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Abstract

Coral reefs are being degraded by multiple anthropogenic stressors, includ-
ing excessive and destructive fishing practices. Such activities damage reefs
directly, particularly when cyanide and explosives are employed, and deplete
reef fishes that keep coral predators and competitors in check. In this work, we
focus on the highly problematic corallivore Crown-of-thorns starfish (CoTS),
Acanthaster planci, and one of its few known predators, the endangered and
overfished Humphead wrasse, Cheilinus undulatus. We built a system of non-
linear ordinary differential equations to model the interactions between coral,
wrasse, and CoTS biomasses within the Indonesian province of Raja Ampat.
We consider commensalism between wrasse and coral in favor of wrasse, and
predator-prey relationships between wrasse and CoTS, and CoTS and coral.
We take into account coral damage from illegal, unregulated, and unreported
(IUU) fishing and consider constant yield, constant effort, and seasonal wrasse
harvesting. Equilibria for the system with and without harvesting are deter-
mined, including coexistence equilibria in which all three species persist. We
run numerical simulations and conduct sensitivity analyses on key parameters.
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Through this work, we hope to provide insight on the extent to which the coral
reefs of Raja Ampat can hold up to rising fishing pressure as well as describe a
model which can be applied to similar ecosystems.

1 Introduction

Coral reefs form the center of biodiversity in the world’s oceans, home to a quarter
of all marine life [3]. They provide the nations they flank with an abundance of
resources like food fish and medicines. Coral-related tourism generates $9.6 billion
USD worldwide, and play a large role in many Pacific island economies [28]. However,
a collection of anthropogenic stressors has arisen which are degrading coral reefs. A
2008 world coral reef status report projected that 15% of all coral reefs are in danger
of disappearing within 10-20 years, and 20% within 20-40 years [13] .

Ocean acidification 1 damages the calcium carbonate skeleton of many reef-building
hard corals. On the other hand, sea temperatures cause thermal stress in corals, lead-
ing to mass bleaching events that have turned once vibrant reefs into pale graveyards.
Increased nutrient flow into oceans from terrestrial runoff is implicated in improved
survivorship for the larvae of coral competitors and predators [6]. Exacerbating this
problem, exploitative fishing practices deplete populations of reef fish that usually
keep coral predators and algae in check [10, 13]. To make matters worse, it is well
known that illegal and destructive fishing, including blast and poison fishing, directly
damage coral reefs [27].

While threats stemming from global climate, like ocean acidification, cannot them-
selves be mitigated by the actions of one nation, local and regional actions can be
taken to contribute to coral reef resilience and address such threats as destructive
fishing and pollution. Every coral reef is unique in its dynamics (though geographical
trends have previously been noted), and it is important that these dynamics inform
management strategy development [28].

In this paper, we aim to increase this body of knowledge by focusing on excessive
and destructive fishing practices and the resultant disruption of trophic cascades in
coral reefs ecosystem. The interactions between three components are mathematically
modeled: the coral reef, a problematic corallivore, and a predator of the corallivore
which has a commensal relationship with coral. Although this model can be applied
to any situation with similar dynamics to those we describe here, we apply our model
to Crown-of-thorns starfish and Humphead wrasse interactions within the reefs of the
Indonesian province of Raja Ampat.

The structure of the paper is as follows: In Section 2, we provide background
information on the ecosystem under study. We then, in section 3, describe the model

1a result of the ever increasing load of carbon dioxide in the earth’s atmosphere
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we have built to explore this system. We carry out mathematical analysis on the
general ecosystem model in section 4, and on the constant effort harvesting model in
Section 5. Section 6 details how we arrived at our estimates for model parameters,
which are in then utilized in the simulations explained in Section 7. Section 8 contains
results from sensitivity analysis on certain parameters, like constant effort harvest and
destruction. Finally, we briefly describe simulations on the seasonal harvest model.

2 The Ecosystem

In this section, we describe the interaction between the three populations and natural
ecosystem subject to our study.

2.1 The corallivore: Crown-of-thorns starfish

Crown-of-thorns seastars (Acanthaster Planci), herein referred to as CoTS, are coral-
livores found in coral reefs throughout the Indo-Pacific ocean [15]. They usually occur
at low densities of less than 1 CoTS per hectare. At these low densities, this species
acts as a buffer for fast growing corals, allowing for corals with a slower growth rate
to propagate, thus contributing to the maintenance of biodiversity. However, when
CoTS populations surpass sustainable densities, they pose a great danger to the reefs
they inhabit.

CoTS outbreaks 2 are amongst the greatest threats to tropical coral reefs world-
wide [15]. Outbreaks have been observed to destroy up to 80% of original coral cover,
at times resulting in a phase shift wherein coral species composition is altered ir-
reparably [5]. In other cases, outbreaks have completely annihilated the coral reefs
they take place in [15]. Previous research has given rise to multiple theories around
the main cause for these outbreaks. Some indicate that CoTS outbreaks are a natural
part of coral reef ecosystems, but perhaps are occurring more frequently now [5]. Out-
breaks may stem from increased nutrient flow into the ocean from terrestrial runoff,
which is known to boost algae populations. CoTS larvae, then, experience greater
survivorship with the increase in algal food supply, resulting in larger adult popula-
tions [6]. Another cause may be the depletion of CoTS predators through overfishing.
One study, found a link between CoTS population outbreak occurrence and fishing
pressure in Fiji over the span of 15 months [10]. Often, starfish populations plummet

2A CoTS outbreak is defined as the density of CoTS at which their feeding rate surpasses that
of coral reef growth. The densities at which these occur range from 15 to 30 starfish per hectare,
depending on the location [5] [?] [10]. Outbreaks have been known to last 5-7 years and may occur
cyclically.
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after an outbreak, having consumed enough coral to affect its own numbers.

CoTS have few natural predators. These include the Triton’s trumpet, the shrimp
Hymenocera, the worm Pherecardia striata, the polyps of Paracorynactis hoplites, and
the Humphead wrasse. [2,5,12,21]. In this study, we focus on the Humphead wrasse
because it is one of the most sought after targets of IUU fishermen and is an inhabitant
of coral reefs. A coral reef that contains Humphead wrasse is likely to either currently
be experiencing damage from poison and blast fishing or will be experiencing damage
from these fishing practices in the future.

2.2 The Corallivore predator: Humphead Wrasse

The Humphead wrasse (Cheilinus undulatus) is the largest member of the Labridae
family, with a maximum length of 2m and weight of 190kg. They are markedly long-
lived, with the oldest found to be 32 years old. They reach sexual maturity after 5-7
years and gather in reef drop-offs to spawn nearly daily, in numbers ranging from tens
to hundreds - but are low in fecundity. Protogynous fish, males may either develop
via sex change from adult females or directly from the juvenile phase [23]. These
aspects of wrasse development make them particularly sensitive to fishing pressure,
as populations are slow to rebound.

Wrasse inhabit coral reefs throughout the tropical Indo-Pacific ocean. Adults
frequent the edges of the reefs they inhabit, hiding in caves during the night, while
juveniles stay within the reef, often favoring Acropora coral [23]. Wrasse can naturally
be found in low densities of 10-20 fish per hectare without fishing pressure and 5-10 fish
with, while population sizes are directly and linearly correlated with coral cover [13].

The Humphead wrasse is one of the few known predators of CoTS. That said,
CoTS likely make up a small percentage of the wrasse diet. A study found starfish to
comprise 3% of the gut contents of 32 wrasse analyzed [24], of which CoTS make up
an unknown percentage. Considering the range of sizes for wrasse and natural low
density of CoTS, though, wrasse consume a considerable portion of CoTS populations.

C. undulatus is a highly valued commodity in the Live Reef Food Fish Trade
(LRFFT) and, as such, is and has been subject to severe over-fishing. To increase
harvesting yield, fishermen are known to resort to cyanide fishing, wherein sodium
cyanide is released into areas within coral reefs where wrasse are suspected to hide
[23]. The stunned fish are then captured and set aside to recover. Blast fishing
may also be employed, wherein explosives are set off to stun nearby fish, optimizing
them for capture. These practices not only negatively impact already fragile wrasse
populations, but also cause great damage to the coral reefs they take place in - an
effect we account for in our model. In response, C. undulatus was placed on the
International Union for Conservation of Nature (IUCN) red list as “endangered” in

4



the year 2004 and strict limits have been placed on wrasse catch quotas. Despite these
measures, illegal, unregulated, and unreported (IUU) fishing practices are known to
still be rampant [29].

2.3 The Coral Reefs of Raja Ampat

The Coral Triangle is located in the Indo-Pacific ocean and is home to 45% of all
coral species. It is a hotbed of biodiversity, but is also under great peril. Arguably,
the heart of the Coral Triangle is Raja Ampat - an Indonesian province. Spanning
45,000 km2, Raja Ampat is a smattering of islands flanked by coral reefs home to
a number of coral and fish species [19]. Though human inhabitants have subsisted
for generations on the bounty of the reefs there, mounting economic pressures have
driven local fishermen to engage in illegal fishing practices. IUU is on the rise, placing
this precious ecosystem in great danger. Locals claim to hear blasts from blast fishing
daily, and it is known that cyanide fishing is still frequently used to capture Humphead
wrasse for LRFFT [1]. Raja Ampat, then, is a microcosm of what has been occurring
worldwide - predatory fish depletion with the potential to lead to a rise in corallivore
population, placing coral reefs in danger.

