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Abstract As one of the oldest known diseases to inflict humanity
(since the Agricultural Revolution about 12,000 years ago), malaria has
proven to be a significant global challenge. Many intervention strategies
have been undertaken in the last few decades such as widespread
ITN/LLIN and IRS use and yet even with great success, malaria continues
to be a ravaging disease requiring inventive solutions. In this study, a
malaria early warning system is developed which utilizes an adapted
Ross-MacDonald model to assess individual risk and disease
epidemiology. Strategies for achieving a disease-free equilibrium state
are also shown by performing local asymptotic stability analysis. The
stages of the mosquito life cycle are highly influenced by weather
conditions, both in the aquatic and adult stages, as well as the use of
insecticides (either through ITN/LLIN use or via IRS), therefore, we
consider regional data parameters, such as weather conditions, parasite
rate and resistance, to estimate deviated risk from the baseline, with the
final product being a progressive web application (i.e. a mobile app).
Such a product has widespread application primarily in holoendemic
areas in Africa to inform both native and tourist populations of their
relative risk.

Introduction
Malaria is mainly a tropical disease caused by the parasitic Plasmodium,
transmitted via the bite of infected female Anophelesmosquitoes. Although
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it is preventable and curable, it was responsible for 241 million cases and
627,000 deaths in 2020 alone [1]. The continent of Africa, specifically the
western and central regions, aremost affected by this disease, accounting
for around 95% of the cases and 96% of the deaths while a vast majority
of these deaths (~80%) occur in children under the age of 5 [1].

Plasmodium are a species of sexually-reproducing eukaryotic protozoans,
whose life-cycle involves the affliction of two hosts, an invertebrate host
(e.g. mosquitoes) that serves as a vector for transmission and a site for sex-
ual reproduction, and a vertebrate host (e.g. reptiles, rodents, primates)
where asexual reproduction and sexual development occurs, leading to
the disease we know as malaria [12].

Figure 1. Lifecycle of Plasmodium, following its transmission and development
in the invertebrate and vertebrate hosts. Image sourced from Figure 1 from [12].
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The disease being transmitted by mosquitoes first originated by a pro-
tozoanwhich adapted to live in the gut of aquatic invertebrates andwhere
in the midgut lumen, the exogenous sexual phase of gamete formation
and fertilization takes place, known as sporogony [2]. This process has
been well summarized [14] and condensed as follows. When the disease
enters the mosquito after taking a blood meal, the gametocytes initiate
the sporogonic cycle in themidgut formingmicrogametocytes andmacroga-
metocytes that fuse to form a zygote [20]. The zygote transforms into a
ookinete thatmoves throught themosquito gut lining and transforms into
an oocyst which produces sporozites that are released after the oocyst
bursts. The sporozoites then travel to infect the salivary glands that be-
come infectious to humans.

Of the five species of Plasmodium that affect humans, two are most
notable: P. falciparum and P. vivax, with P. falciparum beingmost prevalent
in sub-Saharan Africa, and therefore being the primary focus of this study.

It has been hypothesized that approximately 10,000 years ago follow-
ing The Last Glacial Period, rapid warming of the planet into the Holocene
Epoch created the beginnings of agricultural practices that maintained
suitable conditions for malaria to evolve through creation of anopheline
habitats from changes in land use [2][15]. Humans become involved fol-
lowing a successful infectious mosquito bite where the inoculation pro-
cess is initiated by sporozites traveling into the parenchymal cells of the
liver, the site of parasite development. The start of this phase in the liver
named schizogony, in which the sporozites replicate, resulting in a tissue
schizont that contains thousands of merozoites [3]. Following maturation,
the schizont containing the infected hepatoctyes ruptures and releases
merozoites that invade erythrocytes in a cyclic bursting process where
trophozoites feed to become new merozoites that infect more erythro-
cytes [3]. Eventually, the environmental conditions will initiate the trans-
formation of a few haploid asexual-stage parasites into gametocytes that
circulate in the peripheral bloodstream that when taken up by a feeding
female mosquito will transmit the disease [20].

The lifecycle of an Anopheles mosquito, consisting of the immature
and adult stages, is highly dependent on weather conditions (such as tem-
perature and precipitation). The variability in these conditions results in
different prevalence levels of malaria for different locations. This is at-
tributed to the fact that mosquitoes favor relatively warm tropical climate,

3 of 34



stagnant water bodies, and a sufficient population of hosts to acquire a
blood meal (for the egg development process). Compounding to these
factors that mosquitoes prefer, the broader socio-economic background
of residents, land-use practices, as well as the level of development of
the area (including sanitation infrastructure and the availability of medi-
cal care), all affect the level of malaria prevalence and subsequently, its
risk of contraction for any particular location. This idea is the backbone
of the application; local variability is used to assess risk in relation to the
annual baseline.

Figure 2. Percentage of population at risk of malaria in 2013. As shown, most of
the risk is concentrated in Africa and south-southeast Asia. Image sourced from
Figure 1 from [14]

With nearly half the world’s population at risk of this disease, its erad-
ication has been of primary concern to various organizations around the
world, such as the World Health Organization (WHO), the Bill and Melinda
Gates Foundation, and the US President’s Malaria Initiative. [1]. The socio-
economic impact and development of many countries is greatly afflicted
by malaria which has been proven since as early as 1965 to cause much
lower economic growth and where reductions in malaria are associated
with much higher economic growth [4]. Although significant steps have
been taken towards its eradication by a multitude of such groups, it is
nevertheless a leading cause of death in many developing countries, thus
warranting immediate global cooperative action [6]. A key tool in malaria
prevention has been the insecticide-treated nets (ITNs) and long-lasted
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insecticidal nets (LLINs) with their great success evident by the distribu-
tion of 2 billion nets supplied to sub-Saharan Africa between 2004-2020
[1]. The use of ITNs have proven to be useful for prevention and even
reducing childhood mortality [5]. In recent years, however, growing re-
sistance of the mosquitoes to insecticides has rendered many pyrethroid
chemicals (and thus, ITNs and LLINs) less effective [14]. Nearly all across
Africa, resistance has been observed to some extent and even across dif-
ferent vector groups due tomany different evolvedmechanisms including
knockdown resistance [23].

Since ITNs and LLINs alone are not sufficient for eradicating malaria,
a combination of preventive measures is currently the best course of ac-
tion. Therefore, we developed a malaria early warning system (MEWS) as
a mobile application and website to warn users of their risk of contract-
ing malaria in a specific region. The goal is that it serves as a site for the
spread of reliable, life-saving information regarding malaria, as well as to
inspire behavioral changes in people whether it be through advising the
use of bed nets or to stay away from stagnant water bodies servicing as
mosquito breeding spots. The MEWS will be an important component in
the fight against malaria as it provides real time information to general
public about potential risk in order to prevent additional cases.

Previous works for a malaria early warning system (MEWS) have a had
similar, but not identical, ideas and methods as this paper. An online
MEWS recognizes the effects rainfall has on transmission and focuses on
creating an early warning system for rain so one can then predict the risk
of contracting malaria [27]. However, the risk itself is not calculated, or
at least not blatantly stated, by the system itself. In addition, most of the
graphs presented focus only on rainfall and require interpretation,making
the experience less user friendly than our MEWS. Another online MEWS
provides more detailed information: Vulnerability, Seasonal Climate Fore-
casts, Monitoring the Environment and Observed Malaria Morbidity [28].
However, this is can only be accessed as a website, not a mobile applica-
tion. The novelty in our MEWS is that it accessible through the web or as
a mobile application and is user-friendly.

