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Abstract

Human Immunodeficiency Virus (HIV-1) is a major pandemic with approximately 36.7 mil-

lion people infected worldwide. Although the prevalence of HIV-1 in Latin America remains

stable (around 0.5%) [UNAIDS, 2016], the epidemic is globally expanding among Men Seek-

ing Men (MSM), independently of country or gross domestic product [Beyrer, 2010]. One

of the major current public health challenges for HIV includes providing effective HIV an-

tiretroviral therapy to affected populations centered on the relationship between access and

adherence to treatment and prevalence of drug resistance. This research aims to evaluate the
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impact of delay in treatment on the changes in prevalence of infectious and drug resistant

populations. The study focus on spread of HIV in Ecuador where researchers has found that

the estimated HIV prevalence among MSM is between 10-27%. In this work, a new mathe-

matical model that incorporates a non-exponentially distributed infectious period and variable

treatment coverage is developed and analyzed numerically to capture the HIV transmission

dynamics in Ecuador. Our research suggests that (i) the introduction of early treatment (in-

fection stage 1 and 2) prevents HIV to become large outbreak but considerably increases drug

resistant cases, (ii) treatment on late stages (stage 3 and 4) has the opposite effect (increases

infected population and reduce the resistant population), (iii) even under our proposed opti-

mal conditions (i.e. high treatment coverage and efficacy with low level of transmissibility)

any treatment strategy will be ineffective if there is no decrease on risky behavior of the in-

dividuals, (iv) from the global uncertainty and sensitivity analysis, it was observed that the

rate of transmissibility and treatment effectiveness have significant influence on the model’s

prediction.
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1 Introduction

The third decade of the Human Immunodeficiency Virus (HIV) epidemic have been marked by

significant successes and failures in biomedical and behavioral research. By the end of 2015

approximately 36.7 million people were living with HIV (PLHIV) worldwide. Of these, 19 mil-

lion were unaware that they were HIV-positive, while approximately 17 million were receiving

antiretroviral therapy (ART) [UNAIDS, 2016]. Although the prevalence of human immunodefi-

ciency virus (HIV) in Latin America remains stable (between the 0.5% range) [UNAIDS, 2016],

the epidemic is globally expanding among Men Seeking Men (MSM) independent of country or

gross domestic product [4]. Despite numerous control and prevention efforts targeted to MSM

population, there is evidence of recurrent epidemics among this group, with alarming numbers of

increments. Many authors displayed the rising prevalence levels ranging from 5 to 20% among

the MSM infected population [18, 31–33, 35]. Beyrer [4] and Baral et al., [3] identified high rates

of HIV infection among MSM in all areas where data were available (sub-Saharan Africa, Latin

America and the Caribbean, southern and Southeast Asia, China, and the Russian Federation).

In 2014, in Ecuador, there were approximately 35,000 people living with HIV (PLWH), repre-

senting a prevalence of about 0.3% of adults with ages ranging from 15 to 49. In the same year,

3,546 new HIV-positive cases were clinically detected, with the majority of the cases (74.8%)

among people with ages from 20 to 64 [Health Ministry, 2014] (see Figure 1). Although it is

well documented that the rates of HIV/AIDS among MSM tend to be higher than in the general

population, especially in developing countries [3, 34], little is known about the prevalence rate
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among MSM in Ecuador [22, 23]. Hernandez et al., [24] showed that the HIV estimated preva-

lence among MSM living in Northwestern of Ecuador was 10.5% in 2016, which is in agreement

with at reported by Jacobson [29] in 2014 (11% in Quito), and Montano et al., [34] in 2005 (14.5%

in Quito, and 27.8% in Guayaquil). According to the data reported by the Ministry of Health of

Ecuador the group of MSM represents 17% among all high-risk population tested for HIV in the

country (Health Ministry, 2014).

Figure 1: Newly and cumulative cases of HIV-positive cases in Ecuador from 2009 to 2014

(source: Health Ministry, 2014).

Mathematical modeling combined with experimental measurements have yielded important in-

sights into HIV-1 pathogenesis and enhanced progress in the understanding of HIV-1 infection.

Models used to study HIV-1 infection have involved viral load and infectiousness, latency and

reservoir, antiretroviral (ART) response, evolution of drug resistance, among others [1,2,8,13,14,
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19,25,27,30,36,40–46,54–58]. In order to gain more insights into the effects of behavior change

or treatment on transmission dynamics, Hyman and Li 2007 [25] developed an infection-stage

ODE model. They showed that the reproductive number is maximally reduced if the infectives

individuals change their sexual behavior or seek treatment immediately after infection, regardless

of which infection group has the highest infectivity. Pawelek et al., [38] in 2012 incorporated two

times delays in their model to study HIV-1 dynamics. They predicted that the infection-free steady

state is stable when <0 < 1, which indicates that the infection can be cleared if antiretroviral ther-

apy is sufficiently efficient in reducing the basic reproductive ratio below one. However, current

treatment regimens cannot eradicate the virus. Likewise, they showed that including a time delay

in a model comparison with experimental data can affect the estimate of model parameters. It

highlights the need of more data sets for model verification and selection when times delays are

incorporated into mathematical models to study virus dynamics.