The model we present in this work was inspired by the situation in Raja Am-
pat, with data drawn particularly from reports on the Dampier Strait [26]. A study
found 90% of a stretch of coral reefs in Raja Ampat to be comprised of hard (Scler-
actinian) coral [4]. As these species of coral are known-reef builders, and are favored
by Humphead wrasse and CoTS, they will be the focus of our study.

3 Model Description and Methodology

The model proposed is a system of three non-linear ordinary differential equations
describing biomasses of Humphead wrasse, CoTS, and Scleractinian coral within the
Indonesian province of Raja Ampat. While we focus on three specific species and one
location, our model is a general one that can be applied to any system with similar
dynamics. Once statistical study has been done which focuses on CoTS populations
in Fiji, in areas of varying fishing pressure [10]. A relationship was found between the
depletion of CoTS predators from harvest, and increases in CoTS biomass. Previous
models have been developed which represent situations similar to this one - modeling
commensalism, modeling harvest - but none, to our knowledge thus far, have modeled
both at once [18].

We define W(t), as Humphead wrasse (Cheilinus undulatus) biomass at time t;
S(t), as Crown-of-thorns starfish (Acanthaster planci) biomass at time t; and C(t) as
Scleractinian coral biomass at time t. We first build our model based on the ecosystem
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without human intervention - i.e. without wrasse harvesting and coral destruction
from IUU fishing.

3.1 General Ecosystem Model

Figure 1: Energy flow diagram for our system, where C is coral, S is CoTS, and W
is wrasse.

The Humphead wrasse is one of the few known predators of the CoTS. As mentioned
previously, CoTS are not the primary food source for the wrasse, comprising less than
3% of their diet. Thus, density of CoTS does not limit wrasse consumption rate. The
more CoTS are available, the more wrasse will eat. The wrasse gain energy from
predation on the CoTS at rate α1 regardless of the CoTS current population size. We
classify this predation as Holling Type I (the purple terms in the general ecosystem
model refer to this interaction).

Wrasse biomass is largely dependent on coral biomass, but wrasse only offer in-
direct benefit to coral by predating on corallivores such as CoTS. We classify this
interaction as commensalism (the red terms refer to this interaction). The wrasse
grow logistically to their own carrying capacity K1 at rate r1. The commensalism
relationship between the wrasse and the coral is reflected by the wrasse’s ability to
grow above that carrying capacity based on the current density of the coral which
is represented by the term bC, where b is a conversion factor quantifying the benefit
that wrasse derive from coral.

CoTS eat Scleractinian coral almost solely. CoTS population have been found
to sharply decline after an outbreak due to the decrease in coral availability. Thus,
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CoTS feeding rate is limited by coral population and food processing time. That
is, as coral density decreases and CoTS density increases, the feeding rate is capped
by CoTS physiology - how quickly they can possibly consume coral. Therefore, we
classify this predation as Holling Type II (the blue terms in the general ecosystem
model refer to this interaction). The coral grows at a logistic rate r2 to its carrying
capacity, K2. CoTS predate on the coral at rate γ1 relative to the current biomass of
the coral. Loss of coral from CoTS predation is represented by the term γ1C

C+q
.

The CoTS grow logistically to their own carrying capacity, K3, at rate r3 and
are able to convert energy from predation on coral into more offspring at rate γ2,
relative to the coral’s density. The conversion function of energy from coral to CoTS
is represented by γ2C

C+q
. On the other hand, CoTS are predated upon by the Humphead

wrasse at rate α2.
Figure 1 provides a diagram of the general ecosystem model, while our system of

equations is given by:

Ẇ = W

[
r1

(
1− W

K1 + bC

)
+ α1S

]
,

Ċ = C

[
r2

(
1− C

K2

)
− γ1S

C + q

]
,

Ṡ = S

[
r3

(
1− S

K3

)
− α2W +

γ2C

C + q

]
,

with initial conditions W (0) = W0, C(0) = C0, and S(0) = S0.

3.2 Harvesting Models

After developing the system as it is without human intervention, we consider harvest-
ing. The energy diagram, then, is modified into Figure 2.

7



Figure 2: Energy flow diagram for our system, factoring in harvesting and destructive
fishing practices.

We denote the rate at which wrasse biomass is harvested at time t by H(t), while
D(t) represents the rate of coral destruction by cyanide and blast fishing at time t.
Thus, under harvesting and destruction, our system of equations then becomes:

Ẇ = W

[
r1

(
1− W

K1 + bC

)
+ α1S

]
−H(t)W,

Ċ = C

[
r2

(
1− C

K2

)
− γ1S

C + q

]
−D(t)C,

Ṡ = S

[
r3

(
1− S

K3

)
− α2W +

γ2C

C + q

]
,

with initial conditions W (0) = W0, C(0) = C0 and S(0) = S0.

We consider and compare two types of harvesting: constant effort and seasonal.
Seasonal harvesting may occur based on weather patterns, as fishers are most able
to harvest during fair weather conditions. Seasonality is also used intentionally, in
some cases, to allow fish stocks to replenish themselves, resulting in more sustainable
harvest.
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3.2.1 Constant Effort Harvesting

Under constant effort harvesting, we let H(t) = H > 0 - that is, H measures the
effort placed into fishing wrasse. On the other hand, we let D(t) = D > 0, denoting
the rate at which coral are destroyed from cyanide and blast fishing. The wrasse and
coral biomass lost in this way, then, is proportional to population size at the time
of the harvesting. Note that the general ecosystem model described previously is a
special case of the constant effort harvesting model.

3.2.2 Seasonal Harvesting

The weather patterns of Raja Ampat are ruled by its monsoon seasons [18]. Fishing
pressure also is ruled by these seasons, as more fishermen are able to harvest during
fair ocean weather conditions than during poor conditions. As Humphead wrasse are
known to spawn nearly everyday and do not migrate, we can assume that the amount
of wrasse biomass that leaves the system at time t via harvesting depends primarily
on weather conditions [23].

There are two monsoon seasons in Raja Ampat: southeast and northwest. The
southeast monsoon season is characterized by frequent strong winds and upwellings
(especially in the Dampier Strait), while the northwest monsoon season is much milder
[17]. More fishermen, then, opt to harvest during the former than during the latter.
Many villages in Raja Ampat further enforce this harvesting differential with sasi -
the practice of limiting harvesting for a period of time to allow fish populations to
replenish themselves [1]. Sasi is enforced during the months of April-September, and
lifted October-March, and align with the southeast and northwest monsoon seasons.

We let the harvesting and destruction function H(t) and D(t), then, be sinusoidal
functions with period length 1 (for 1 year), where t = 0 represents the month of July
and t = 1/11 represents the month of June. Therefore, our seasonal harvesting and
destruction functions are given by

H(t) = H1(sin(2πt− 1.5) +H),

and

D(t) = D1(sin(2πt− 1.5) +D),

where H1 = eH and D1 = eD represent the ranges of harvesting and destruction
pressure; and H and D represent the portion of total wrasse and coral biomass re-
moved from the system via harvest and destruction in one year, and are taken from
the constant effort harvesting model. It is assumed that destruction and harvesting
are directly related, so that the proportional difference between high and low fishing
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seasons for both is the same - taken to be parameter e.
Multiplying t by 2π gives the function a cycle length of 1, and subtracting 1.5

translates the function over so that the peak fishing season corresponds with the
months of October through March. Similar harvesting functions have been presented
before - sine functions modified to match the seasonality described [14].

Table 1 provides our state variable definitions while Table 2 summarizes our model
parameters with their respective units.

Table 1: State Variables

Variable Description Units

W Humphead wrasse biomass a time t kg
km2

C coral biomass at time t kg
km2

S CoTS biomass at time t kg
km2

10



Table 2: Model Parameters

Parameter Description Units

r1 Intrinsic growth rate for wrasse 1
yrs

r2 Intrinsic growth rate for coral 1
yrs

r3 Intrinsic growth rate for CoTS 1
yrs

K1 Wrasse carrying capacity Kg
km2

K2 Coral carrying capacity kg
km2

K3 Starfish carrying capacity kg
km2

α1 Benefit rate from wrasse predation on CoTS km2

kg∗yrs
α2 Predation rate from wrasse on CoTS km2

kg∗yrs
γ1 Predation rate from CoTS on coral 1

yrs

γ2 Benefit rate from CoTS predation on coral 1
yrs

b Conversion factor for wrasse benefit from coral unitless

q CoTS mid-saturation threshold from coral con-
sumption

kg
km2

H Harvesting function for wrasse 1
yrs

D Function for intrinsic destruction rate for coral 1
yrs

4 General Ecosystem Model

In this section, we analyze the model without interference from harvesting - and the
destruction to coral that comes with it. The aim of this section is to understand
the dynamics of the system naturally, as it is in the absence of human intervention.
We confirm that all three populations can persist in coexistence. This provides a
backdrop for the analysis of the system with destruction and harvesting, covered in
the next section.
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Our first model without harvesting satisfies the following system of equations:

Ẇ = W

[
r1

(
1− W

K1 + bC

)
+ α1S

]
, (4.1a)

Ċ = C

[
r2

(
1− C

K2

)
− γ1S

C + q

]
, (4.1b)

Ṡ = S

[
r3

(
1− S

K3

)
− α2W +

γ2C

C + q

]
. (4.1c)

First, we non-dimensionalize system 4.1 in order to simplify analysis - decreasing
our twelve existing parameters to eight. If we let w = 1

K1
W, c = 1

K2
C, s = 1

K3
S and

t = 1
γ2
τ , then we have

dw

dτ
= w

[
r1

γ2

(
1− w

1 + bk2
k1
c

)
+
α1k3

γ2

s

]
,

dc

dτ
= c

[
r2

γ2

(1− c)− γ1k3s

γ2k2( q
k2

+ c)

]
,

ds

dτ
= s

[
r3

γ2

(1− s)− α2k1

γ2

w +
c

q
k2

+ c

]
.