The MEWS will first obtain the user’s current location or the location
he/she will travel to in the future, then obtain relevant data, such as tem-
perature, to evaluate potential infections and the user’s individual risk.
For this to happen, the MEWS requires mathematical modeling that can
be evaluated at any given time. Thus, the mathematical model consists
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mostly of differential equations.
The model used in this study has a long history traced back to the

first models of malaria from Ronald Ross written in the early 1900s that
were advanced in the following decades by those such as Alfred J. Lotka
and George Macdonald to more accurately capture the disease proper-
ties of malaria [18]. From the progression of these mathematical models
came new ideas including entomological inoculation rate, basic reproduc-
tion number, and vectorial capacity which addressed the need to assess
transmission and epidemiology [18]. More recent advancements have im-
proved the accuracy of past models by including properties related to im-
munity and climate that improvemodeling accuracy. The epidemiology of
malaria since Macdonald also highlighted the importance of endemicity
when observing populations with malaria highlighting the requirements
that should be met for potential eradication which despite being imple-
mented ultimately failed [18].

A crucial component of modeling malaria is considering the role of
weather on mosquito population dynamics. The early work of Lysenko
and Semashko [19] which made initial discoveries of the temperatures
required to sustain transmission and thus being influential for malarial
endemicity which even at the time highlighted malaria global maximums
nearer to the equator [15]. Although other weather factors such as rain-
fall and humidity contribute to malaria abundance, the role of tempera-
ture is especially important given that Plasmodium falciparum can main-
tain growth cycles until temperatures drop below 20◦C [22].

Mathematical Models
In order to calculate the risk of contracting malaria in a particular region,
dynamic mathematical models must be developed for both humans and
mosquitoes. The human model and mosquito model are SEIR and SEI
models respectively. For the mosquito dynamics, it is important to in-
clude both the adult stage and the immature/aquatic stage since both
stages depend on one another. Only adult mosquitoes bite for blood
meals, thus only adult mosquitoes dynamics are an SEI model. The im-
mature mosquitoes will determine howmany adult mosquitoes there will
be. Therefore, the immature dynamics are an important factor in analyz-
ing malaria transmission. Since humans have the ability to recover from
malaria, the human dynamics are an SEIR model. Both the entomological
inoculation rate (EIR) and the reproduction number of the disease (𝑅0) are
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helpful in determining the risk on contractingmalaria, however, this paper
only considers EIR.
Immature/Aquatic Mosquito Dynamics
The mosquito immature/aquatic stage is comprised of 6 classes: the egg
class, 4 larva classes, and the pupa class. For simplicity, this model com-
bines all 4 larva classes into one class, thus having a total of 3 differential
equations to represent the immature/aquatic stage of mosquitoes. The
equations are described below:

𝐸̇ = 𝐸𝐹𝐷(𝑇 )
(

1 − 𝐸
𝐾𝐸(𝑅)

)

𝑁𝑚 − 𝜎𝐸(𝑇 )𝐸 − 𝜇𝐸(𝑇 )𝐸

𝐿̇ = 𝜎𝐸(𝑇 )𝐸 − 𝜎𝐿(𝑇 )𝐿 − 𝜇𝐿(𝑇 )𝐿

𝑃̇ = 𝜎𝐿(𝑇 )𝐿 − 𝑞𝜎𝑃 (𝑇 )𝑃 − 𝜇𝑃 (𝑇 )𝑃

Figure 3. A graphic flowchart that illustrates the Aquatic stage dynamic model.
The 𝜋𝑀 term substitutes EFD(1 − 𝐸

𝐾𝐸

)

(𝑁𝑚).

𝐸̇, 𝐿̇, and 𝑃̇ are the change in the number of eggs, larva, andpupae over
time respectively. 𝐸𝐹𝐷(𝑇 ) is the number of eggs laid per femalemosquito
per day [9]. To obtain the remaining proportion of potential eggs that can
be laid in the future, the proportion of current eggs, 𝐸, to egg carrying
capacity, 𝐾𝐸(𝑅), is subtracted from 1. The total number of mosquitoes,
𝑁𝑚, is then multiplied by the product of the number eggs laid per female

7 of 34



mosquito per day, 𝐸𝐹𝐷(𝑇 ), and the proportion of potential eggs that can
be laid in the future, (1 − 𝐸

𝐾𝐸 (𝑅)

). It is necessary to subtract eggs that de-
velop into larva or die from this equation (See Table 2 for the descriptions
of each parameter). The larva class receives immature mosquitoes that
survived the egg class and loses larva that either progress to thepupa class
or die off. The pupa class goes through a similar process with considera-
tion that the proportion that are female, 𝑞, are the only type ofmosquitoes
we want to observe for the adult class. The formula for carrying capacity
is adapted from White et al. [21] which was modeled as a convolution of
recent rainfall with some weighting function which had been included as
either a constant, linearly decreasing, or exponentially decreasing func-
tion. The constant weighting function was used here for simplicity which
is:

𝐾(𝑡) = 𝜆1
𝜏 ∫

𝑡

𝑡−𝜏
𝑟𝑎𝑖𝑛(𝑡′)𝑑𝑡′

Where 𝑟𝑎𝑖𝑛(𝑡) is daily rainfall and 𝜆 is the fitted scaling factor unique to
the population data.

Figure 4. Stages of Mosquito development from egg to mature adult. Please
note that the four instar stages (L1 to L4) have been combined into a single
stage in our model. Image sourced from Figure 3 from [14].
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Adult Mosquito Dynamics (sensitive to insecticides)
After surviving the immature stage, femalemosquitoes develop into adults,
seek hosts for blood, and, thus, are susceptible tomalaria. A femalemosquito
that bites an infectious humanmoves from the susceptible class to the ex-
posed class. A mosquito that becomes infectious at a rate 𝜎𝑚 move from
the exposed class to the infectious class. Mosquitoes that die at the natu-
ral death rate 𝜇𝑚𝑠 or die from contact of insecticide treated bed nets (ITNs)
at a rate 𝜖𝐵𝐶𝐵𝛿𝐵 leave every class. The equations are written below.

̇𝑆𝑚𝑠 = 𝑞𝜎𝑃 (𝑇 )(1 − 𝑓 )𝑃 −
𝛽𝐻𝑚𝑠𝐼𝐻𝑆𝑚𝑠

𝑁𝐻
−
(

𝜇𝑚𝑠 + 𝜖𝐵𝐶𝐵𝛿𝐵
)

𝑆𝑚𝑠

̇𝐸𝑚𝑠 =
𝛽𝐻𝑚𝑠𝐼𝐻𝑆𝑚𝑠

𝑁𝐻
− 𝜎𝑚𝑠𝐸𝑚𝑠 −

(

𝜇𝑚𝑠 + 𝜖𝐵𝐶𝐵𝛿𝐵
)

𝐸𝑚𝑠

̇𝐼𝑚𝑠 = 𝜎𝑚𝑠𝐸𝑚𝑠 −
(

𝜇𝑚𝑠 + 𝜖𝐵𝐶𝐵𝛿𝐵
)

𝐼𝑚𝑠

It is important to note that the expression (1−𝑓 ) represents the proportion
of female mosquitoes sensitive to an ITN compared to those resistant to
insecticide.