Furthermore, several models have been applied to estimate HIV spreading on human population,

specially in men who have sex with men, who would be considered involved to spread of the dis-

ease within the high-risk population [3–5,9,18,20,21,26,37,39,47,53]. The challenge of this kind

of modeling is the lack of data about MSM population due to social stigma and discrimination.

This limitations make it very hard to make accurate predictions about HIV incidence within this

population. Nevertheless, mathematical models allow us to explore the outcome under different

scenarios and determine the possible consequences of having or not having any control measures.

For example, how the application of appropriate treatment and precise preventive measures would

help to reduce the incidence of HIV in men who have sex with men. This research aims to evalu-
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ate the impact of delaying treatment on the changes in prevalence of infectious and drug resistant

population. We focus on HIV transmission dynamics in Ecuador where researchers have esti-

mated HIV prevalence among MSM between 10-27%. We developed and numerically analyzed a

mathematical model that incorporates HIV transmission patterns in Ecuador with non-exponential

infectious period distribution and variable treatment coverage. We intent to identify the principal

factors that affect the spreading of the virus among MSM. Then, we targeted different treatment

strategies to determine which one is more effective on maintaining infectious and resistant popu-

lations at the minimum.

2 Methods

2.1 Mathematical Model

We adapted a model from [17] to fit HIV dynamics among the different stages of the virus and

different lines of treatment. Here we assume a gamma (specifically Erlang) distributed infectious

period for the stages one through four of the disease. The model depict schematically in Figure2

describes the basic transmission dynamics of an infectious disease and includes the effects of treat-

ment, as well as the rate at which resistance is developed to treatment. The individuals are divided

into susceptible (S), infected (I), treated (T ), resistant (R), finally develop AIDS (A) and die.

Susceptible individuals become infected with HIV virus through a successful contact with indi-

viduals in the I , T and R compartments (with transmission parameters β). Individuals infected

with the sensitive strain can move into the treated class at some per capita rate, χ, where χ is the
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rate of movement to the treatment strategy of interest. Treated individuals can develop resistance

(therapeutic failure) at a constant per capita rate ρ.

If mutations are developing in the virus genome to the first strategy, infected individuals can move

into the second treated class at some constant per capita rate σ. These treated individuals with

the second strategy can develop resistance (therapeutic failure) at some constant per capita rate

ξ. Then, individuals infected developing resistance to the second strategy can move into the third

treated class at some constant per capita rate θ. These treated individuals can develop resistance

(therapeutic failure) at some constant per capita rate ν. Individuals in each of the seven infected

classes can move into the AIDS class at some per capita rate mα, where m is the shape parameter

of the Erlang distribution associated with the infectious period, which in turn is the number of sub

compartments in our model, mα is the rate of horizontal movement in the different disease stages.

Finally, individuals in each of the seven infected classes (Infected, treated class 1, 2, 3 and resistant

class 1, 2, 3 and AIDS class) leave the system, through either death or recovery with immunity, at

constant per capita rate µ

In the development of our model equations, we employed a non-exponential distribution for the

infectious period and for AIDS an exponential distribution. For simplicity, we consider the to-

tal population size, as well as the rates at which individuals move from one sub-compartment to

another (horizontal movement)as constant. We assume that all infected treated individuals have

a 100% adherence to the treatment and that treated individuals can infect susceptibles depending

on the treatment effectiveness (κ). The case when susceptible individuals become infected with a
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resistant strain of the virus, i.e., from individuals in the compartment of R is also contemplated.

For this case, we considered these individuals as part of the infected class (I). This is because, at

the time of diagnosis, there is no way to know whether the individual is resistant to the treatment.
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Figure 2: Schematic diagram for the progression of HIV stages, including compartments for sus-

ceptible (S), infected (I), treated (T ), resistant (R), and AIDS (A).
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2.2 Parameters estimate

For the calculation of the shape parameter (m) and shape parameter (ω) of the gamma distribution,

we used the mean and variance for the infectious period of MSM, 136.83 months and 429.025

months, respectively [49]. With this data we calculated m = 43 and α= 0.028848 years−1.

For the estimation of the rate at which individuals become resistant to the first (ρ), second (ξ)

and third (ν) line of treatment, we first assume that the rate at which treated individuals develop

resistance is constant for the three treatment scheme. We used the number of HIV positive that

develop mutation related to resistance from our data (92 positive individuals). We divided the

number of resistant individuals (92) by the total number of positive cases (3546) and obtained the

rates ρ, ξ and ν.

We used data from [UNAIDS] to estimate the rate at which infected individuals receive treat-

ment (χ). It is reported that 46 out 100 people receive treatment in Ecuador [50] and 64 out 100

in Latin America [51]. To convert this number to a ratio we used the total population of positive

HIV cases in 2014 (3,546) [Health Ministry]. We calculated the number of individuals out of the

total that will receive treatment and then divided it by the total HIV positive cases.