The remaining parameters can be grouped into dimensionless non-negative quantities
as follows:

φi =
ri
γ2

for i = 1, 2, 3; β =
k2b

k1

; p =
q

k2

;

δ1 =
k3α1

γ2

; δ2 =
α2k1

γ2

; θ =
γ1k3

γ2k2

.

The parameters φi, for i = 1, 2, and 3 are expressions related to the natural intrinsic
growth rates for W,C, and S, respectively. The parameter β is analogous to the
conversion rate b which is the additional carrying capacity the wrasse gains from the
presence of coral being in the environment, while p is related to the mid-saturation
threshold from coral consumption relative to the carrying capacity of the coral. The
non-dimensional quantity δ1 represents the increase in wrasse due to consumption of
CoTS and δ2 is the decrease in CoTS from consumption by wrasse. The parameter
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θ is modeling the decrease in the coral due to CoTS consumption. These parameters
give us the dimensionless system :

dw

dτ
= w

[
φ1

(
1− w

1 + βc

)
+ δ1s

]
, (4.3a)

dc

dτ
= c

[
φ2(1− c)− θs

p+ c

]
, (4.3b)

ds

dτ
= s

[
φ3(1− s) +

c

p+ c
− δ2w

]
. (4.3c)

Under the dimensionless System 4.3, the population size of the CoTS and coral
are divided by their respective carrying capacities (i.e. c = C

K2
and s = S

K3
), thus both

dimensionless carrying capacities are set to one. Notice that under the dimensionless
system, the carrying capacity of the wrasse is one only when coral is not present in
the environment. Thus, the wrasse can naturally grow above its carrying capacity by
a maximum proportion of β. On the other hand, the CoTS can grow to a carrying
capacity that is independent of the coral, this carrying capacity is one. However,
when the coral is in the environment, the CoTS can feed on the coral biomass and
boost its growth past one.
Next, we conduct algebraic and numerical analysis on our model to determine long-
term behavior. We calculate the equilibrium points to determine their stability and
existence conditions. This will give us a deeper understanding of the dynamics in this
ecosystem.

4.1 Equilibria and Stability

Every equilibrium solution arises as a solution to the system of algebraic equations
given by:

w

[
φ1

(
1− w

1 + βc

)
+ δ1s

]
= 0, (4.4a)

c

[
φ2(1− c)− θs

p+ c

]
= 0, (4.4b)

and s

[
φ3(1− s) +

c

p+ c
− δ2w

]
= 0. (4.4c)

We found at least eight equilibria for System 4.4, five of which always exist, while
the existence of the others depends on certain conditions. Let us denote the equilibria
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as follows

E0 =(0, 0, 0), E4 =(1 + β, 1, 0),

E1 =(1, 0, 0), E5 =

(
φ3(δ1 + φ1)

δ1δ2 + φ1φ3

, 0,
φ1(φ3 − δ2)

δ1δ2 + φ1φ3

)
,

E2 =(0, 1, 0), E6 =(0, c1∗, s1∗),
E3 =(0, 0, 1), E7 =(w2∗, c2∗, s2∗).

In order to analyze the stability of each equilibrium, we calculate the Jacobian
matrix of dimensionless System (4.3)

J(w, c, s) =

φ1 − 2wφ1
1+βc

+ δ1s
φ1w2β

(1+βc)2
wδ1

0 φ2 − 2φ2c− θsp
(p+c)2

− θc
p+c

−δ2s
s
p+c
− sc

(p+c)2
φ3 − 2φ3s+ c

p+c
− δ2w

 (4.5)

We will now carry out an existence and stability analysis for each equilibrium.

4.1.1 Extinction Equilibrium

The trivial equilibrium E0 = (0, 0, 0) always exists. The Jacobian matrix evaluated
at this point is

J(E0) =

φ1 0 0
0 φ2 0
0 0 φ3

 ,
with eigenvalues λ1 = φ1, λ2 = φ2 and λ3 = φ3. Since all three of these eigenvalues
are positive, this equilibrium point is unstable.
From a biological perspective, E0 represents the extinction of the wrasse, coral and
CoTS. It is unstable because each species is able to survive in the absence of the other
two species.

4.1.2 Coral and CoTS Exclusion Equilibrium

The equilibrium E1 = (1, 0, 0) always exists. The Jacobian matrix evaluated at E1

gives:

J(E1) =

−φ1 φ1β δ1

0 φ2 0
0 0 −δ2 + φ3

 ,
14



which has eigenvalues λ1 = −φ1, λ2 = φ2 and λ3 = −δ2 + φ3. Since E1 has one
eigenvalue that is always positive, this equilibrium point is always unstable.
Biologically, E1 represents the extinction of the coral and the CoTS, and survival of
wrasse. As wrasse are nearly unable to survive without coral, it makes sense for this
point to be unstable.

4.1.3 Wrasse and CoTS Exclusion Equilibrium

The equilibrium E2 = (0, 1, 0), always exists. The Jacobian matrix evaluated at E2

is given by:

J(E2) =

φ1 0 0
0 −φ2 − θ

1+p

0 0 1
1+p

+ φ3

 ,
which has the eigenvalues λ1 = φ1, λ2 = −φ2 and λ3 = 1

1+p
+ φ3. Because λ1 and

λ3 are always positive, this equilibrium point is unstable.
This equilibrium represents the the extinction of the wrasse and the CoTS, while the
coral survives.

4.1.4 Wrasse and Coral Extinction Equilibrium

The E3 = (0, 0, 1) is an equilibrium that always exist. The Jacobian evaluated at E3

is provided by

J(E3) =

δ1 + φ1 0 0
0 − θ

p
+ φ2 0

−δ2
1
p

−φ3

 ,
which has the eigenvalues λ1 = δ1 + φ1, λ2 = − θ

p
+ φ2, λ3 = −φ3. This equilibrium is

always unstable because the eigenvalue λ1 will always be positive.
This equilibrium represents the survivorship of CoTS over time, while wrasse and
coral go to extinction.

4.1.5 CoTS Extinction Equilibrium

The CoTS only extinction equilibrium, E4 = (1+β, 1, 0), always exists. The Jacobian
matrix evaluated at E4 is given by:

J(E4) =

−φ1 φ1β (1 + β)δ1

0 −φ2 − θ
1+p

0 0 1
1+p
− (1 + β)δ2 + φ3

 ,
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which has the eigenvalues λ1 = −φ1, λ2 = −φ2 and λ3 = 1
1+p
− (1 + β)δ2 + φ3.

Observe that λ1 and λ2 are always negative. Thus, the stability of this equilibrium
depends on the sign of λ3. Then, the equilibrium E4 is only unstable when 1 +φ3(p+
1) > (β + 1)(1 + p)δ2, and otherwise is stable. Biologically, this equilibrium can
be stable as the coral will live “happily ever after” without CoTS predation and the
wrasse have other forms of food diet besides the CoTS.

4.1.6 Coral Only Exclusion Equilibrium

The existence of the coral only exclusion equilibrium E5 =
(
φ3(δ1+φ1)
δ1δ2+φ1φ3

, 0, φ1(φ3−δ2)
δ1δ2+φ1φ3

)
,

is given by φ3 > δ2, otherwise this equilibrium does not exits. This condition means
that the representation of intrinsic growth rate of the CoTS has to be greater than
the detriment to the CoTS population from the presence of wrasse.

To analyze the stability of this equilibrium, we use estimated parameter values
(see Section 8) on the Jacobian matrix 5.3, as analytical expression was difficult to
achieve. We use the software Wolfram Mathematica 10.4 to calculate the eigenvalues
of this matrix. The parameter values used for the analysis are as follows:

φ1 = 0.03, φ2 = 0.0259, φ3 = 0.26, δ1 = 5.5× 10−11

δ2 = 0.15, θ = 0.015873 β = 3.001025 and p = 0.765334.

Note that this parameter satisfied the existence conditions φ3 = 0.26 > 0.15 = δ2.
Under this specific set of parameter values we obtained the following eigenvalues:

λ1 = −0.11, λ2 = −0.03 and λ3 = 0.02

Observe that λ3 is positive, then the equilibrium is unstable. Biologically it means
that wrasse and CoTS population might survive over time but in absence of the coral.

4.1.7 Wrasse Only Exclusion Equilibrium

Now we are going to analyze the wrasse only exclusion equilibrium - that is, when
the coral and the starfish survive, but the wrasse becomes extinct, i.e w = 0. We will
now provide a theorem that shows the existence of this equilibrium point. The math-
ematical analysis was too complicated for its analytical expression to be determined
by inspection.

Theorem 1. There is a unique wrasse only exclusion equilibrium E6 = (0, c1∗, s1∗)
if pφ2 > θ .
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Proof. Existence. Suppose that pφ2 > θ. To calculate the wrasse only exclusion
equilibria, we solve the system of equations given by

φ2(1− c)− θs

p+ c
= 0, (4.6a)

and φ3(1− s) +
c

p+ c
= 0. (4.6b)

From Equation 4.6b we obtain

s(c) =
(1− c)φ2(c+ p)

θ
. (4.7)

Plugging Equation 4.7 in to Equation 4.6a, we obtain a third degree polynomial given
by

f(c) = a3c
3 + a2c

2 + a1c+ a0,

where a3 = φ2
θ

, a2 = −φ2
θ

+ 2pφ2
θ

, a1 =
(

1− 2pφ2
θ

+ p2φ2
θ

+ 1
φ3

)
and a0 = p

(
1− pφ2

θ

)
.