Figure 5. A graphic flowchart that illustrates the sensitive adult mosquito
dynamic model. The 𝜉 term substitutes 𝜖𝐵𝐶𝐵𝛿𝐵.
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Adult Mosquito Dynamics (resistant to insecticides)
Similar to the adult mosquitoes sensitive to ITNs, the dynamics for the
adult mosquitoes resistant to ITNs are written below:

̇𝑆𝑚𝑟 = 𝑞𝜎𝑃 (𝑇 )𝑓𝑃 −
𝛽𝐻𝑚𝑟𝐼𝐻𝑆𝑚𝑟

𝑁𝐻
−
(

𝜇𝑚𝑟 + 𝜖𝐵𝐶𝐵𝛿𝐵(1 − 𝑢)
)

𝑆𝑚𝑟

̇𝐸𝑚𝑟 =
𝛽𝐻𝑚𝑟𝐼𝐻𝑆𝑚𝑟

𝑁𝐻
− 𝜎𝑚𝑟𝐸𝑚𝑟 −

(

𝜇𝑚𝑟 + 𝜖𝐵𝐶𝐵𝛿𝐵(1 − 𝑢)
)

𝐸𝑚𝑟

̇𝐼𝑚𝑟 = 𝜎𝑚𝑟𝐸𝑚𝑟 −
(

𝜇𝑚𝑟 + 𝜖𝐵𝐶𝐵𝛿𝐵(1 − 𝑢)
)

𝐼𝑚𝑟

Note that 𝑓 is used instead of (1−𝑓 ) to differentiate between resistant
and sensitive mosquitoes, while the expression (1−𝑢) is used to differenti-
ate the killing rates due of insecticide (𝛿𝐵) [17]. For simplicity, let the value
of 𝜎𝑚𝑠 = 𝜎𝑚𝑟 = 𝜎𝑚 (See Table 4)

Figure 6. A graphic flowchart that illustrates the resistant adult mosquito
dynamic model. The 𝜉 term substitutes 𝜖𝐵𝐶𝐵𝛿𝐵(1 − 𝑢).

Human Dynamics
In a region where malaria is prevalent, humans become susceptible as
soon as they are born orwhen theymigrate to that particular region. In the
human dynamic model, this is the recruitment rate, 𝜋𝐻 . A human bitten
by an infectious mosquito (resistant or susceptible to insecticide) moves
from the susceptible class to the exposed class. In the model below, bed
net efficacy, 𝜖𝐵, and bed net coverage, 𝐶𝐵, are considered to determine an
the probability of transmission when bed nets are being used. The human
dynamic model is described below.
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̇𝑆𝐻 = 𝜋𝐻 − (1 − 𝜖𝐵𝐶𝐵)
(

𝛽𝑚𝑠𝐻𝐼𝑚𝑠
𝑁𝐻

𝑆𝐻 +
𝛽𝑚𝑟𝐻𝐼𝑚𝑟
𝑁𝐻

𝑆𝐻

)

− 𝜇𝐻𝑆𝐻 + Ψ𝐻𝑅𝐻

̇𝐸𝐻 = (1 − 𝜖𝐵𝐶𝐵)
(

𝛽𝑚𝑠𝐻𝐼𝑚𝑠
𝑁𝐻

𝑆𝐻 +
𝛽𝑚𝑟𝐻𝐼𝑚𝑟
𝑁𝐻

𝑆𝐻

)

− 𝜇𝐻𝐸𝐻 − 𝜎𝐻𝐸𝐻

̇𝐼𝐻 = 𝜎𝐻𝐸𝐻 − 𝛾𝐻𝐼𝐻 − 𝜇𝐻𝐼𝐻 − 𝛿𝐻𝐼𝐻

̇𝑅𝐻 = 𝛾𝐻𝐼𝐻 − 𝜇𝐻𝑅𝐻 − Ψ𝐻𝑅𝐻

Let 𝜇ℎ be the natural death rate for humans and let 𝜎𝐻 be the rate at
which humans become infectious. The parameter 𝑟 is the rate at which
humans recover. Since immunity from malaria is only temporary, 𝛾 is the
rate at which humans from the recovered class move back into the sus-
ceptible class. It should be considered that malarial superinfection and
waning immunity complicates the most accurate model representation of
immunity, especially in holoendemic populations where complete suscep-
tibility renewal rarely occurs. Dynamics of recurring infection has been
considered in recent models [9].

Figure 7. A graphic flowchart that illustrates the human dynamic model. The 𝜉𝑆and 𝜉𝑅 terms substitute (1 − 𝜖𝐵𝐶𝐵)(
𝛽𝑚𝑠𝐻𝐼𝑚𝑠
𝑁𝐻

) and (1 − 𝜖𝐵𝐶𝐵)(
𝛽𝑚𝑟𝐻𝐼𝑚𝑟
𝑁𝐻

), respectively.
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Table 1. Description of State Variables
Variables Interpretation
𝐸 Number of eggs
𝐿 Number of larvae (combination of all 4 instar

stages)
𝑃 Number of pupae
𝑆𝑚𝑠 Number of susceptible mosquitoes that are sensi-

tive to insecticides
𝐸𝑚𝑠 Number of exposed mosquitoes that are sensitive

to insecticides
𝐼𝑚𝑠 Number of infectious mosquitoes that are sensitive

to insecticides
𝑆𝑚𝑟 Number of susceptible mosquitoes that are resis-

tant to insecticides
𝐸𝑚𝑟 Number of exposed mosquitoes that are resistant

to insecticides
𝐼𝑚𝑟 Number of infectious mosquitoes that are resistant

to insecticides
𝑆𝐻 Number of susceptible humans
𝐸𝐻 Number of exposed (infected but not infectious) hu-

mans
𝐼𝐻 Number of infectious humans
𝑅𝐻 Number of recovered humans
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Table 2. Description of Parameters
Parameters Interpretation
EFD(T) Eggs per female mosquito per day
𝐾𝐸(𝑅) Carrying capacity of eggs
𝑞 Proportion of female mosquitoes
𝑁𝑚 Total number of mosquitoes
𝜎𝐸(𝑇 ) Development rate of eggs to larvae
𝜇𝐸(𝑇 ) Natural death rate of eggs
𝜎𝐿(𝑇 ) Development rate of larvae to pupae
𝜇𝐿(𝑇 ) Natural death rate of larvae
𝜎𝑃 (𝑇 ) Development rate of pupae to adult
𝜇𝑃 (𝑇 ) Natural death rate of pupae
𝑓 Proportion of resistant mosquitoes
𝛽𝐻𝑀 Transmission probability from infected human to a

susceptible mosquito
𝜇𝑚𝑠 Natural death rate of susceptible mosquitoes that

are sensitive to insecticides
𝜖𝐵 Efficacy of bed nets
𝐶𝐵 Coverage of bed nets
𝛿𝐵 Bed net-induced mortality rate
𝜎𝑚𝑠 Development rate of mosquitoes that are sensitive

to insecticides from exposed to infectious
𝜇𝑚𝑟 Natural death rate of susceptible mosquitoes that

are resistant to insecticides
𝑢 Decrease in mortality rate of resistant mosquitoes

in comparison to sensitive mosquitoes
𝜎𝑚𝑟 Development rate of mosquitoes that are resistant

to insecticides from exposed to infectious
𝜋𝐻 Recruitment rate of humans
𝛽𝑚𝑠𝐻∕𝛽𝑚𝑟𝐻 Transmission probability from infected mosquito

(that is sensitive to insecticides/resistant to insecti-
cides) to a susceptible human

𝛽𝐻𝑚𝑠∕𝛽𝐻𝑚𝑟 Transmission probability from infected human to
a susceptible mosquito (that is sensitive to insecti-
cides/resistant to insecticides)
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𝜇𝐻 Natural death rate of humans
Ψ𝐻 Rate of immunity loss of humans
𝜎𝐻 Development rate of humans from exposed to in-

fectious class (Corresponds to time taken for Plas-
modium to complete its schizogonic cycle)

𝑟𝐻 Recovery rate of humans from malaria
𝛿𝐻 Death rate of humans from malaria
𝑁𝐻 Total number of humans