Previous to establish the treatment strategies, we calculated the average time that an individual

will spend at every sub-compartment. For this, we let the average life-span of an HIV infected

individual be 20 years and divided by the shape parameter m obtaining 24 weeks. With this infor-
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mation we defined three time intervals on which individuals received treatment (categories). The

first category represent a 48 week interval where individuals received treatment. For the second

category the time interval is given by 24 weeks. Under the third category individuals received

treatment for 960 weeks. Then we define five treatment strategies considering delay of treatment

(strategies 3-5) and two strategies considering non-adherence to the treatment (strategies 1-2). For

the first strategy treatment is received only the first 48 weeks (category 1) after infection follow by

dropout of the treatment. The second strategy enables treatment for 24 weeks (category 2). This

occur 48 weeks after infection follow by dropout after week 72. In the third strategy treatment

dropout is not included and treatment is introduced at week 73 after infection to week 960 (cate-

gory 3) which implies a 72 weeks delay. For the fourth strategy there is a delay of 48 weeks and

treatment is introduced from week 25 to 960 (categories 2 and 3). In the fifth strategy we presented

a hypothetical case, where treatment is applied on every category (no delay)(Table 1).

Table 1: Treatment strategies for non-adherence and delay treatment groups, considered the 3
different categories: 1 (48 weeks); 2 (24 weeks) and 3 (960 weeks).

Treatment Strategies
Non-adherence Delay

Categories 1 2 3 4 5
1 ON OFF OFF OFF ON
2 OFF ON OFF ON ON
3 OFF OFF ON ON ON

The corresponding nonlinear ordinary differential equation (ODE) model is given by the following

system:
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Ṡ = µN −

(
β(I + (1− κ)T ) + βrR

N

)
S − µS

İ1 =

(
β(I + (1− κ)T ) + βrR

N

)
S − (mα+ χ1 + µ)I1

İj = mαIj−1 − (mα+ χj + µ)Ij

Ṫ11 = χ1I1 − (mα+ ρ+ µ)T11

Ṫ1j = mαT1j−1 + χjIj − (mα+ ρ+ µ)T1j

Ṙ11 = ρT11 − (mα+ σ1 + µ)R11

Ṙ1j = mαR1j−1 + ρT1j − (mα+ σj + µ)R1j

Ṫ21 = σ1R1 − (mα+ ξ + µ)T21

Ṫ2j = mαT2j−1 + σjRj − (mα+ ξ + µ)T2j ∀ j = 2, . . . ,m

Ṙ21 = ξT21 − (mα+ θ1 + µ)R21

Ṙ2j = mαR2j−1 + σjT2j − (mα+ ξ + µ)R2j

Ṫ31 = θ1R21 − (mα+ ν + µ)T31

Ṫ3j = mαT3j−1 + θjR2j − (mα+ ν + µ)T3j

Ṙ31 = νT31 − (mα+ µ)R31

Ṙ3j = mαR3j−1 + νT3j − (mα+ µ)R3j

Ȧ = mα(Im + T1m + T2m + T3m +R1m +R2m +R3m)− µA

with
I =

m∑
q=1

Iq, T =
3∑
i=1

m∑
j=1

Tij and R =
3∑
i=1

m∑
j=1

Rij .
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where N = S+I+T+R+A is the total population. Table 2 provides the definition for each state

variables and all model parameters used in our model.

Table 2: Definition of state variables and model parameters
Symbol Description

State variables
S Number of susceptible individuals at time t.
I Number of infected individuals at time t.
T Number of treated individuals at time t.
R Number of resistant individuals to the medication at time t.
A Number of individuals in AIDS at time t.
N Total population size (constant).

Parameters
β Transmission rate.
βr Transmission rate from resistant individuals
α Rate of movement between all infected, treated and resistance stage.
m shape parameter of the gamma distribution for the infectious period.
µ Natural birth and death rate.
δ AIDS induced mortality rate.

χ
Rate at which individuals enter the scheme of treatment 1
after infection (treated 1).

ρ
Rate at which individuals become resistant to the first
line of treatment (resistant 1).

σ
Rate at which individuals enter the scheme of treatment 2
after develop resistance to the treatment 1 (treated 2).

ξ
Rate at which individuals become resistant to the second
line of treatment (resistant 2).

θ
Rate at which individuals enter the scheme of treatment 3
after develop resistance to the treatment 2 (treated 3).

ν
Rate at which individuals become resistant to the third
line of treatment (resistant 3).

κ Effectiveness of treatment on reducing transmissibility

2.3 Global Uncertainty and Sensitivity analysis

The transmission coefficients between susceptible and infected (β and βr), the effectiveness of

treatment (κ) and the rates at which infected individuals enters the treated class (χ) have an im-
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portant influence in the spread of HIV infection. Global uncertainty and sensitivity analysis per-

mits to quantify how changes in the values of the input parameters alter the value of the outcome

variables [7]. Using the former method via Latin Hypercube Sampling (LHS) and Partial Rank

Correlation Coefficient (PRCC) described by [7], we analyze the variability of the parameters β,

βr, κ, χ, α, µ, ρ, ξ, ν and their effect in our model predictions.