Since f(c) is a polynomial, then it is continuous particularly in, [0, 1]. Notice that

f(0) = p

(
1− pφ2

θ

)
.

Using the assumption that pφ2 > θ then

f(0) < 0,

on the other hand,

f(1) = p+
1

φ3

+ 1 > 0.

By the Intermediate Value Theorem, there is a value c∗1 ∈ (0, 1), such that f(c∗1) = 0.
Then there exists a positive real root c∗1 of f(c).

Uniqueness. Through an initial computational analysis using Mathematica 10.4
it was determined that two of these three roots were complex.

From our system we obtain that s∗1(c) =
(

(1−c∗1)φ2(c∗1+p)

θ

)
In conclusion, there is a unique equilibrium point - i.e, there is a unique wrasse only
exclusion equilibrium (0, c∗1, s

∗
1). �

Notice that the condition pφ2 > θ, represents the environment protection and the
growth rate of the coral is greater than the destruction of the coral.
Now, we proceed to analyze the stability of this equilibrium, which is given by compu-
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tational analysis. Using Wolfram Mathematica 10.4, we obtain the follow eigenvalues:

λ1 = −0.281, λ2 = 0.030, and λ3 = −0.002.

Since λ2 is positive, then the equilibrium is unstable.

4.1.8 Coexistence Equilibria

The coexistence equilibrium point occurs when the wrasse, coral, and starfish survive
along time. In the following, we provide a theorem that shows the existence of this
equilibrium.

Theorem 2. If pφ2 > θ and 1 + φ3(p + 1) > (β + 1)(1 + p)δ2, then there is at least
one coexistence equilibrium point E7 = (w2∗, c2∗, s2∗).

Proof. To calculate the coexistence equilibrium point, suppose pφ2 > θ and 1 +
φ3(p+ 1) > (β + 1)(1 + p)δ2 and the following system of equations

φ1

(
1− w

1 + βc

)
+ δ1s = 0, (4.8a)

φ2(1− c)− θs

p+ c
= 0, (4.8b)

and φ3(1− s) +
c

p+ c
− δ2w = 0. (4.8c)

Then we have

s(c) =
(1− c)φ2(c+ p)

θ
(4.9)

and

w(c) =
φ3(c+ p)

(
1− (1−c)φ2(c+p)

Θ

)
+ c

δ2(c+ p)
. (4.10)

Therefore, plugging Eq. 4.9 and Eq. 4.10 into Eq. 4.8a, we obtain a polynomial
function f(c) = a4c

4 + a3c
3 + a2c

2 + a1c+ a0 = 0, where
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a4 =
βδ1φ2

θφ1

,

a3 =− βδ1φ2

θφ1

+
φ3φ2

δ2θ
+
δ1φ2

θφ1

+
2βδ1pφ2

θφ1

,

a2 =− β − δ1φ2

Θφ1

− φ2φ3

δ2θ
+
βδ1p

2φ2

θφ1

− 2βδ1pφ2

θφ1

+
2δ1pφ2

θφ1

+
2pφ2φ3

δ2θ
,

a1 =
cφ3

δ2

+
c

δ2

− βcδ1p
2φ2

θφ1

+
cδ1p

2φ2

θφ1

+
cp2φ2φ3

δ2θ
− βcp− 2cδ1pφ2

θφ1

− 2cpφ2φ3

δ2θ
− c,

a0 =− δ1p
2φ2

θφ1

− p2φ2φ3

δ2θ
+
pφ3

δ2

− p.

Using the assumptions that pφ2 > θ and 1 +φ3(p+ 1) > (β+ 1)(1 + p)δ2 we have:

f(0) = −δ1p
2φ2

Θφ1

+
pφ3

(
1− pφ2

θ

)
δ2

− p < 0,

and

f(1) = −(β + 1)(p+ 1) +
(p+ 1)φ3 + 1

δ2

> 0.

Since f(c) is continuous ∀c ∈ [0, 1] and f(0) < 0 and f(1) > 0, then using the
Intermediate Value Theorem (Bolzano’s Theorem), we conclude that there is a pos-

itive real root, denoted c∗, such that f(c∗) = 0 Therefore, s∗ = ( (1−c∗)φ2(c∗+p)
θ

) and

w∗ =
φ3(c∗+p)

(
1− (1−c∗)φ2(c

∗+p)
θ

)
+c∗

δ2(c∗+p)
.

Thus, a coexistence equilibria point (w∗, c∗, s∗) exists. �

Observe that if E4 = (1 + β, 1, 0) is unstable then we have 1 + φ3(p + 1) >
(β + 1)(1 + p)δ2, and that is one of the conditions to guarantee the existence of
the equilibrium E7 = (w2∗, c2∗, s2∗). So if the equilibrium E4 is stable, we can not
guarantee the existence of E7.
Now, we are going to numerically analyze the stability. Using Wolfram Mathematica
10.4, we find the follow eigenvalues:

λ1 = −0.27, λ2 = −0.05 and λ3 = −0.01

Observe that all the eigenvalues are negative, so the equilibrium is stable. This sta-
bility implies that this coexistence is possible. All three species can persist together
for a prolonged period of time, just as they have in the reefs of Raja Ampat.

The conditions for existence and stability of each equilibrium are summarized in
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the following table (Table 3).

Equilibrium Existence Stability

E0 = (0, 0, 0) always unstable
E1 = (1, 0, 0) always unstable
E2 = (0, 1, 0) always unstable
E3 = (0, 0, 1) always unstable
E4 = (1 + β, 1, 0) always if 1+φ3(p+1) > (β+1)(1+p)δ2

then is unstable

E5 =
(
φ3(δ1+φ1)
δ1δ2+φ1φ3

, 0, φ1(φ3−δ2)
δ1δ2+φ1φ3

)
φ3 > δ2 unstable (computational)

E6 = (0, c1∗, s1∗) pφ2 > θ unstable (computational)
E7 = (w2∗, c2∗, s2∗) φ3 > δ2 and locally stable (computational)

1 + φ3(p + 1) > (β +
1)(1 + p)δ2

Table 3: Summary of conditions for existence and stability of System 4.3
.

5 Model with Constant Effort Harvesting

In this section, we analyze the model with constant effort wrasse harvesting. We
assume that the fishers make the same effort at all times to catch wrasse, making
the harvest directly proportional to wrasse biomass. Some portion of this harvest
is carried out using cyanide and blast - both of which cause coral mortality. As
harvesting increases, the amount of cyanide pumped and blast thrown into the sea
will also increase, resulting in greater coral mortality. As wrasse population directly
benefits from increased coral population, we can model destruction as a constant
effort“harvest” of coral - the more coral present, the more will exit the system via
destruction from cyanide and blast.

We now proceed to analyze Model 3.2, for which H(t) = H and D(t) = D, which
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is given by the following equations:

Ẇ = W

[
r1

(
1− W

K1 + bC

)
+ α1S

]
−HW, (5.1a)

Ċ = C

[
r2

(
1− C

K2

)
− γ1S

C + q

]
−DC, (5.1b)

and Ṡ = S

[
r3

(
1− S

K3

)
− α2W +

γ2C

C + q

]
. (5.1c)

Our new System 5.1 is a more general case of System 4.1 and can be reduced to it
by considering H = 0, D = 0. Therefore equilibria, existence conditions and results
associated to Model 3.2 holds to those of Model 5.1 in the previous section (Section
4), when H = 0, D = 0.
We non-dimensionalize System 5.1 as before to obtain the following system of equa-
tions:

dw

dτ
=w

[
φ1

(
1− w

1 + βc

)
+ δ1s

]
− hw, (5.2a)

dc

dτ
=c

[
φ2(1− c)− θs

p+ c

]
− dc, (5.2b)

ds

dτ
=s

[
φ3(1− s) +

c

p+ c
− δ2w

]
, (5.2c)

where φi =
ri
γ2

for i = 1, 2, 3; β =
k2b

k1

; p =
q

k2

; δ1 =
k3α1

γ2

; δ2 =
α2k1

γ2

; θ =
γ1k3

γ2k2

; and

h =
H

γ2

, d =
D

γ2

.

We proceed to analyze the system, first calculating the equilibria and their existence,
then establishing their stability. In some cases, we find that the equilibria are always
existing, and in others we provide conditions for existence. The stability analysis is
carried out “directly” or using numerical computational analysis.

The system has at least eight possible equilibria, denoted by Ei = (w∗, c∗, s∗) for
i = 0, .., 7:

21



E0 =(0, 0, 0), E4 =

(
(φ1 − h) (β(φ2 − d) + φ2)

φ1φ2

,
φ2 − d
φ2

, 0

)
,

E1 =

(
φ1 − h
φ1

, 0, 0

)
, E5 =

(
φ3 (δ1 + φ1 − h)

δ1δ2 + φ1φ3

, 0,
δ2(h− φ1) + φ1φ3

δ1δ2 + φ1φ3

)
,

E2 =

(
0,
φ2 − d
φ2

, 0

)
, E6 =(0, c1∗, s1∗),

E3 =(0, 0, 1), and E7 =(w2∗, c2∗, s2∗).