Table 3. Values for Parameters
Parameters Baseline Values Reference
𝑞 0.5 (dimensionless) [26]
𝑓 0.1 (dimensionless) Assumed
𝑢 0.95 (dimensionless) [7]
𝜋𝐻 2.19 (per day) [7]
𝑟𝐻 1/30 (per day) [10]
Ψ𝐻 0.0056 (per day) [17]
𝜎𝐻

(

(12)(3.04)
365

) (per day) [9]
𝜇𝐻 0.00004 (per day) [9]

Table 4. Functions for Dependent Parameters
Parameters Functions Reference
EFD(T) max(0,−0.153𝑇 2 + 8.61𝑇 − 97.7) [9]
𝜎𝐸,𝑃 (𝑇 ) max(0, 6(−0.05 + 0.005𝑇 − 2.139 × 10−16𝑒𝑇 −

281357.656𝑒−𝑇 ))
[10]

𝜎𝐿(𝑇 ) max(0, 6
4
(−0.05 + 0.005𝑇 − 2.139 × 10−16𝑒𝑇 −

281357.656𝑒−𝑇 ))
[10]

𝜇𝐸,𝐿,𝑃 (𝑇 ) 8.929 × 10−6𝑇 4 − 9.271 × 10−4𝑇 3 + 3.536 ×
10−2𝑇 2 − 0.5814𝑇 + 3.509

[10]
𝛽𝐻𝑚𝑠,𝐻𝑚𝑟(𝑇 ) max(0, 0.022(−0.00014𝑇 2 + 0.027𝑇 − 0.322)) [9]
𝛽𝑚𝑠𝐻,𝑚𝑟𝐻 (𝑇 ) max(0, 0.24(−0.00014𝑇 2 + 0.027𝑇 − 0.322)) [9]
𝜎𝑚 max(0, 0.000112𝑇 (𝑇 − 15.384)(

√

35 − 𝑇 )) [10]
𝜇𝑚𝑠,𝑚𝑟

(

1
max(0.1,−11.8239+3.3292𝑇−0.0771𝑇 2)

) [10]
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Box 1. Temperature Dependent Parameters

Box 1—figure 1. The figures above show the temperature-related dynamics
of the model parameters, for which the equations are listed in the

aforementioned table.
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2.5 EIR
The entomological inoculation rate (EIR) gives the rate of infectious bites
per unit time (generally per day) per person. In the application, EIR is the
main metric used to determine risk. The equation is described below:

𝐸𝐼𝑅 = 𝛽(1 − 𝜖𝐵𝑐𝐵)
(

𝐼𝑚𝑠 + 𝐼𝑚𝑟
𝑁𝐻

)

The EIR is defined as the product of the rate of transmission (consider-
ing the effect of bednet usage) and theproportion of infectiousmosquitoes
to humans [9]. The proportion of infectious mosquitoes to humans is de-
fined as the total number of infectious mosquitoes (both resistant and
sensitive) over the total number of humans.

3. Progressive Web Application (Mobile App)
There have beenmany advances in the multi-decade global effort to erad-
icate malaria. The use of bed nets, better living conditions, destruction
of breeding sites, and more have proved to be effective in the decades
past. However, insecticide resistance, among other issues, pose the next
big obstacle to malaria eradication by 2040, one of United Nation’s goals.

Therefore, in response to these issues and as a culmination to this re-
search paper, a web/mobile application has been developed using various
technologies, including Python, JavaScript, HTML, and CSS.
3.1 Data
Data is a major part of the app; acquiring and processing it posed one of
the biggest issues during this study. To ensure a reliable risk approxima-
tion, we had to get data from multiple different sources, including locally
saved datasets as well as APIs (Application programming interface). Listed
below are some of them.
3.1.1 Weather
Temperature and precipitation have significant impacts on mosquito dy-
namics as many previous papers have studied [32][33]. Temperature af-
fects nearly every single parameter in the aquatic and adult stages, whereas
precipitationmainly influences the carrying capacity (𝐾𝐸) of the eggs, whichin turn has ripple effects that leads to changes in populations ofmosquitoes
as well as humans. Since the model was run for a time range of 365 days
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before the present day, we used decadal monthly average temperature
and precipitation data from WorldClim (https://www.worldclim.org/) as an
estimate for weather conditions until 7 days before the present day. For
the last week of the model run, more accurate data is sourced from the
WeatherAPI (https://www.weatherapi.com/) (Please note that accurate histor-
ical weather for more than one week can be accessed through the API
with a paid subscription). The rainfall data is used to estimate rainwater
accumulation in a specific region, in order to understand the existence
of conditions favorable for the laying and development of mosquito eggs.
Accumulation is calculated using the equation below, where 𝜏 represents
the rate of loss of accumulated water (via evaporation or ground absorp-
tion). The value used for 𝜏 in our model is 7, signifying that it takes about
7 days, on average, for accumulated rainwater to disappear.

𝑅̇ = 𝑟𝑎𝑖𝑛(𝑡) −
(1
𝜏

)

𝑅

The result is two arrays of length 365 consisting of temperature and
rainwater accumulation data, respectively. As such, for each run of the
model, these conditions are updated, and used to inform the parameter
values, as described earlier in the paper.
3.1.2 Insecticide Resistance
The use of ITN/LLINs and IRS brought about huge success in combating
malaria, vastly reducing the number of cases and deaths [1][34]. Unfor-
tunately, however, this success turned out to be a double-edged sword.
Alongside saving millions of lives, it also lead to widespread resistance in
mosquitoes, thus rendering the very tools that were effective a while ago,
almost useless. This growing concern is one of the influences for this study
and the development of this product. Until stronger insecticides are cre-
ated or newermethods for fightingmalaria are found, this app is expected
to help ensure that populations, not only those local to Africa but also for-
eign tourists, are aware of the present risk of malaria in their respective
regions.

Below is a graphical illustration of the data used in the app. It factors in
percent mortality reduction of mosquitoes from various different insecti-
cides for any given location, based on latitude-longitude coordinates. The
data, called IRMapper (https://anopheles.irmapper.com/), itself is produced by
a joint initiative of Vestergaard, KEMRI-CGHR and ESRI Eastern Africa.

17 of 34

https://www.worldclim.org/
https://www.weatherapi.com/
https://anopheles.irmapper.com/


Figure 8. The map above shows the resistance of Anophelesmosquitoes to
pyrethroids (the primary chemical in ITNs and LLINs). Red: Confirmed
resistance; Yellow: Possible resistance; Green: Sensitive. Image sourced from
the IRMapper [16].

3.1.3 Malaria Prevalence and Mortality
Knowing the demographic information for the user’s location can allow us
to accurately set the initial values for the state variables, i.e., 𝑆𝐻 , 𝐼𝐻 , etc.As such, a raster image is sourced from WorldPop (https://hub.worldpop.
org/doi/10.5258/SOTON/WP00004), which consists of pixel-wise population
data, with a resolution of 0.00833333 decimal degrees or approximately 1
kilometer.
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This population data is coupled with the parasite rate raster image
from theMalaria Atlas Project (https://malariaatlas.org/malaria-burden-data-download/)
to, in turn, acquire the estimated number of infected humans (𝐼𝐻 ) to be-
gin running themodel. As expected, highly endemic areas will have higher
parasite rates, thus leading to higher estimates of EIR once the model is
finished running. The Malaria Atlas Project is also the source of malaria-
related human mortality data, corresponding to the parameter 𝛿𝐻 in our
model.
3.1.4 Bed Net Usage
A present-day malaria model would not be an accurate representation of
reality if it did not incorporate bed net usage and its effect on the mor-
tality of mosquitoes for sensitive and resistant classes appropriately. The
Malaria Atlas Project website hosts a research project (https://malariaatlas.
org/research-project/metrics-of-insecticide-treated-nets-distribution/) thatwas con-
ducted to gather this information, whichwas graciouslymade available for
open access, thus enabling us to use it freely.