A probability distribution function (PDF) was assigned to each parameter and a uniform distri-

bution U(a, b) with parameters a and b for every input parameter was used, where a is min value

and b is 2mean value - min value. The min and mean values of input parameters were selected

from literature or taken from data available.

A sensitivity analysis for every treatment strategy was performed to determine the effect of all

parameters with respect to the model, the levels of significance for the analysis were 0.001 (****),

0.01(***), 0.05 (**), 0.1(*), in which the parameters would have influence on the treatment strat-

egy.

2.4 Graphic User Interface

We developed Matlab scripts for the implementation of the global sensitivity and uncertainty anal-

ysis to the model parameters. To facilitate the setup of the parameters, we created a graphical user

interface (GUI) that is useful for those who wish to reproduce the research, especially for those

who have no programming knowledge. The graphical interface consists of a window that compute
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and summarize the global sensitivity and uncertainty analysis for the system’s parameters from

a particular treatment strategy. Also the GUI generates and stores the figures for the sensitivity

analysis for the parameters with respect to infected and resistant classes that can be consulted by

the user later. Similarly,the GUI also generates the corresponding graphs of uncertainty analy-

sis for each model parameters. At the same time, it allows to adjust the parameter values to run

simulations and see the results in the same window (see Appendix C Figure 22).

3 Analysis

3.1 The control reproduction number <c

The threshold condition, <c, represents the number of secondary infection caused by a single in-

fective individual in a population consisting essentially only of susceptibles with control measures

in place [10]. For the derivation of <c, we use the next generation operator method [52]. We sim-

plified our model considering only one disease stage and only a first line of treatment, obtaining

the following system of equations:



Ṡ = µN −

(
β(I + (1− κ)T )

N

)
S − µS,

İ =

(
β(I + (1− κ)T )

N

)
S − (mα+ χ+ µ)I,

Ṫ = χI − (mα+ ρ+ µ)T,

Ṙ = ρT − (mα+ µ)R,

Ȧ = mα(I + T +R)− µA.

(1)
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Using the next generation operator we get:

F =



(
β(I+(1−κ)T )S

N

)

0

0


and V =


(mα+ χ+ µ)I

−χI + (mα+ ρ+ µ)T

−ρT + (mα+ µ)R



F =


β β(1− κ) 0

0 0 0

0 0 0

 and V =


mα+ χ+ µ 0 0

−χ mα+ ρ+ µ 0

0 −ρ mα+ µ



When multiply both matrix

FV−1 =


β

mα+χ+µ + β(1−κ)χ
(mα+χ+µ)(mα+ρ+µ)

β(1−κ)
mα+ρ+µ 0

0 0 0

0 0 0


Thus,

<c =
β

mα+ χ+ µ
+

β(1− κ)χ
(mα+ χ+ µ)(mα+ ρ+ µ)

Which is a function of treatment. When there is no treatment, ( i.e. when χ = 0), the control

reproductive number <c becomes a basic reproductive number <0 given by:

<0 =
β

α + µ
.
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3.2 Equilibria and Stability

It is shown that if <c < 1 the disease free equilibrium (DFE) (N, 0, 0, 0) is locally asymptotically

stable (L.A.S.) and when <c > 1, it is unstable [52]. The endemic equilibrium (EE) of System of

Equations (1) is given by (S∗, I∗, T ∗, R∗).

S∗ =
µN

λ∗ + µ
,

I∗ =
µN

mα+ χ+ µ

λ∗

λ∗ + µ
,

T ∗ =
µN

mα+ χ+ µ

χ

mα+ ρ+ µ

λ∗

λ∗ + µ
,

R∗ =
µN

mα+ χ+ µ

χ

mα+ ρ+ µ

ρ

mα+ µ

λ∗

λ∗ + µ
.

where,the expression λ∗ is then,

λ∗ = µ

[
β

mα+ χ+ µ

(
1 + (1− κ) χ

mα+ ρ+ µ

)
− 1

]
= µ(<c-1)

Thus, we express I∗ as a function of <c:
I∗ =

µN

mα+ χ+ µ

(<c − 1)

<c

3.3 Numerical Analysis

For the numerical analysis, we used the parameters values estimated and obtained from previous

research as given in Table 3.

17



Table 3: Parameters and values used in our model
Symbol Values Unit Reference
β 0.54 - 2.6 years−1 [23]
βr 0.026 years−1 [48]
κ 0.4 - 0.6 dimensionless [12]
µ 0.00504 years−1 [15]
δ 0.0000131 years−1 [15]
m 43 dimensionless Estimated
χ 0.46 - 0.64 years−1 Estimated
α 0.028848 years−1 Estimated
ρ 0.026 years−1 Estimated
ξ 0.026 years−1 Estimated
ν 0.026 years−1 Estimated

3.4 Results

The calculated uniform distribution parameters Unif(a, b) for the model parameters β, βr, κ, χ, α,

µ, ρ, ξ, ν, which are used in the uncertainty and sensitivity analysis are showed in the Table 4.

Table 4: Parameters of a uniform distribution for the uncertainty and sensitivity analysis.