Observe that the equilibrium points E0, E3 always exist. The existence of equi-
libria E1, E2, E4, E5, on the other hand, are conditional. In the cases of equilibria E6

and E7, we provide a proof of existence.
To analyze the stabilities of E0, E1, E2, E3, E4, we calculate the Jacobian matrix

of the rescaled System 5.4b, and obtain the follow matrix:

J(w, c, s) :=

sδ1 + φ1 − h− 2 wφ1
cβ+1

w2βφ1
(cβ+1)2

wδ1

0 φ2 − d− 2φ2c− θsp
(p+c)2

− cθ
c+p

−sδ2
sp

(p+c)2
c
c+p
− 2φ3s+ φ3

.
(5.3)

We now present a detailed analysis of the existence and stability of all the equilibria
for this system. Notice that all eigenvalues and conditions for existence reduce to
those presented in Section 4 for the model without harvesting or destruction (when
h = 0, d = 0).

5.1 Extinction Equilibrium

The trivial equilibrium E0 = (0, 0, 0) always exists. The Jacobian Matrix 5.3 evalu-
ated at the trivial equilibrium is provided by

J(E0) =

φ1 − h 0 0
0 φ2 − d 0
0 0 φ3

 .
The eigenvalues are λ1 = φ1 − h, λ2 = φ2 − d and λ3 = φ3. Since λ3 is positive, this
equilibrium is unstable.
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5.2 Coral and Starfish Exclusion Equilibrium

The equilibrium E1 =
(
φ1−h
φ1

, 0, 0
)

exists if φ1 > h, i.e. r1 > H in terms of the

original parameters. That is, E1 exists if the wrasse growth rate is larger than the
rate at which it is harvested. The coral and the starfish disappear and only the wrasse
survive.
The Jacobian Matrix 5.3 evaluated at E1 is given by:

J(E1) =


h− φ1

β(h−φ1)2

φ1
δ1

(
1− h

φ1

)
0 φ2 − d 0

0 0 δ2

(
h
φ1
− 1
)

+ φ3

 ,
with eigenvalues

λ1 = h− φ1, λ2 = φ2 − d, and λ3 = δ2

(
h

φ1

− 1

)
+ φ3.

Observe that if φ2 > d, then λ2 is positive. Therefore, the equilibrium is unstable.
Biologically, this means that if the growth rate of the coral is greater than the rate at
which it is destroyed by IUU fishing, then the coral population will not go extinct. The
population rebounds, and the system moves away from this equilibrium. However, if
d > φ2 and φ3 < δ2( h

φ1
− 1), then E1 can be stable.

5.3 Wrasse and Starfish Exclusion Equilibrium

Equilibrium E2 =
(

0, φ2−d
φ2

, 0
)

exists if φ2 > d - i.e, r2 > D, in terms of the original

parameters. This means that the rate of coral growth is higher than the rate at which
it is destroyed by IUU fishing. The Jacobian Matrix 5.3 at this equilibrium is

J(E2) =

φ1 − h 0 0

0 d− φ2
Θ(φ2−d)
d−(p+1)φ2

0 0 d−φ2
d−(p+1)φ2

+ φ3

 .
The eigenvalues are

λ1 = φ1 − h, λ2 = d− φ2, and λ3 =
d− φ2

d− (p+ 1)φ2

+ φ3.

This equilibrium exists if φ1 > h, that is the growth rate of the wrasse is great than
the rate at which it is destroyed by IUU fishing. This implies that λ1 > 0 then the
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equilibrium is unstable.

5.4 Wrasse and Coral Extinction Equilibrium

The wrasse and coral extinction equilibrium, E3 = (0, 0, 1), always exists. The Jaco-
bian Matrix 5.3 evaluated at E3 is given by

J(E3) =

δ1 + φ1 − h 0 0
0 φ2 − θ

p
− d 0

−δ2
1
p

−φ3

 ,
which has eigenvalues λ1 = δ1 + φ1 − h, λ2 = φ2 − θ

p
− d and λ3 = −φ3.

The equilibrium is unstable if φ1 + δ1 > h. This means that the rate at which wrasse
exit the system via harvest is less than the overall growth of the wrasse population.
However if δ1 + φ1 < h and pφ2 > θ + pd then E3 can be stable.

5.5 Starfish Only Exclusion Equilibrium

The starfish only exclusion equilibrium E4 =
(

(φ1−h)(β(φ2−d)+φ2)
φ1φ2

, φ2−d
φ2

, 0
)

exists if

φ1 > h and φ2 > d. The Jacobian matrix 5.3 evaluated at E4 is

J(E4) =

h− φ1
β(h−φ1)2

φ1

δ1(φ1−h)((β+1)φ2−dβ)
φ1φ2

0 d− φ2
Θ(φ2−d)
d−(p+1)φ2

0 0 d−φ2
d−(p+1)φ2

+ δ2(h−φ1)((β+1)φ2−dβ)
φ1φ2

+ φ3

 .
The eigenvalues of J(E4) are

λ1 =h− φ1, λ2 = d− φ2

and λ3 =
d− φ2

d− (p+ 1)φ2

+
δ2 (h− φ1) ((β + 1)φ2 − dβ)

φ1φ2

+ φ3.

Observe that λ1 and λ2 are negative for the conditions given for the existence. The
stability of this equilibrium, then, depends on the third eigenvalue λ3.

If φ3 +
φ2 − d

φ2 − d+ p
>
δ2 (φ1 − h) (β(φ2 − d) + φ2)

φ1φ2

, then the equilibrium is unstable,

otherwise the equilibrium can be stable.
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5.6 Coral Only Exclusion Equilibrium

The equilibrium E5 =
(
φ3(δ1+φ1−h)
δ1δ2+φ1φ3

, 0, δ2(h−φ1)+φ1φ3
δ1δ2+φ1φ3

)
only exists when 0 < h−φ1 < δ1.

This means that the intrinsic growth rate of the CoTS has to be greater than the
detriment to the CoTS population from the wrasse being in the environment for this
equilibrium to exist biologically.

However, due to the complexity of the analytic eigenvalues, we proceed to calculate
the eigenvalues numerically with a set of parameters that satisfy the conditions of
existence (see Section 8), which are

φ1 = 0.03, φ2 = 0.0259, φ3 = 0.26, δ1 = 5.5× 10−11, δ2 = 0.15,

θ = 0.015873 β = 3.001025 p = 0.66276, h = 0.03, d = 0.02.

Through the use of Wolfram Mathematica 10.4, we found the eigenvalues of this
equilibrium numerically, they are

λ1 = −0.15, λ2 = −0.02 and λ3 = 0.11

Observe that λ3 is positive, then the equilibrium is unstable.

5.7 Wrasse Only Exclusion Equilibrium

We analyze the equilibrium in which no wrasse population biomas are present - but
CoTS and coral exist. Coral are able to survive without the trophic cascade provided
by wrasse; and CoTS are free from predation by wrasse.

Theorem 3. There is a unique wrasse only exclusion equilibrium (0, c1∗, s1∗)
if pφ2 > θ + dp.

Proof. Existence. To calculate the wrasse only exclusion equilibrium, we suppose
pφ2 > θ + dp and solve the follow system of equations given by

φ2(1− c)− θs

p+ c
− dc =0, (5.4a)

φ3(1− s) +
c

p+ c
=0. (5.4b)

From Equation 5.4a, we have

s(c) =
(1− c)φ2(c+ p)

θ
− d(c+ p)

θ
. (5.5)
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Plug Equation 5.5 in Equation 5.4b, then we obtain a third degree polynomial

f(c) = a3c
3 + a2c

2 + a1c+ a0,

where a3 = φ2
θ
, a2 = d

θ
− φ2

θ
+ 2pφ2

θ
, a1 = 1− 2pφ2

θ
+ p2φ2

θ
+ 1

φ3
+ 2dp

θ
, a0 = p− p2φ2

θ
+ dp2

θ
.

We want to proof the existence of c1∗ that satisfies f(c1∗) = 0.
Since f(c) is a polynomial, then f(c) is continuous in [0, 1]. Using the assumption
that pφ2 > θ + dp then

f(0) =
p (dp+ θ − pφ2)

θ
< 0

and

f(1) = p+
1

φ3

+ 1 +
d

θ
+

2dp

θ
+
dp2

θ
> 0,

by the Intermediate Value Theorem (Bolzano’s Theorem), there is a c1∗ ∈ (0, 1) such
that f(c1∗) = 0.

Uniqueness. Through an initial computational analysis using Wolfram Mathe-
matica 10.4, it was determined that two of these three roots are complex.
From our system we obtain that

s1 ∗ (c1∗) =
(1− c1∗)φ2(c1 ∗+p)

θ
− d(c1 ∗+p)

c1 ∗ θ
.
In conclusion, there is a unique equilibrium point i.e, there is a wrasse Only Exclusion
Equilibrium (0, c1∗, s1∗). �

The stability of this equilibrium is given by calculating the eigenvalues of Matrix
(5.3) at E7. They are given by

λ1 = −0.270, λ2 = 0.022 and λ3 = −0.001.

Notice that λ2 > 0. Thus, E7 is unstable.

5.8 Coexistence Equilibrium

We next analyze the equilibrium at which all three populations persist over time and
none are driven to extinction. The populations reach a certain biomass at which they
remain. Because this equilibrium point is too complicated for its analytical expression
to be determined by inspection, we prove existence with the following theorem:
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Theorem 4. Assume that

1 +
pφ2φ3

δ2θ
+
pφ2δ1

θ
>
φ3

δ2

+
pd

θ

(
δ1

φ1

+ φ3

)
+

h

φ1

(5.6)

and

(1+p)
φ1φ3

δ2

+
φ1

δ2

+(1+p)(1+β)

[
(1 + p)δ1d

θ
+ h

]
+(1+p2)

φ1φ3d

δ2θ
> φ1(1+p)(1+β)

(5.7)
then there is at least one coexistence equilibrium point E7 = (w2∗, c2∗, s2∗).