4. Results
4.1 Mathematical Proofs and Theorems
4.1.1 Basic Qualitative Properties
The model monitors the temporal dynamics of mosquito populations, all
the state variables and parameters are non-negative. The parameters re-
lated to natural mortality at each life-stage and the environmental carry-
ing capacity are positive and finite. Similarly the grouping and process
for bounding from [29] and [26] is closely followed. The state variables
are grouped by life-cycle stage, organism, and adult insecticide resistance
status, let:

1 = (𝑆𝐻 , 𝐸𝐻 , 𝐼𝐻 , 𝑅𝐻 ),2 = (𝑆𝑚𝑠, 𝐸𝑚𝑠, 𝐼𝑚𝑠),

3 = (𝑆𝑚𝑟, 𝐸𝑚𝑟, 𝐼𝑚𝑟),4 = (𝐸𝑚, 𝐿𝑚, 𝑃𝑚).

Definition 1
Following [26], for the time-dependent parameters the following quanti-
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ties hold:
𝑎∗ = sup

𝑡≥0
𝑎(𝑡) 𝑎∗ = inf

𝑡≥0
𝑎(𝑡)

For the immaturemosquito groups, since (1−(𝐸∕𝐾𝐸))+ ≥ 0, then𝐸(𝑡) ≤
𝐾𝐸 for all 𝑡. Thus, using Definition 1, it can be deduced from the immature
mosquito compartments using the larval stage described in the model
that (where a dot represents differentiation with respect to time 𝑡),

𝐿̇ = 𝜎𝐸(𝑇 )𝐸 − [𝜎𝐿(𝑇 ) + 𝜇𝐿(𝑇 )]𝐿 ≤ 𝜎∗
𝐸𝐾𝐸 − (𝜎∗

𝐿 + 𝜇∗
𝐿)𝐿

So that following by the Gronwall inequality:
lim sup

𝑡→∞
𝐿(𝑡) ≤

𝜎∗
𝐸𝐾𝐸

𝜎∗
𝐿 + 𝜇∗

𝐿
= 𝐿◊

With the bounds from above in the equations, it is similarly found that:
lim sup

𝑡→∞
𝑃 (𝑡) ≤

𝜎∗
𝐿𝐿

◊

𝜎∗
𝑃 + 𝜇∗

𝑃
= 𝑃◊

Using the above equation, furthermore it canbe shown for adultmosquito
groups:
𝑁̇𝑚𝑠 = 𝜎𝑃 (𝑇 )(1 − 𝑓 )𝑃 − (𝜇𝑚𝑠(𝑡) + 𝜖𝐵𝐶𝐵𝛿𝐵)𝑁𝑚𝑠 ≤ 𝜎∗

𝑃 (1 − 𝑓 )𝑃◊ − (𝜇∗
𝑚𝑠 + 𝜖𝐵𝐶𝐵𝛿𝐵)𝑁𝑚𝑠

from which it follows lim sup
𝑡→∞

𝑁𝑚𝑠(𝑡) ≤
𝜎∗𝑃 (1−𝑓 )𝑃

◊

𝜇∗
𝑚𝑠+𝜖𝐵𝐶𝐵𝛿𝐵

= 𝑁◊
𝑚𝑠

and similarly,

lim sup
𝑡→∞

𝑁𝑚𝑟(𝑡) =
𝜎∗
𝑃 (𝑓 )𝑃

◊

𝜇∗
𝑚𝑟 + 𝜖𝐵𝐶𝐵𝛿𝐵(1 − 𝑢)

= 𝑁◊
𝑚𝑟

Lastly, the human compartment can be shown:
𝑁̇𝐻 = Π𝐻 − 𝜇𝐻𝑁𝐻 (𝑡) − 𝛿𝐻𝐼𝐻 (𝑡) ≤ Π𝐻 − 𝜇𝐻𝑁𝐻 (𝑡)

This follows that 𝑑𝑁𝐻∕𝑑𝑡 < 0 if𝑁𝐻 (𝑡) > Π𝐻∕𝜇𝐻 . A standard comparison
theorem can be used so that 𝑁𝐻 (𝑡) ≤ 𝑁𝐻 (0)𝑒−𝜇𝐻 (𝑡) + Π𝐻

𝜇𝐻
[1 − 𝑒−𝜇𝐻 (𝑡)]. Thus,

𝑁𝐻 ≤ Π𝐻∕𝜇𝐻 if 𝑁𝐻 (0) ≤ Π𝐻∕𝜇𝐻 . Additionally, if 𝑁𝐻 (0) > Π𝐻∕𝜇𝐻 , then
𝑁𝐻 (𝑡) → Π𝐻∕𝜇𝐻 as 𝑡 → ∞. That is, lim sup

𝑡→∞
𝑁𝐻 (𝑡) ≤ Π𝐻∕𝜇𝐻 = 𝑁◊

𝐻 .
Lemma 1. All solutions of the model with non-negative initial values re-

main non-negative and bounded for all 𝑡 > 0.
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Proof. The right side of the equations in the model are continually differ-
entiable and locally-Lipschitz at 𝑡 = 0. From the Picard-Lindelöf theorem, it
follows that a unique solution of the model with non-negative initial con-
ditions exists in Ω for all 𝑡 > 0. Since it was assumed that (1 − 𝐸

𝐾𝐸
)+ ≥ 0 for

all 𝑡 ≥ 0, then 𝐸(𝑡) ≤ 𝐾𝐸 for all 𝑡 ≥ 0. Therefore, 𝐸(𝑡) ≤ 𝐾𝐸 for all 𝑡 ≥ 0. From
the other equations that follow, the solutions of the other state variables
from themodel are bounded and the solutions of themodel are bounded.

Theorem 1. The region Ω is positively-invariant and attracts all solutions
of the model.
Proof. This result follows from Lemma 1. The invariance of Ω4 is estab-lished from if 𝐸(𝑡) > 𝐾𝐸 , then 𝐸̇ < 0. Also, 𝐿̇ < 0 when 𝐿(𝑡) > 𝐿◊(𝑡) and
𝑃̇ < 0 when 𝑃 (𝑡) > 𝑃◊(𝑡). Similarly, for both Ω2 and Ω3, 𝑁̇𝑣𝑠 < 0 when
𝑁𝑣𝑠(𝑡) > 𝑁◊

𝑣𝑠(𝑡) and 𝑁̇𝑣𝑟 < 0when𝑁𝑣𝑟(𝑡) > 𝑁◊
𝑣𝑟(𝑡). Lastly, for Ω1, 𝑁̇𝐻 < 0when

𝑁𝐻 (𝑡) > 𝑁◊
𝐻 (𝑡). Hence, the region Ω = Ω1 × Ω2 × Ω3 × Ω4 is positively in-variant with respect to the model and attracts all positive solutions, since

the sub-regions Ω𝑖(𝑖 = 1, 2, 3, 4) are positively-invariant and attracting with
respect to the model, therefore it is sufficient to study the model within
this range.