Parameters a b

β 0.53 1.75
βr 0.001 0.051
κ 0.4 0.6
χ 0.46 0.64
α 0.002404 0.056063
µ 0.03 0.00708
ρ 0.001 0.051
ξ 0.001 0.051
ν 0.001 0.051

Descriptive statistics obtained from the uncertainty analysis of β, βr, κ, χ, α, µ, ρ, ξ, ν parameters

are presented in Table 5.
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Table 5: Descriptive statistics from the uncertainty analysis

Parameter Min Max Mean
β 0.5381 1.7358 1.1407
βr 0.0014 0.0502 0.0260
κ 0.4051 0.6980 0.5501
α 0.0024 0.0027 0.0025
µ 0.003 0.0090 0.006
ρ 0.0018 0.0503 0.026
ξ 0.0018 0.0503 0.026
ν 0.4137 1.1890 0.7991

From the Global Uncertainty and Sensitivity analysis we obtained that β and κ are the most influ-

ential parameters at a consistently 0.001 level of significance on every strategy, with β reflecting

PRCCs (Partial Rank Correlation Coefficient) ranging from 0.6641 to 0.9264 and κ from -0.9465

to -0.7911. Note that β have highest proportional influence in the strategy 2 and lowest in the

strategy 4, but κ has inversely proportional influence on the outcome in every strategy, being the

highest inversely proportional influence on the strategy 2 and the lowest inversely proportional

influence on the strategy 1 (Figure 3 and see Table 6)(for more details, see Appendix A).

Table 6: Result of β and κ from PRCCs (significance level 0.001)
Parameter Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

β 0.7451 0.9264 0.8330 0.7709 0.6641
κ -0.9465 -0.7911 -0.9022 -0.9289 -0.9394

With the results of the sensitivity analysis we decided to pay particular attention to the rate of

infection (β) and treatment efficiency (κ) to make our simulations. During the simulation of the

delay treatment strategies (3 and 4) we observed a trend were the introduction of treatment on the
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Figure 3: Plot of results to Sensitivity analysis on every strategy. Note that β have a proportional
influence, but κ has inversely proportional influence on the outcome in every strategy.

very late stages produces more infectious cases but reduce the resistant cases, whereas the earlier

introduction of treatment produces less infectious cases but more resistant cases (see Figures 4 and

5). With β = 0.54 the strategy 5 generate the lowest number of infected individual, and strategies

3 and 4 generate higher number of infected individuals, where strategy 3 produces the largest

number of infected individuals (see Figure 4). When we compare the ratio of strategy without

delay (5) with the strategies with delay (3 and 4), we observed that strategy 3 produce 0.96 more

infected cases than strategy 5; otherwise, the strategy 4 generate 0.940 more infected cases than

strategy 5 (see Appendix D, Figure 23). It shows that strategy 4 produces 0.328 less infected cases

than strategy 3 (see Appendix D, Figure 26).
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Figure 4: The effect of increasing the transmission rate (β) on infected (Top) and resistant (Bot-

tom) cases at equilibrium for delay treatment strategies.

For β = 2.6, similar qualitative results were obtained, where strategy 5 producing the lowest

number of infected individual, and strategies 3 and 4 generate higher number of infected individ-

uals, where strategy 3 produces the largest number of infected individuals. Similarly, when we

compare the ratio of strategy without delay (5) with the strategies with delay (3 and 4), we ob-

served that strategy 3 produce 0.958 more infected cases than strategy 5; otherwise, the strategy

4 generate 0.940 more infected cases than strategy 5. It shows that strategy 4 produces 0.297 less

infected cases than strategy 3 (see Figure 4). Comparing both results, β = 0.54 generate a lowest

value (0.03) of infected individual than β = 2.6 with the strategy 4. Confirming that the strategy 4

is the best because it generates the fewest number of infected cases between delay strategy group.
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With β = 0.54 we observed that, the onset of resistant population growth for all strategies was

delayed. And the strategy 3 produce the lowest number of resistant individual and the strategy 5

the highest one, on the strategy 4 the number of individual resistant is more close to strategy 3.

When we compare the ratio of strategy without delay (5) with the strategies with delay (3 and 4)

we observed that strategy 3 produce 0.10 less resistant cases than strategy 5; the otherwise, the

strategy 4 generate 0.05 less resistant cases than strategy 5. It shows that strategy 3 produces 0.05

less infected cases than strategy 4. For β = 2.6 similar qualitative results were obtained. The

strategy 3 produce the lowest number of resistant individual and the strategy 5 the highest one, on

the strategy 4 the number of individual resistant is more close to strategy 3. When we compare

the ratio of strategy without delay (5) with the strategies with delay (3 and 4) we observed that

strategy 3 produce 0.19 less resistant cases than strategy 5; the otherwise, the strategy 4 generate

0.10 less resistant cases than strategy 5. It shows that strategy 3 produces 0.09 less infected cases

than strategy 4. Comparing both results, β = 0.54 generate a lowest value (0.022) of infected

individual than β = 2.6 with the strategy 3. Confirming that the strategy 3 is the best because it

generates the fewest number of resistant cases.
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Figure 5: The effect of increasing the treatment efficiency (κ) on the infected (Top) and resistant