Proof. We assume Expressions 5.6 and 5.7 and solve the following system of equations:

φ1(1− w

1 + βc
) + δ1s = 0, (5.8a)

φ2(1− c)− θs

p+ c
= 0, (5.8b)

and φ3(1− s) +
c

p+ c
− δ2w = 0. (5.8c)

To calculate the coexistence equilibria point we solve the equations in terms of c,

s(c) =
(c+ p) ((1− c)φ2 − d)

θ
(5.9)

and

w(c) =
φ3(c+ p)

(
1− (c+p)((1−c)φ2−d)

Θ

)
+ c

δ2(c+ p)
. (5.10)

Therefore, plugging Eqs. 5.9 and Eq. 5.10 into Equation 5.8a, we obtain a polynomial
function

f(c) = a4c
4 + a3c

3 + a2c
2 + a1c+ a0 = 0,

where
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a4 =
βδ1φ2

θ
,

a3 =− βδ1φ2

θ
+
βdδ1

θ
+
δ1φ2

θ
+
φ1φ2φ3

δ2θ
+

2βδ1pφ2

θ
,

a2 =− βφ1 +
dφ1φ3

δ2θ
+
dδ1

θ
− δ1φ2

θ
− φ1φ2φ3

δ2θ
+

2βdδ1p

θ
+ βh+

βδ1p
2φ2

θ
− 2βδ1pφ2

θ
+

2δ1pφ2

θ
+

2pφ1φ2φ3

δ2θ

a1 =
βcdδ1p

2

Θ
+

2cdpφ1φ3

δ2Θ
+

2cdδ1p

Θ
+
cφ1

δ2

+
cφ1φ3

δ2

+ βchp+ ch−

βcδ1p
2φ2

Θ
+
cδ1p

2φ2

Θ
+
cp2φ1φ2φ3

δ2Θ
− βcpφ1 −

2cδ1pφ2

Θ
− 2cpφ1φ2φ3

δ2Θ
− cφ1

a0 =
dp2φ1φ3

δ2Θ
+
dδ1p

2

Θ
+ hp− δ1p

2φ2

Θ
− p2φ1φ2φ3

δ2Θ
+
pφ1φ3

δ2

− pφ1.

Using Equations 5.6 and 5.7 we have:

f(0) = pφ1

[
φ3

δ2

+
pd

θ

(
δ1

φ1

+ φ3

)
+

h

φ1

− 1− pδ1φ2

θ
− pφ2φ3

δ2θ

]
< 0,

and

f(1) = (1+p)
φ1φ3

δ2

+
φ1

δ2

+(1+p)(1+β)

[
(1 + p)

δ1d

θ
+ h

]
+(1+p2)

φ1φ3d

δ2θ
−φ1(1+p)(1+β) > 0.

Since f(c) is continuous ∀c ∈ [0, 1] and f(0) < 0 and f(1) > 0 using Intermediate
Value Theorem (Bolzano’s Theorem), we conclude that there is a real positive root,
denoted c2∗, such a f(c2∗) = 0 therefore

s2∗ =
(c2 ∗+p) ((1− c2∗)φ2 − d)

θ

and

w2∗ =
φ3(c2 ∗+p)

(
1− (1−c2∗)φ2(c2∗+p)

θ

)
+ c2∗

δ2(c2 ∗+p)
.

Thus, a coexistence equilibrium point (w2∗, c2∗, s2∗) exists. �
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As in other cases, the stability of the equilibria will be calculated using computa-
tional analysis. The eigenvalues of this equilibrium are:

λ1 = −0.267, λ2 = −0.027 and λ3 = −0.006.

All of the eigenvalues are negative, hence the coexistence equilibrium is locally stable.

The results are summarized in the following table.

Equilibria Existence Stability

E0 = (0, 0, 0) Always Unstable

E1 = (φ1−hφ1
, 0, 0) If φ1 > h If φ2 > d then is unstable

E2 = (0, φ2−dφ2
, 0) If φ2 > d Unstable

E3 = (0, 0, 1) Always If φ1 + δ1 > h then is unstable

E4 =
(

(φ1−h)(β(φ2−d)+φ2)
φ1φ2

, φ2−dφ2
, 0
)

If φ1 > h and φ2 > d If φ3 + d−φ2
d−(p+1)φ2

>
δ2(φ1−h)(β(φ2−d)+φ2)

φ1φ2
Then it is unstable

E5 =
(
φ3(δ1+φ1−h)
δ1δ2+φ1φ3

, 0, δ2(h−φ1)+φ1φ3
δ1δ2+φ1φ3

)
If 0 < h− φ1 < δ1 Unstable (computational)

E6 = (0, c1∗, s1∗) If pφ2 > θ + dp Unstable (computational)
E7 = (w2∗, c2∗, s2∗) ∆1 > ∆2 and ∆3 < ∆4 Locally Stable (computational )

Where: ∆1 = 1 + pφ2φ3
δ2θ

+ pφ2δ1
θ , ∆2 = φ3

δ2
+ pd

θ

(
δ1
φ1

+ φ3

)
+ h

φ1
,

∆3 = φ1(1 + p)(1 + β) and,

∆4 = (1 + p)φ1φ3δ2
+ φ1

δ2
+ (1 + p)(1 + β)

[
(1+p)δ1d

θ + h
]

+ (1 + p2)φ1φ3dδ2θ

Table 4: Summary of conditions for existence and stability of system (5.1)

6 Parameter Estimation

In this section, we show the parameter values we estimated for the simulations of our
model. Some parameter values were estimated from literature and others were based
on of assumptions. We will now proceed to explain how we obtained each parameter
value.

Wrasse carrying capacity, K1 :
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Krista S Graham [13], provided an overview of general information about the
Humphead wrasse. We estimated the natural carrying capacity of the wrasse
within 1 km2 to be one third of its maximum observed carrying capacity in the
presence of coral which is 2000 wrasse per km2. From biographical studies on
the humphead wrasse [23] we estimated the wrasse’s average mass to be 181 kg.
Thus we computed the carrying capacity of the wrasse to be 2000

3
times 181 =

120667 kg/km2.
Coral carrying capacity, K2:
In our work we consider an area of 1 km2 and from several studies [25] conducted
on growth of different species of hard coral it was found that coral has a mass
of 5mg/cm2, from which we calculate 1 km2 of coral to be 50,000 kg/km2 which
we take to be the carrying capacity of the coral.
CoTS carrying capacity, K3:
De’ath et al [9],conducted a study on factors within an ecosystem that affect
CoTS behavior. The work was conducted on the Great Barrier Reef, where it
suggests that CoTS are also able to feed on organisms other than hard coral
such as soft corals and algae [5]. Based on this study, we estimated 550 kg/km2

to be the natural carrying capacity of the CoTS.
Conversion rate of biomass from CoTS to wrasse, α1:
Randall [22] led a study on the digestive tract of the humphead wrasse and con-
cluded that CoTS class, Asteroidea, only made up about 3.4% of the surveyed
wrasses’ digestive tracts. Judging from the size of the wrasse relative to the
CoTS and considering the information found in this study, we estimated the
conversion rate of biomass from CoTS to wrasse to be about 5 ×10−14 kg/km2

a year for each CoTS eaten by a wrasse per year.
Predations rate of biomass on CoTS from wrasse, α2 :
Graham’s work [13] also showed the Humphead wrasse being one of the few
predators that is willing and able to eat toxic animals such as the CoTS. From
this report, we estimated that the Humphead wrasse must predate on the CoTS
at a rate that can keep the population in check and in coexistence with the rest
of the ecosystem. Based on this information and simulation trials, we estimated
a yearly loss of CoTS biomass due to wrasse predation of 6.21545 x 10−9 kg/km2.
Intrinsic growth rate of the wrasse, r1:
Graham [13] observed that it takes 5-7 years for a wrasse to reach sexual ma-
turity and that wrasse have a tendency to spawn throughout the year . Also,
in a study on wrasse spawning [8], Colin notes that predation on wrasse eggs
is uncommon in the ecosystem. From these, we estimated the intrinsic growth
rate of the wrasse biomass to be 1.5 ×10−4 kg/km2 per year.
Intrinsic growth rate of the coral, r2:
Buddmeier et al. [7] studied many different species of coral and their growth
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rates. Since we are interested in Sclerectinia coral which is made up of many
different species of hard coral, we estimated, based on simulations, and the
paper that the intrinsic growth rate of the coral biomass to be 0.000129 kg/km2

per year.
Intrinsic growth rate of the CoTS, r3:
Fabricius et al. [11] notes that the CoTS takes two years to reach adulthood and
estimates survival rates of the CoTS for the first seven years of its life. From
this study, we estimated the intrinsic growth rate of the CoTS to be 1.3 times
10−3 kg/km2 per year.
Predation rate of coral from CoTS, γ1:
Keesing’s PhD thesis [16] focuses on the eating rates of CoTS. Based on his
study, we assume that the CoTS within Raja Ampat to average at 25cm in
diameter. From the size of the CoTS we estimated the loss of coral biomass
yearly from each CoTS to be 7.215 x 10−3 kg/km2.
Conversion rate of biomass from coral to CoTS, γ2:
From Keesing’s thesis [16], we also estimated that the converstion rate from
coral to CoTS biomass to be 0.005 kg/km2 for each year for each CoTS in the
environment.
Conversion factor from coral to wrasse biomass carrying capacity, b:
The value of b was based on general studies of the characteristics and the fact
that wrasse reside within coral reefs observed and recorded by Graham, [13].
The information in the report influenced our estimate but the estimate was not
taken directly from the report. We assumed that the wrasse’s carrying capacity
should be tripled in the presence of coral that is at carrying capacity. In the
non-dimensionalized model, this translates to β = 3. So, we took K1b

K2
≈ 3 and

calculated b to be 7.242494 based on our values from K1 and K2.
CoTS mid-saturation threshold for predation on coral, q:
Calculated from possible estimated steady states of the ecosystem and the es-
timated eating rate of the CoTS which we take to be 10 m2 a year [20] We
took the estimated mass of 0.5 kg per year and from this we then set the
Cγ2S
C+q
≈ 0.5 and used varying estimates of possible steady states to calculate q.