Ω1 =
(

𝐵1 ∈ ℝ4
+ ∶ 𝑁𝐻 (𝑡) ≤

Π𝐻

𝜇𝐻

)

Ω2 =
(

𝐵2 ∈ ℝ3
+ ∶ 𝑁𝑚𝑠 ≤ 𝑁◊

𝑚𝑠

)

Ω3 =
(

𝐵3 ∈ ℝ3
+ ∶ 𝑁𝑚𝑟 ≤ 𝑁◊

𝑚𝑟

)

Ω4 =
(

𝐵4 ∈ ℝ3
+ ∶ 𝐸𝑚 ≤ 𝐾𝐸 , 𝐿𝑚 ≤ 𝐿◊, 𝑃𝑚 ≤ 𝑃◊

)

4.1.2 Existence and Asymptotic Stability of Equilibria
Here the dynamics of the autonomous version of the model are studied
where weather-dependant parameters of the model are considered to be
constants. It is convenient for the following entomological quantity to be
identified, 𝑟0, which is the net production number which measures the
average rate at which new adult female mosquitoes are produced.
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𝐸̇ = 0 = 𝐸𝐹𝐷(𝑀∗) −
𝐸𝐹𝐷(𝐸∗)(𝑀∗)

𝐾𝐸
−𝐾1(𝐸∗)

= 𝐾𝐸𝐸𝐹𝐷(𝑀∗) −
𝐸𝐹𝐷(𝐸∗)(𝑀∗)𝐾𝐸

𝐾𝐸
−𝐾1(𝐸∗)𝐾𝐸

𝐸∗ =
𝐸𝐹𝐷(𝑀∗)𝐾𝐸

𝐾𝐸𝐾1 + 𝐸𝐹𝐷(𝑀∗)

Following the simplification for 𝐸∗, the following equations must be
solved so that𝑀∗ may be substituted to solve for𝐸∗. This is done by using
subsequent equation solutions in the following order to write𝑀∗ in terms
of 𝐸∗.

𝐿∗ =
𝜎𝐸(𝐸∗)
𝐾2

𝑃 ∗ =
𝜎𝐿(𝐿∗)
𝐾3

=
𝜎𝐿𝜎𝐸(𝐸∗)
𝐾2𝐾3

𝑀∗ =
𝑞𝜎𝑃 (𝑃 ∗)

𝐾4
=

𝑞𝜎𝑃𝜎𝐿𝜎𝐸(𝐸∗)
𝐾2𝐾3𝐾4

where,
𝐾1 = 𝜎𝐸 + 𝜇𝐸 , 𝐾2 = 𝜎𝐿 + 𝜇𝐿

𝐾3 = 𝑞𝜎𝑃 + 𝜇𝑃 , 𝐾4 = 𝜇𝑚𝑟 + 𝜖𝐵𝐶𝐵𝛿𝐵(1 − 𝑢)
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Now 𝐸∗ is solved with substitution giving:

𝐸∗ =
𝐸𝐹𝐷

(

𝑞𝜎𝑃 𝜎𝐿𝜎𝐸 (𝐸∗)
𝐾2𝐾3𝐾4

)

𝐾𝐸

𝐾1𝐾𝐸 + 𝐸𝐹𝐷
(

𝑞𝜎𝑃 𝜎𝐿𝜎𝐸 (𝐸∗)
𝐾2𝐾3𝐾4

)

𝐾1𝐾𝐸 +
𝐸𝐹𝐷𝑞𝜎𝑃𝜎𝐿𝜎𝐸(𝐸∗)

𝐾2𝐾3𝐾4
=

𝐸𝐹𝐷𝑞𝜎𝑃𝜎𝐿𝜎𝐸
𝐾2𝐾3𝐾4

𝐾𝐸

𝐾1𝐾2𝐾3𝐾4𝐾𝐸 + 𝐸𝐹𝐷𝑞𝜎𝑃𝜎𝐿𝜎𝐸(𝐸∗) = 𝐸𝐹𝐷𝑞𝜎𝑃𝜎𝐿𝜎𝐸𝐾𝐸

𝐸∗ =
(𝐸𝐹𝐷𝑞𝜎𝑃𝜎𝐿𝜎𝐸 −𝐾1𝐾2𝐾3𝐾4)𝐾𝐸

𝐸𝐹𝐷𝑞𝜎𝑃𝜎𝐿𝜎𝐸

𝐸∗ = 𝐾𝐸

(

1 −
𝐾1𝐾2𝐾3𝐾4

𝐸𝐹𝐷𝑞𝜎𝑃𝜎𝐿𝜎𝐸

)

Where,
𝑟0 =

𝐸𝐹𝐷𝑞𝜎𝑃𝜎𝐿𝜎𝐸
𝐾1𝐾2𝐾3𝐾4

Similarly to themethod of inspection described by [29], 𝑟0 can be deter-mined as follows: it is the product of the rate at which the eggs are laid by
adult female mosquitoes (𝐸𝐹𝐷), the probability that the eggs survive and
hatch into larvae (

𝜎𝐸
𝐾1

), the probability that the larvae survive and develop
into pupae (

𝜎𝐿
𝐾2

), the probability that the pupae survive and mature into
adult female mosquitoes (

𝑞𝜎𝑃
𝐾3

), and the average lifespan of an adult fe-
male mosquito (

1
𝐾4

). The threshold quantity (𝑟0) is similar to the vectorial
reproduction number in [30], for which mosquito population exists when-
ever 𝑟0 > 1 and no mosquito population exists for 𝑟0 < 1 at equilibrium.

Now the asymptotic properties of different entomological states and
disease presence are explored for understanding model behavior and re-
lated thresholds. The autonomous model has:
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(i) A trivial disease free equilibrium (DFE) where no mosquitoes exist:
1 = (𝑆∗

𝐻 , 𝐸
∗
𝐻 , 𝐼

∗
𝐻 , 𝑅

∗
𝐻 , 𝑆

∗
𝑚𝑠, 𝐸

∗
𝑚𝑠, 𝐼

∗
𝑚𝑠, 𝑆

∗
𝑚𝑟, 𝐸

∗
𝑚𝑟, 𝐼

∗
𝑚𝑟, 𝐸

∗, 𝐿∗, 𝑃 ∗) =
(

Π𝐻

𝜇𝐻
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0

)

(ii) A non-trivial sensitive-only disease-free boundary equilibrium:
2 = (𝑆∗

𝐻 , 0, 0, 0, 𝑆
∗
𝑚𝑠, 0, 0, 0, 0, 0, 𝐸

∗, 𝐿∗, 𝑃 ∗)

where, 𝑆∗
𝐻 = Π𝐻

𝜇𝐻
, 𝑆𝑚𝑠 = 𝜎𝑃 (1−𝑓 )𝑃 ∗

𝜇𝑚𝑠+𝜖𝐵𝐶𝐵𝛿𝐵
, 𝐸∗ = 𝐾𝐸

(

1 − 1
𝑟0

), 𝐿∗ = 𝜎𝐸𝐸∗

𝜎𝐿+𝜇𝐿
, and

𝑃 ∗ = 𝜎𝐿𝐿∗

𝜎𝑃+𝜇𝑃
.

(iii) A non-trivial resistant-only disease-free boundary equilibrium:
3 = (𝑆∗∗

𝐻 , 0, 0, 0, 0, 0, 0, 𝑆∗∗
𝑚𝑟, 0, 0, 𝐸

∗∗, 𝐿∗∗, 𝑃 ∗∗)

where, 𝑆∗
𝐻 = Π𝐻

𝜇𝐻
, 𝑆𝑚𝑟 =

𝜎𝑃 𝑓𝑃 ∗

𝜇𝑚𝑟+𝜖𝐵𝐶𝐵𝛿𝐵(1−𝑢)
, 𝐸∗ = 𝐾𝐸

(

1 − 1
𝑟0

), 𝐿∗ = 𝜎𝐸𝐸∗

𝜎𝐿+𝜇𝐿
, and

𝑃 ∗ = 𝜎𝐿𝐿∗

𝜎𝑃+𝜇𝑃
.

