations. For sompler equations, we assume

that our intervention programs are always successful, i.e. q = s = 1. Before beginning analysis, though, we

need to determine the parameters for our ε value to justify our quasi-steady-state, as in Brauer [4].

Between our fast and medium classes, we have that kD � β2 so that

ε :=
β2

kD
� 1

is an appropriate value to make our quasi-steady-state. Calling ~X our long term time scale (consisting of p)
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and ~Y our short term time scale (consisting of D, FH , and FD, we have that

~X ′ = F ( ~X) ≈ 0

ε~Y ′ = G(~Y ).

For our small ε, in the overall view of our system, ~X would be considered a constant and ~Y would be at a

quasi-steady-state. For our normalized system, we solve our three fast time scales equations in terms of v

and h:

p = ρ

d =
σ∗v

β∗1ρ+ β∗2h+ µ∗ + γ∗D
+

k∗Hγ
∗
Hh

(k∗H + µ∗)(β∗1ρ+ β∗2h+ µ∗ + γ∗D)

fH =
γ∗H

k∗H + µ∗
h

fD =
γ∗D

β2 + µ∗

(
σ∗v

β∗1ρ+ β∗2h+ µ∗ + γ∗D
+

k∗Hγ
∗
Hh

(k∗H + µ∗)(β∗1ρ+ β∗2h+ µ∗ + γ∗D)

)

Note that because we multiplied by our small ε value we have hidden ε values in many of our parameters;

for example, µ∗ = εµ > 0, σ∗ = εσ > 0, etc. Plugging these extreme time scale values back into our medium

term time scale equations, we get our new two-dimensional system:

v̇ = µ− (σ + µ)v + kD

(
γ∗D

β2 + µ∗

(
σ∗v

β∗1ρ+ β∗2h+ µ∗ + γ∗D
+

k∗Hγ
∗
Hh

(k∗H + µ∗)(β∗1ρ+ β∗2h+ µ∗ + γ∗D)

))
(2)

ḣ = (β1ρ+ β2h)

(
σ∗v

β∗1ρ+ β∗2h+ µ∗ + γ∗D
+

k∗Hγ
∗
Hh

(k∗H + µ∗)(β∗1ρ+ β∗2h+ µ∗ + γ∗D)

)
− (γH + µ)h (3)

Because this reduced system has quasi-steady-states, it is not appropriate to find a homeless-free

equilibrium. With t near 0, our reduced system is not a good approximation. However, we give a solution

for can give a solution for the endemic solution. We rename the above equations with
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A.4 Stochastic Event Probabilities

Here we give the probabilities of each of our 16 events happening, in terms of the rates from our deterministic

model.

Prob (∆X(t) = (a, b, c, d, e, f)|X(t)) =



Λ∆t+ o(∆t) a = 1

µV (t)∆t+ o(∆t) a = −1

σV (t)∆t+ o(∆t) a = −1, b = 1

kDsFD∆t+ o(∆t) a = 1, e = −1

(β1D(t)p(t) + β2D(t)V (t)/N(t))∆t+ o(∆t) b = −1, c = 1

µD(t)∆t+ o(∆t) b = −1

γDH(t)∆t+ o(∆t) b = −1, e = 1

kD(1− s)FD(t) + o(∆t) b = 1, e = −1

kHqFH∆t+ o(∆t) b = 1.d = −1

µH(t)∆t+ o(∆t) c = −1

γHH(t)∆t+ o(∆t) c = −1, d = 1

kH(1− q)FH(t)∆t+ o(∆t) c = 1, d = −1

µFH(t)∆t+ o(∆t) d = −1

µFD(t)∆t+ o(∆t) e = −1

H(t)
N(t)p(t)(Np − p(t))∆t+ o(∆t) f = 1

εp(t)∆t+ o(∆t) f = −1
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