One of the cases we used was S = 14000, C = 14000 and calculated that a q =
33138kg/km2 ≈ 0.5.
Function of harvest on the wrasse, H(t):
The rate at which wrasse are harvested from the area will be varied in between
a range of (0, 0.04). This range was estimated based on simulations and we
hope to include, in our future work, calculations of maximum sustainable yield
so that we may have a more accurate maximum value for harvest.
Function of destruction to the coral, D(t):
The rate at which coral is destroyed by harmful fishing practices in the area
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will be varied in between a range of (0, 0.04). This range was estimated based
on simulations and we hope, in our future work, to calculate the maximum
sustainable yield for coral in order to have a more accurate maximum value for
destruction.

Table 5: Model Parameter Values

Parameter Definition Values References

K1 Carrying capacity of wrasse 120667 [13]; [23]
K2 Carrying capacity of coral 50000 [25]
K3 Carrying capacity of CoTS 550 [9]
α1 Conversion rate of biomass from

CoTS to wrasse
5× 10−17 [22]

α2 Predation rate of CoTS from
wrasse

6.21545×10−9 [13]

r1 Intrinsic growth rate of wrasse 0.00015 [8]; [13]
γ1 Predation rate from CoTS on

coral
0.007215 [16]

γ2 Conversion rate of Biomass from
coral to CoTS

0.005 [16]

b Conversion factor from coral to
wrasse carrying capacity

7.242494 Estimated

q CoTS mid-saturation threshold
from coral consumption

33138 Estimated

H Function of wrasse harvest (0,0.04) Estimated
D Function of coral destruction (0,0.04) Estimated

7 Simulations

In this section, we will numerically simulate our dimensionless model for constant
effort harvesting, using MATLAB’s ODE solver ode45. We will assume the initial
conditions (w(0) = 0.1, c(0) = 0.28, s(0) = 0.02) for our special case where there is no
harvest or destruction (h = 0 and d = 0 in Figure 1). All the simulations presented
in this section were done with the values found in Table 5. Furthermore, the focus
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of our simulations are the destruction and harvest parameters, d and h respectively,
because our methods of intervention include minimizing human intervention.

First, we will consider a special case, which is where there are no outside distur-
bances, that is no harvesting nor destruction (h = 0 and d = 0). The case is chosen to
provide insight on the behavior of the system in the absence of human intervention.
We then consider the effects of constant effort harvesting, simulated by the harvest-
ing (h) and destruction (d) factors and observe how combinations of these parameter
values affects our ecosystem model 4.4.

Each simulation consists of three plots, which represent each species’ biomass (in
kg
km2 ) in relation to their respective carrying capacities, which are independent from
one another. We numerically simulate the change in each species’ biomass in years. It
is our assumption that growth enhancing organisms; such as the coral, are only able
to grow to its natural carrying capacity. Should an organism have a biomass above
1, it is only because the presence of another organism, i.e, the coral, has allowed it
to grow above its natural carrying capacity. One such case is the Humphead wrasse,
which, in the absence of coral, has a very limited carrying capacity. The actual num-
ber of individuals at a year t can be obtained by multiplying the value of each species
at year t by their own carrying capacity and dividing by the averaged mass respective
to each species (see discussion in Parameter Estimation).
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7.1 Harvest and Destruction Exclusion Simulations

Figure 3: Coexistence simulation in the absence of harvest and destruction with
varying initial conditions (W (0) = 0.1, C(0) = 0.28, S(0) = 0.02)(a) and (W (0) =
0.3, C(0) = 0.5, S(0) = 0.7)(b).

Figure 1 shows that the three species can live in coexistence with each other. We first
simulated the system with initial conditions extrapolated from data provided by Ta-
ble 5. We then varied them to see if we would get the same result. The plot in Figure
3 was obtained with initial conditions of w(0) = 0.1, c(0) = 0.28, and s(0) = 0.02. We
then altered the initial conditions to be unfavorable to the coral, where we start with
w(0) = 0.3, c(0) = 0.5 and s(0) = 0.7 to study how influential initial conditions would
be on the outcome of the simulation. Note that, on Figure 1(a), the CoTS biomass
begins a sharp increase for the first 2 decades. After which, it steeply declines until
it gradually stabilizes at around the 125 year mark. The coral biomass, on the other
hand, only appears to grow for the first few years after which it gradually decreases,
apparently stabilizing and slowly recovering at the 100 year mark. Now, observe that
the wrasse biomass appears to grow along with the CoTS biomass, where, as one de-
creases, the other grows. It is also worth noticing that the wrasse and CoTS biomass
begin to stabilize after year 150. The plot allows us to observe the typical behavior
of our system. The same behaviors apply to Figure 3(b), where the only difference
appears to be that the system progresses slightly faster toward equilibrium. Hence,
we conclude that the system always reaches equilibria under the set of parameters
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given by Table 5.

7.2 Simulations with Destruction and Harvest

Next, we consider wrasse, coral and CoTS biomass separately under the effects of
harvesting or destruction. In order to be able to study the quantitative effects of
harvesting and destruction we select cases where h = 0.008 and d = 0 or h = 0 and
d = 0.008 for each one. We also consider a case where h = 0.008 and d = 0.008. Each
case is plotted together with the same plot seen in Figure 3(a) in order to compare
them directly.

Figure 4: Comparison on harvesting and destruction effects on wrasse biomass.

Figure 4 shows the effects on wrasse biomass caused by only considering harvesting
(h = 0.008) or destruction (d = 0.008). When comparing the destruction and har-
vesting plots on Figure 4(a) , it is apparent that harvest has greater effect on wrasse
biomass than destruction. This result stems from the fact that harvest directly re-
moves the biomass of the wrasse from the environment. Nonetheless, the destruction
of coral still has a negative effect on the wrasse. Because the wrasse depends on the
coral for shelter, destroying the coral indirectly makes survival more difficult for the
wrasse. On Figure 4(b), we see the effects of a combination of harvest and destruction
have on the wrasse. We note that the wrasse is most negatively affected when there
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is a combination of harvest and destruction. Considering that both harvesting and
destruction have direct effects on the wrasse, the direct elimination of wrasse biomass
and destruction of its home, it would make sense for the combined effects in the plot
to the right to do more overall damage

Figure 5: Comparison on harvesting and destruction effects on coral biomass.

Figures 5(a) and 5(b) show us the effects of harvesting and destruction have on
the coral biomass. Figure 5(a) gives us two results, one where we only consider
harvesting (h = 0.008) and another where we only consider destruction (d = 0.008).
Note that the effects of harvesting appear to be considerably less than the effects of
destruction. This result seems intuitive, because destruction implies direct removal
of coral biomass, where as harvesting implies removal of the corallivore predator, the
Humphead wrasse, which in turns allows the CoTS to eat coral at an accelerated
rate. However, Figure 5(b) shows that the combination of destruction and harvesting
effects do not appear to amount for something far more critical than destruction
alone, rather it simply accelerates the rate at which the coral stabilizes.
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Figure 6: Comparison on harvesting and destruction effects on biomass

Figure 6 shows the effects of harvesting or destruction on the CoTS biomass. Note
that, in contrast to Figures 4 and 5, our CoTS biomass actually benefits when only
harvesting is considered (h = 0.008). This result occurs because of the removal of
wrasse biomass. Removing wrasse from the environment removes predators of the
CoTS which is what allows their biomass to grow easier. Alternatively, when consid-
ering only destruction to coral (d = 0.008), the CoTS biomass decreases. Destroying
coral eliminates prey of the CoTS that it needs to grow and survive. The elimination
of this prey inhibits the growth of the CoTS. On Figure 6(b) we can observe the joint
effects of harvesting and destruction. We note that the cumulative effects on CoTS
are not as drastic as they were in Figure 4(b) and Figure 5(b) for the wrasse and
coral. The CoTS are not affected by the combination of destruction and harvest as
the wrasse and coral are, on the contrary, it receives a benefit from it. Figure 6(b)
shows that the combined effects actually results in a benefit to CoTS biomass, at
least for these particular conditions.