(iv) A non-trivial coexistence equilibriumwhich represents an equilibrium
where the component of each state variable of themodel is nonzero:
4 = (𝑆∗∗∗

𝐻 , 𝐸∗∗∗
𝐻 , 𝐼∗∗∗

𝐻 , 𝑅∗∗∗
𝐻 , 𝑆∗∗∗

𝑚𝑠 , 𝐸
∗∗∗
𝑚𝑠 , 𝐼

∗∗∗
𝑚𝑠 , 𝑆

∗∗∗
𝑚𝑟 , 𝐸

∗∗∗
𝑚𝑟 , 𝐼

∗∗∗
𝑚𝑟 , 𝐸

∗∗∗, 𝐿∗∗∗, 𝑃 ∗∗∗)

The next generation operator method can be used to analyze the local
asymptotic stability of the DFE [11]. The associatedmatrix F (new infection
terms) and matrix V (linear transition terms) are given, respectively, by:

𝐹 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 0 𝛽𝐻𝑚𝑠𝑆𝑚𝑠∗

𝑁∗
𝐻

0 0 0 0 0 0
0 0 0 0 0 𝛽𝐻𝑚𝑟𝑆𝑚𝑟∗

𝑁∗
𝐻

0 0 0 0 0 0
0 𝛽𝑚𝑠𝐻𝑆∗

𝐻

𝑁∗
𝐻

0 𝛽𝑚𝑟𝐻𝑆∗
𝐻

𝑁∗
𝐻

0 0

0 0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐸𝑚𝑠

𝐼𝑚𝑠
𝐸𝑚𝑟

𝐼𝑚𝑟
𝐸𝐻

𝐼𝐻

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

and,
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𝑉 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜎𝑚𝑠 + 𝜇𝑚𝑠 0 0 0 0 0
−𝜎𝑚𝑠 𝜇𝑚𝑠 0 0 0 0
0 0 𝜎𝑚𝑟 + 𝜇𝑚𝑟 0 0 0
0 0 −𝜎𝑚𝑟 𝜇𝑚𝑟 0 0
0 0 0 0 𝜎𝐻 + 𝜇𝐻 0
0 0 0 0 −𝜎𝐻 𝛾𝐻 + 𝛿𝐻 + 𝜇𝐻

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐸𝑚𝑠

𝐼𝑚𝑠
𝐸𝑚𝑟

𝐼𝑚𝑟
𝐸𝐻

𝐼𝐻

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

The reproduction number (0) of the model which considers the ab-
sence of all insecticide-based interventions which in this model is only in-
secticide treated bed nets, is given by:

0 = 𝜌(𝐹𝑉 −1)

which gives,

0 =
√

0𝑚𝑠 +0𝑚𝑟

=
√

(

0𝑚𝑠𝐻 ×0𝐻𝑚𝑠
)

+
(

0𝑚𝑟𝐻 ×0𝐻𝑚𝑟
)

It is assumed in the model that the transmission rates between sen-
sitive and resistant mosquito classes are equal where 𝛽𝑚𝑠𝐻 = 𝛽𝑚𝑟𝐻 and
𝛽𝐻𝑚𝑠 = 𝛽𝐻𝑚𝑟, thus are denoted as 𝛽𝑚𝐻 and 𝛽𝐻𝑚, respectively. Additionally,
𝜇𝑚𝑟 = 𝜇𝑚𝑠 and 𝜎𝑚𝑟 = 𝜎𝑚𝑠, thus are denoted as 𝜇𝑚 and 𝜎𝑚, respectively. Eachof the constituent  values at DFE are solved as,

𝑚𝑠𝐻 = 𝑚𝑟𝐻 =
𝛽𝑚𝐻𝑆∗

𝐻𝜎𝐻
𝑁∗

𝐻 (𝜎𝐻 + 𝜇𝐻 )(𝛾𝐻 + 𝜇𝐻 + 𝛿𝐻 )

𝐻𝑚𝑠 =
𝛽𝐻𝑚𝑆∗

𝑚𝑠𝜎𝑚
𝑁∗

𝐻 (𝜎𝑚 + 𝜇𝑚)𝜇𝑚

𝐻𝑚𝑟 =
𝛽𝐻𝑚𝑆∗

𝑚𝑟𝜎𝑚
𝑁∗

𝐻 (𝜎𝑚 + 𝜇𝑚)𝜇𝑚

Also note for the DFE conditions,
𝑆∗
𝑚𝑠 =

𝜎𝑃 (1 − 𝑓 )𝑃 ∗

𝜇𝑚

𝑆∗
𝑚𝑟 =

𝜎𝑃 (𝑓 )𝑃 ∗

𝜇𝑚
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The value 𝐶 which is similar to 0 (although also contains bed net
coverage) is given as:

𝐶 =
√

(

𝐶𝑚𝑠𝐻 ×𝐶𝐻𝑚𝑠
)

+
(

𝐶𝑚𝑟𝐻 ×𝐶𝐻𝑚𝑟
)

but now with each of the constituent  values solved as,
𝑚𝑠𝐻 = 𝑚𝑟𝐻 =

(1 − 𝜖𝐵𝐶𝐵)𝛽𝑚𝐻𝑆∗
𝐻𝜎𝐻

𝑁∗
𝐻 (𝜎𝐻 + 𝜇𝐻 )(𝛾𝐻 + 𝜇𝐻 + 𝛿𝐻 )

𝐻𝑚𝑠 =
𝛽𝐻𝑚𝑆∗

𝑚𝑠𝜎𝑚
𝑁∗

𝐻 (𝜎𝑚 + 𝜇𝑚 + 𝜖𝐵𝐶𝐵𝛿𝐵)(𝜇𝑚 + 𝜖𝐵𝐶𝐵𝛿𝐵)

𝐻𝑚𝑟 =
𝛽𝐻𝑚𝑆∗

𝑚𝑟𝜎𝑚
𝑁∗

𝐻 (𝜎𝑚 + 𝜇𝑚 + 𝜖𝐵𝐶𝐵𝛿𝐵)(𝜇𝑚 + +𝜖𝐵𝐶𝐵𝛿𝐵)

where for the DFE conditions,
𝑆∗
𝑚𝑠 =

𝜎𝑃 (1 − 𝑓 )𝑃 ∗

𝜇𝑚 + 𝜖𝐵𝐶𝐵𝛿𝐵
𝑆∗
𝑚𝑟 =

𝜎𝑃 (𝑓 )𝑃 ∗

𝜇𝑚 + 𝜖𝐵𝐶𝐵𝛿𝐵(1 − 𝑢)

The results below follows from Theorem 2 in [11].

Lemma 2: The trivial disease free equilibrium is locally-asymptotically sta-
ble if 0(𝐶) < 1, and unstable if 0(𝐶) > 1.
The 0 of the model is the geometric mean of the reproduction numbers
for human-to-mosquito (0,𝐻𝑀 , 𝐶,𝐻𝑀 ) and mosquito-to-human (0,𝑀𝐻 ,
𝐶,𝑀𝐻 ) transmission interactions. Due to two generations being required
to complete the human-vector-human or vector-human-vector malaria
transmission cycle, the geometric mean is present. The general epidemio-
logical implication of this lemma is that a small influx of infectedmosquitoes
would not generate a large outbreak when 0 is less than unity and the
disease would die out over time. Although, this may not always be the
case due to backwards bifurcation as explored in [31].