(bottom) cases at equilibrium for delay treatment strategies

Now when we evaluate the effect of κ, we observed that when used κ = 0.6, similar time delay

to reaching the epidemic were obtained for all strategies. Then, the strategy 5 generate the lowest

number of infected individual, and strategies 3 and 4 generate higher number of infected individ-

uals, where strategy 3 produces the largest number of infected individuals (see Figure 5). When

we compare the ratio of strategy without delay (5) with the strategies with delay (3 and 4), we

observed that strategy 3 produce 0.959 more infected cases than strategy 5; otherwise, the strategy

4 generate 0.942 more infected cases than strategy 5 (see Appendix D, Figure 24). It shows that

strategy 4 produces 0.296 less infected cases than strategy 3.

For κ = 0.9, similar qualitative results were obtained, because the strategy 5 producing the lowest
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number of infected individual, and strategies 3 and 4 generate higher number of infected individ-

uals, where strategy 3 produces the largest number of infected individuals. Similarly, when we

compare the ratio of strategy without delay (5) with the strategies with delay (3 and 4), we ob-

served that strategy 3 produce 0.9619 more infected cases than strategy 5; otherwise, the strategy 4

generate 0.9445 more infected cases than strategy 5. It shows that strategy 4 produces 0.3137 less

infected cases than strategy 3 (see Figure 5). Comparing both results, κ = 0.9 generate a lowest

value (0.017) of infected individuals than κ = 0.6 with the strategy 4. Confirming that the strategy

4 is the best because it generates the fewest number of infected cases between delay strategy group.

With κ = 0.6 and κ = 0.9, we observed that, the onset of resistant population growth for all

strategies was delayed. And the strategy 3 produce the lowest number of resistant individual and

the strategy 5 the highest one, on the strategy 4 the number of individual resistant is more close

to strategy 3. When we compare the ratio of strategy without delay (5) with the strategies with

delay (3 and 4), we observed that strategy 3 produce 0.13 less resistant cases than strategy 5; the

otherwise, the strategy 4 generate 0.05 less resistant cases than strategy 5. It shows that strategy

3 produces 0.08 less infected cases than strategy 4. For κ = 0.9 similar qualitative results were

obtained. The strategy 3 produce the lowest number of resistant individual and the strategy 5 the

highest one, on the strategy 4 the number of individual resistant is more close to strategy 3. When

we compare the ratio of strategy without delay (5) with the strategies with delay (3 and 4) we ob-

served that strategy 3 produce 0.06 less resistant cases than strategy 5; the otherwise, the strategy

4 generate 0.01 less resistant cases than strategy 5 (see Appendix D, Figure 24). It shows that
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strategy 3 produces 0.05 less infected cases than strategy 4. Comparing both results, κ = 0.9 gen-

erate a lowest value (0.027) of resistant individuals than κ = 0.6 with the strategy 3. Confirming

that the strategy 3 is the best because it generates the fewest number of resistant cases.

Figure 6: The effect of increasing the transmission rate (β) on infected (Top) and resistant (Bot-

tom) cases at equilibrium for non-adherence treatment strategies.

With β = 0.54 strategy 1 generate 0.918 lower numbers of infected individuals compared with

strategy 2, for β = 2.6 the same qualitative results were obtained with 0.915 lowest number of

infected individuals for the strategy 1 compared with strategy 2. With β = 0.54 strategy 1 reduce

in 0.135 the numbers of resistant individuals compared with strategy 2, for β = 2.6 the same
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qualitative results were obtained with reduction of 0.211 the number of resistant individuals for

the strategy 1 compared with strategy 2 (see Figure 6).

Figure 7: The effect of increasing the treatment efficiency (κ) on infected (Top) and resistant

(Bottom) cases at equilibrium for non-adherence treatment strategies.

When evaluate the effect of κ, we observed that κ = 0.9 produce the lowest number of infected

individual (0.921) compared with κ = 0.6 (0.919) between strategy 2 in related to strategy 1. For

κ, we observed that strategy 2 compared with strategy 1 generate with κ = 0.6 the lowest the

number of resistant individual (0.145) compared with κ = 0.9 (0.114)(see Figure 7).
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Figure 8: Implications using WHO standards (90-90-90 strategy): The effect of increasing the

transmission rate (β) on infected (Top) and resistant (Bottom) cases at equilibrium for delay treat-

ment strategies.

Evaluating the implication of using WHO strategy 90-90-90, with β = 0.25 the time delay to

reaching the epidemic increase drastically for the strategy 5. Then, the strategy 5 generate the

lowest number of infected individual, and strategies 3 and 4 generate higher number of infected

individuals, where strategy 3 produces the largest number of infected individuals (see Figure 8).

When we compare the ratio of strategy without delay (5) with the strategies with delay (3 and

4), we observed that strategy 3 produce 0.975 more infected cases than strategy 5; otherwise, the

strategy 4 generate 0.97298 more infected cases than strategy 5 (see Appendix D, Figure 25). It
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shows that strategy 4 produces 0.334 less infected cases than strategy 3.