Asmentioned by [26], it can be shown using the next generation opera-
tor method that the associated reproduction number of the autonomous
model is given by:

0𝑚𝑠 =
√

𝐻𝑚𝑠 ×𝑚𝑠𝐻
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and,
0𝑚𝑟 =

√

𝐻𝑚𝑟 ×𝑚𝑟𝐻

where separate calculations doneby inspection for0𝑚𝑠 and0𝑚𝑟 shows,respectively:
𝑚𝑠𝐻 = (1 − 𝜖𝐵𝐶𝐵)𝛽𝑚𝑠𝐻

(

𝜎𝐻
𝜎𝐻 + 𝜇𝐻

)(

1
𝛾𝐻 + 𝜇𝐻 + 𝛿𝐻

)

𝐻𝑚𝑠 =
(𝛽𝐻𝑀𝑆∗

𝑚𝑠

𝑁∗
𝐻

)(

𝜎𝑚𝑠
𝜎𝑚𝑠 + 𝜇𝑚𝑠 + 𝜖𝐵𝐶𝐵𝛿𝐵

)

and,
𝑚𝑟𝐻 = (1 − 𝜖𝐵𝐶𝐵)𝛽𝑚𝑟𝐻

(

𝜎𝐻
𝜎𝐻 + 𝜇𝐻

)(

1
𝛾𝐻 + 𝜇𝐻 + 𝛿𝐻

)

𝐻𝑚𝑟 =
(𝛽𝐻𝑀𝑆∗

𝑚𝑟

𝑁∗
𝐻

)(

𝜎𝑚𝑟
𝜎𝑚𝑟 + 𝜇𝑚𝑟 + 𝜖𝐵𝐶𝐵𝛿𝐵(1 − 𝑢)

)

thus giving the results:
0𝑚𝑠 =

√

(1 − 𝜖𝐵𝐶𝐵)𝛽𝑚𝑠𝐻𝜎𝐻𝛽𝐻𝑀𝑆∗
𝑚𝑠𝜎𝑚𝑠

(𝜎𝐻 + 𝜇𝐻 )(𝛾𝐻 + 𝜇𝐻 + 𝛿𝐻 )𝑁∗
𝐻 (𝜎𝑚𝑠 + 𝜇𝑚𝑠 + 𝜖𝐵𝐶𝐵𝛿𝐵)

and,
0𝑚𝑟 =

√

(1 − 𝜖𝐵𝐶𝐵)𝛽𝑚𝑟𝐻𝜎𝐻𝛽𝐻𝑀𝑆∗
𝑚𝑟𝜎𝑚𝑟

(𝜎𝐻 + 𝜇𝐻 )(𝛾𝐻 + 𝜇𝐻 + 𝛿𝐻 )𝑁∗
𝐻 [𝜎𝑚𝑟 + 𝜇𝑚𝑟 + 𝜖𝐵𝐶𝐵𝛿𝐵(1 − 𝑢)]

Theorem2: Relating to the competitive-exclusionprinciple, the sensitive-
only (resistant-only) boundary equilibrium is locally-asymptotically stable
if 0𝑚𝑠(0𝑚𝑟) > 1 and 0𝑚𝑟(0𝑚𝑠) < 1.

Conjecture 1: Themodel has a non-trivial coexistence equilibriumwhere
all the states are nonzero which locally-asymptotically stable whenever
𝑚𝑖𝑛{0𝑚𝑠,0𝑚𝑟} ≥ 1.

4.2 Application results
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Discussion and Conclusion
We have presented a practical and important tool for preventing addi-
tional malaria cases through a web and mobile application. As malaria
cases continue to cause hundreds of thousands of deaths annually, this
application is vital in helping reduce those numbers. Used in combination
with other preventive measures, such as LLINs and ITNs, the application
is highly effective in helping prevent new cases. Insecticide resistance is
also important to consider since it affects transmission rates, thus the ap-
plication considers resistance in themathematicalmodel. Lastly, the appli-
cation is user-friendly (simple to use and requires minimal interpretation
from the user) and accessible to many (available in multiple languages).

In this study, adult mosquitoes and humans are given an SEI and SEIR
model respectively in order to properly observe transmission. Both adult
mosquitoes and humans are susceptible tomalaria. In addition, they both
go through an exposed stage before becoming infectious. However, it is
assumed that adult mosquitoes do not recover from malaria in contrast
to humans. Bed net usage is also taken into consideration in the adult
mosquito and human dynamics because it affects the rate of transmis-
sion.

Although immature mosquitoes cannot transmit malaria, they are an
essential component in the math model. Without it, there could possibly
be overestimation or underestimation of malaria burden [9]. As pupae
mature into adults and adults reproduce to lay eggs, it is evident that im-
mature and adult mosquitoes cannot be independently observed. The pa-
rameters in the immature stage are mostly temperature dependent, and
since the adult dynamics is highly dependent on the immature stage and
the human dynamics is highly dependent on adultmosquitoes, the overall
model is dependent on the temperature. Temperature values for these
parameters are obtained through a particular parameter in the imma-
ture dynamic, carrying capacity (𝐾𝐸), is dependent on precipitation since
mosquitoes lay their eggs in bodies of water. The carrying capacity of eggs
determines themaximum number of eggs to be laid in a particular region,
which in turn determines the number of adult mosquitoes in that region.
Therefore, carrying capacity has an indirect effect on the rate of transmis-
sion.

Using some values from the differential equations of themosquito and
human dynamics, the entomological inoculation rate (EIR) calculates the
risk of infection. That result is evaluated and then translated into a sim-
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ple, user-friendly message, notifying the user of whether he or she is in a
high or low risk region. Another way to determine risk is calculating the
basic reproduction number (𝑅0). Ideally, EIR and 𝑅0 would both be used
as additional tools for determining an individual’s risk. Unfortunately, due
to its complexity, 𝑅0’s results were impractical. Thus only EIR was used to
determine risk of infection.

Analysis of the model proves that the parameters are realistic. The
eggs per female mosquito per day (EFD) increases between 15 – 27 de-
grees Celsius. The immature stage development rate also increases start-
ing at 15 degrees Celsius but continues to increase until 30 degrees Celsius.
The rate of becoming infectious for adults also falls into this range. The
adult stage death rate is extremely low until it reaches around 38 degrees
Celsius, where it drastically increases. The transmission rate increases af-
ter 15 degrees Celsius then is expected to cut off after 40 degrees Celsius
with the assumption that adult mosquitoes would have died off by then.
This all compliments the fact that malaria burden increases when temper-
atures are in the range of 16-28 degrees Celsius [9].

The work presented in this paper provides a means of predicting an
individual’s risk of contracting malaria in a particular region. Such a pre-
diction is vital in combating the spread of malaria because it can prevent
an individual from traveling to a high-risk area, or it could encourage the
individual to take protective measures, such as sleeping under a bed net
or taking anti-malarial drugs before traveling. The differential equations in
the mathematical model monitor possible transmission by calculating the
number of immature mosquitoes, potential infectious adult mosquitoes,
and infected humans in each region. The results from the differential
equations provide the necessary values for calculating EIR, which will cal-
culate the user’s risk. The intention is to format this early warning system
as a mobile application and a website so the public can have access to it
and stay informed.

The weather components including temperature and rainfall used in
the model were integrated based on the previous work of other authors
who fit parameters from fitting data sets with consideration of other mod-
els. Given the spatial differences that can affect malaria transmission dy-
namics, themodel’s accuracy can be further improved with the availability
of specific regional data with calculations that can be performed on a large
scale for fitting parameters. Alternative models should also be taken into
consideration such as the agent-basedmodeling approaches [24][25] that
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emphasize weather effects on malaria incidence.
We could have worked with HydroSheds data to better inform the car-

rying capacity parameter for eggs in the aquatic stage. The weather data
could have been more accurate as well, since historical weather data for
more than a year was available through the API, granted we had a paid
subscription. There are many such possibilities for improving upon the
model we have used in this application, as well as the early warning sys-
tem as a whole. Our main goal was to take the first step in creating an
actual product, since to our knowledge, no one has attempted to do any-
thing similar. We hope it will encourage others to adapt our model and
build upon it, with the vision of eradicating malaria.
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