Evaluating the implication of using WHO strategy 90-90-90, with β = 0.25 we observed that,

the onset of resistant population growth for all strategies was delayed, which the strategy 5 have

the highest delayed than others. The strategy 3 produce the lowest number of resistant individual

and the strategy 5 the highest one, on the strategy 4 the number of individual resistant is more

close to strategy 3. When we compare the ratio of strategy without delay (5) with the strategies

with delay (3 and 4) we observed that strategy 3 produce 0.08 less resistant cases than strategy

5; the otherwise, the strategy 4 generate 0.04 less resistant cases than strategy 5. It shows that

strategy 3 produces 0.03 less infected cases than strategy 4 (see Figure 8). For β = 2.6 similar

qualitative results were obtained. When we compare the ratio of strategy without delay (5) with

the strategies with delay (3 and 4) we observed that strategy 3 produce 0.124 less resistant cases

than strategy 5; the otherwise, the strategy 4 generate 0.05 less resistant cases than strategy 5. It

shows that strategy 3 produces 0.062 less infected cases than strategy 4. Comparing both results,

β = 0.25 generate a lowest value (0.023) of resistant individuals than β = 2.6 with the strategy 3.

Confirming that the strategy 3 is the best because it generates the fewest number of resistant cases.
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Figure 9: Implications using WHO standards (90-90-90 strategy): Implications using WHO stan-

dards (90-90-90 strategy): The effect of increasing the transmission rate (β) on infected (Top) and

resistant (Bottom) cases at equilibrium for non-adherence treatment strategies.

Evaluating the implication of using WHO strategy 90-90-90, with β = 0.25 obtained lowest

number of infected individual (0.946) compared with β = 2.6 (0.43) between strategy 1 and 2.

Evaluating the implication of using WHO strategy 90-90-90, with β = 0.25 the strategy 2 is

reduced in 0.088 the numbers of resistant individuals compared with strategy 1, for β = 2.6 the

same qualitative results were obtained with reduction of 0.174 the number of resistant individuals

for the strategy 2 compared with strategy 1 (see Figure 9).
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4 Discussion and Conclusions

Blower [6] showed that incidence rates of HIV will fall as more HIV-positive individuals gain

access to treatment (HAART), but that this public health benefit will only occur if the levels of

risky behavior do not increase. Computer simulations based on a model of ordinary differential-

equations for an HIV epidemic [16], contrarily, showed that treatment without reduction of risky

behavior may even increase the proportion of infected individuals. Our numerical results based on

simulations of ordinary differential-equations with non-exponentially distributed infectious period

model showed that if HAART is introduced in early stages, it may reduce the number of infected

individuals, but at the same time increases the amount of resistant individuals. Nevertheless, if

the risky behavior (large values of β) increases, the proportion of infected individuals may in-

crease more. On the other hand, strategy 3 produces the least amount of resistant individuals but

increases considerably the infectious population. The former is the strategy which better exempli-

fied the present treatment approaches.

The simulations for the ODE model in [16] showed that the combination of reduction of risky

behavior together with antiretroviral drug treatment is a promising strategy in fighting the epi-

demic of HIV infection. In our model, we obtain similar behavior by reducing β to 0.25 and

coverage (χ) to 0.9, while treatment effectiveness increase to 0.9 and 0.95. Reducing β implies a

decrease on risky behavior of the infected individuals which could be possible with early detection

and awareness of the impact of spreading the disease.
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To the best of our knowledge, this is the first mathematical model to address HIV dynamics among

MSM in Ecuador. For the simplify model we demonstrate the existence of a disease free equilib-

rium and an endemic equilibrium. According to the sensitivity analysis, scheme to reducing the

rate of infection and increasing the effectiveness of treatment should be implemented if you want

to keep the spread of the disease at lowest levels possible.

Among the delay treatment strategies, strategy 5 is better at reducing the number of infected indi-

viduals (96%) compare to strategy 3. But strategy 3 is better at lowering the number of resistant

individuals (11% for β and 13% for κ) than strategy 5. Under WHO standards (90-90-90) same

qualitative results were obtained (strategy 5 is best for infected individuals with 97.5% and strat-

egy 3 is the best for resistant individuals with 10.8%.When evaluate the ratio between two delay

strategies (3 and 4) compared to non-delay strategy (5), the strategy 4 is better because generate

0.328 with β = 0.54 and 0.3137 with κ = 0.9 less infected individuals than strategy 3. Under the

WHO standards (90-90-90) same qualitative results were obtained, because the strategy 4 generate

0.3346 less infected individual than strategy 3.

Between non-adherence treatment strategies, strategy 1 is better at reducing the number of in-

fected individuals (91.8%) than strategy 2. And the Strategy 2 is better at lowering the number of

resistant individuals (13.5% for β and 11.4% for κ) than strategy 1. Under the WHO standards

(90-90-90) same qualitative results were obtained (strategy 5 is best for infected individuals with

94.6% and strategy 3 is the best for resistant individuals with 8.8%).
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Our results suggest that if we reach to implement the WHO strategy 90-90-90 is need to reduce

the risky behavior of the individuals, because if the risky behavior are not reducing any treatment

strategy become ineffective. This goal can be reached by educating the population and the creation

of more effective drugs.

For future works, we aim to analyze the full model analytically including treatment dropout and

variable adherence and contrast the predictions of the model by using different types of distribution

for the infectious period. Also, consider modeling other HIV high-risk populations and determi-

nate the impact of the risk behavior, used of physical barriers (condoms) and Injection Drug User

(IDU) on HIV dynamics and finally include the most common mutations (associated to resistance)

to study the impact on the different treatment schemes
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6 Appendix

6.1 Appendix A

For the Global Uncertainty and Sensitivity analysis, we evaluated the influence of parameters on

infected (I), and resistant (R) populations and the ratio I/R for each strategy.

In Figures 10 - 11, we show the results of Uncertainty and Sensitivity analysis for the strategy 1.

Note that β, κ, ρ, ξ and χ have different influence levels, it shows that β and κ have an important

influence on this strategy. In Figures 12 - 13, we show the results of Uncertainty and Sensitivity

analysis for the strategy 2. Note that β, κ and χ have different influence levels, it shows that β

and κ have an important influence on this strategy. In the figures 14 - 15, we showed the results of

Uncertainty and Sensitivity analysis for the strategy 3. β and κ, were the only parameters which

have an important influence on this strategy. In Figures 16 - 17, we show the results of Uncertainty

and Sensitivity analysis for strategy 4. Note that β, κ, α have different influence levels, it shows

that β and κ have an important influence on this strategy. In Figures 18 - 19, we show the results

of Uncertainty and Sensitivity analysis for strategy 5. Note that β, κ, ν have different influence

levels, it shows that β and κ have an important influence on this strategy.
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Figure 10: PRCC results of Uncertainty and Sensitivity analysis of infected (I), resistant (R) indi-
viduals and the ratio I/R for strategy 1. The levels of significance for the analysis were represented
by 0.001 (****), 0.01(***), 0.05 (**), and 0.1(*)

Figure 11: Plot of result to Sensitivity analysis on strategy 1. β has a proportional influence. κ,
ρ1, ρ2, and TL (χ) have inversely proportional influence on the outcome in this strategy.
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Figure 12: PRCC results of Uncertainty and Sensitivity analysis of infected (I), resistant (R) indi-
viduals and the ratio I/R for strategy 2. The levels of significance for the analysis were represented
by 0.001 (****), 0.01(***), 0.05 (**), and 0.1(*)

Figure 13: Plot of results to Sensitivity analysis on strategy 2. β has a proportional influence but
κ and TL (χ) have inversely proportional influence on the outcome in this strategy.
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Figure 14: PRCC results of Uncertainty and Sensitivity analysis of infected (I), resistant (R) indi-
viduals and the ratio between I/R for strategy 3. The levels of significance for the analysis were
represented by 0.001 (****), 0.01(***), 0.05 (**), and 0.1(*)

Figure 15: Plot of results to Sensitivity analysis on the strategy 3. β has a proportional influence
but κ has inversely proportional influence on the outcome in this strategy.
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Figure 16: PRCC results of Uncertainty and Sensitivity analysis for infected (I), resistant (R)
populations and the ratio between I/R for strategy 4. The levels of significance for the analysis
were represented by 0.001 (****), 0.01(***), 0.05 (**), and 0.1(*)

Figure 17: Plot of results to Sensitivity analysis on strategy 4. β and α have a proportional
influence, but κ has inversely proportional influence on the outcome in this strategy.
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Figure 18: PRCC results of Uncertainty and Sensitivity analysis for infected (I), resistant (R)
populations and the ratio between I/R for strategy 4. The levels of significance for the analysis
were represented by 0.001 (****), 0.01(***), 0.05 (**), and 0.1(*)

Figure 19: Plot of results to Sensitivity analysis on strategy 5. β and α have a proportional
influence, but κ has inversely proportional influence on the outcome in this strategy.
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6.2 Appendix B

Analyzing the effect of χ on the infected and resistant populations (strategies 1 and 4) shows an

increase in the time at which the resistant population begins to grow proportional to the increase

of χ . Also its should be noted that the maximum infected population is also delayed in the same

way.

Figure 20: Effect of χ in the infected and resistant populations χ = 0.46, Maximum Infected

Population = 25,000 at 35 weeks. Onset of resistant population = 25 weeks.
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Figure 21: Effect of χ in the infected and resistant populations χ = 0.64, Maximum Infected

Population = 15,000 at 40 weeks. Onset of resistant population = 30 weeks.
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6.3 Appendix C

Figure 22: Graphic user interface develop for simulations and analysis of sensitivity and uncer-

tainty to the model parameters.
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6.4 Appendix D

Figure 23: Proportion of strategies 3 and 4 vs strategy 5 for β.

Figure 24: Proportion of strategies 3 and 4 vs strategy 5 for κ.
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Figure 25: Proportion of strategies 3 and 4 vs strategy 5 under WHO standards (90-90-90) for β.
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Figure 26: Ratio between strategy 4 and 3 for β, κ, and β under WHO standards.
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