From our various simulations we conclude there are more changes to biomas when
considering destruction, rather than harvesting. This is clearly seen in the effects it
has on the coral and CoTS biomass. Thus, harvesting affects wrasse the most, since
it is a direct intervention. However, for CoTS biomass, although neither harvesting
nor destruction affect its biomass directly, it suffers the most from adding destruction
effects to the environment.
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7.3 Varying destruction and harvesting

In this section, we consider two separate cases for each biomass. One where de-
struction parameter was set to d = 0.005 and plot several simulations where the
harvesting parameter was varied between h = 0 and h = 0.03. In a second case,
the harvesting parameter was set to h = 0.005 and we also plot several simulations
varying the destruction parameter from d = 0 and d = 0.04. Figure 3 shows a plot
of wrasse, coral and CoTS biomasses for each separate case with initial conditions
given by (w(0), c(0), s(0)) = (0.3, 0.5, 0.7). In Figure 7, the arrows in the plots specify
the direction of flow of parameter values from the h = [0, 0.04]. From these plots,
we conclude that harvesting practices are more harmful to wrasse and coral but are
beneficial to CoTS. The harvesting of the wrasse removes predators of the CoTS and
which causes the wrasse’s biomass to decline in the environment. The fewer predators
there are in the environment, the higher CoTS biomass can achieve which is why they
grow to a larger biomass as harvest is increased. On the other hand, the higher the
biomass, the more CoTS to predate on the coral which is what makes coral experience
a decline in biomass as harvest is increased.
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Figure 7: Simulation of wrasse, coral and CoTS for d = 0.005 and h = [0, 0.04].

From Figure 7, we can observe the transitional effect of increasing harvesting
in a system where there is already a destructive component. Such a system would
represent a case where humans develop more efficient, but non-destructive fishing
methods. Note that although damage to the coral is minimized as much as possible,
there appears to exist a maximal harvesting effort, past which both the coral and
wrasse are driven to extinction.
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Figure 8: Simulation of wrasse, coral and CoTS for h = 0.005 and d = [0, 0.04].

Figure 8 shows the transitional effect of increasing destruction in a system where
harvesting is already present. Biologically, this would be a representation of a case
where humans made use of more destructive practices, but inefficient fishing tech-
niques that result in a bigger detriment for the environment. In this case case, not
only do they fail to harvest wrasse, but utilizing more vicious and destructive meth-
ods can cause a chain reaction where the wrasse population decreases, allowing the
CoTS to grow and eventually reach a level where it becomes dangerous to the coral
and thus, the entire ecosystem.
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Figure 9: Simulation where harvesting and destruction steadily increase.

Figure 9 plots show similarites with those of Figures 7 and 8, except with a few dif-
ferences. Note that although coral and wrasse biomass still appear to suffer similarly
from incorporating harvesting and destruction, there is a change in behavior for CoTS
biomass. From Figure 3(a) and 3(b) we observe that there exists a particular behavior
around 100 and 150 years where the CoTS biomass appears to stabilize. Therefore,
as harvesting and destruction increases, the initial behavior for CoTS appears to be
that of general detriment. However, as time progresses, for higher harvesting and
destruction values, an actual benefit to CoTS biomass in the long-run is observed.
That is, given that, initially, the wrasse still exists within the environment, which
will suppress CoTS biomass progression, but as soon as harvesting increases beyond
a certain threshold for the wrasse, it decreases past a point where it cannot suppress
CoTS biomass efficiently.

The simulations in this section aid to provide a good intuitive idea as to what to
do when it comes to intervening or regulating fishing practices, be it non-destructive
or destructive. We conclude that avoiding environmentally harmful fishing methods
would prevent further complications. Figure 8 shows that each species is negatively
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affected by higher levels of destruction to the coral. Destructive fishing practices
inhibit these species from contributing to the coexistence of all of the species residing
within the coral reef.

8 Sensitivity Analysis

In this section, we show the sensitivity analysis to determine which parameters have
the largest potential effect on the outcome of our model solutions. Determining
whether certain parameters have a positive or negative effect on each species in the
model will give us insight as to how particular parameters of the model affect each of
the species in our study.

Since we are interested in studying how destructive fishing practices affect the
ecosystem, we will conduct sensitivity analysis on our destruction and harvest pa-
rameters from our non-dimensionalized model (d and h). We will first study the
sensitivity of d and h for our coexistence equilibrium in Figure 3, that is under har-
vesting and destruction practices were used (d = 0.003 and h = 0.008). The same
parameter values listed in Table 5 for all of the following simulations. In order to
compare the results found directly, we will conduct the study with d = h with the
same initial conditions from Figure 3 (w(0) = 0.1, c(0) = 0.28 and s(0) = 0.02). We
expect to find out whether destruction to coral is as sensitive to coral as harvest of
wrasse is to the wrasse.

. Since the solution is differentiable with respect to our destruction parameter, d,
then in forward sensitivity analysis, we calculate ∂w/∂d and define the normalized
sensitivity index [3]:

Swd = lim
δd→0

(
δw

w

)(
δd

d

)−1

=

(
d

w

)(
∂w

∂d

)
.

This normalized sensitivity index measures the relative change in the wrasse δw/w
with a relative small change to the destruction parameter δd/d.

Sensitivity analysis with respect to d is also performed on coral, c, and CoTS, s.
From this process, we obtain three new differential equations that represent changes in
population biomass sensitivity index to each respective species over time with respect
to d. We then utilize a MATLAB′S ODE solver ode45, to solve our new three
differential equations system simultaneously with the differential equations from our
non-dimensionalized system thus our three new differential equations will serve as an
adjoint system. We only plot the graphs corresponding to d’s sensitivity indexes and
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how it changes over time with respect to each species (wrasse, coral, and CoTS). The
way it is interpreted at any time t, is if we were to increase our parameter by 1%,
then the effect that each species experiences is given by the product of 1% at time
t and the given sensitivity index. We repeat the same process with our harvesting
parameter.
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Figure 10: Time dependent sensitivity indexes for destruction where h = 0.008, d =
0.003 and initial conditions (w(0) = 0.1, c(0) = 0.28, s(0) = 0.02).

Figure 10, provides the corresponding sensitivity indexes of each species to de-
struction, d, at any given time t. For purposes of accuracy, we selected a time step of
0.001, which plots roughly one data point per hour. A sudden increase in destruction
would have very little effect on the wrasse because the wrasse has some ability to
survive that is independent of the coral. Coral becomes more sensitive to changes
in destruction as the system approaches equilibrium. This event occurs because as
the CoTS biomass approaches equilibrium and is kept at a tolerable biomass for the
coral by the wrasse, the coral has an easier time tolerating destruction. What is
most interesting about this sensitivity analysis is that as the system approaches equi-
librium, the CoTS would actually benefit from increased destruction of the coral.
This outcome, at first, seems counter-intuitive due to the fact that the coral is the
main food supply of the CoTS. However, when considering the fact that coral also
increases the carrying capacity of the wrasse, which is a predator of the coral, a very
interesting case is discovered. Destruction of the coral would also mean a decrease in
additional carrying capacity of the wrasse. So, the fact that the CoTS would benefit
from the destruction of the coral means that the loss of predators that comes from
the destruction of the coral actually benefits the CoTS more than having more coral
in the environment to predate on.
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Figure 11: Time dependent sensitivity for harvest, h = 0.008, d = 0.003 and Initial
Conditions (w(0) = 0.1, c(0) = 0.28, s(0) = 0.02).

Figure 11, provides the plots for the changes in sensitivity indexes for each species
with respect to harvest, h. These plots provide the changes in biomass for each species
for any change in harvest h at any given time t. We observe that it seems as if coral
and wrasse have replaced each other. See Figure 10 vs Figure 11.

We then compare the wrasse’s sensitivity to harvest to the coral’s sensitivity to
destruction further under equal rates for harvesting and destruction (Figures 12 and
13). Figure 16 shows that the wrasse is the most sensitive species to changes in
rates of harvest. As the system approaches equilibrium, the wrasse approaches an
environmental carrying capacity with the level of harvest that has persisted over time.
As the wrasse’s biomass gets closer to its new environmental carrying capacity that
includes harvest, changes in harvest change this carrying capacity. These changes in
carrying capacity change the biomass of the wrasse to an extent that is based on how
close the biomass of the wrasse was to the previous environmental carrying capacity.
Coral is hardly affected directly by changes in harvest because the coral can continue
to grow without the wrasse in the environment. The sensitivity index for wrasse is
negative because an increase in harvest would remove wrasse biomass at a faster rate.
As the system approaches equilibrium, CoTS become more sensitive to changes in
harvest. The increase occurs because as each species approaches their environmental
carrying capacity that has a certain level of harvest factored in, changes in the level
of harvest begin to more directly affect each species biomass. The sensitivity index
for CoTS is positive and affects to CoTS because increased harvesting of the wrasse

45



would eliminate predators of the CoTS and would allow them to grow to a larger
biomass.

Figure 12: Time dependent sensitivity for destruction, h = 0.003, d = 0.003 and
initial conditions (w(0) = 0.1, c(0) = 0.28, s(0) = 0.02).
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Figure 13: Time dependent sensitivity for harvest, h = 0.003, d = 0.003 and initial
conditions (w(0) = 0.1, c(0) = 0.28, s(0) = 0.02).

We graph the solutions to the equations in the case that h = d so that we may
directly compare the sensitivity indexes (Figures 12 and 13). We checked the sensi-
tivity indexes of each species at times 150 and 250 years and recorded the results in
Table 6.

Table 6: Sensitivity Indexes for h = d at t = 150 and t = 250

Species
Sensitivity Values

150 yrs 250 yrs
Harvest Destruction Harvest Destruction

Wrasse -0.445 -0.003 -0.7422 -0.0104
Coral -3.82e-5 -0.4476 0.0001803 -0.7508
CoTS 0.01435 0.1044 0.003905 0.2883

Considering the fact that we began with the same initial conditions and that
harvest and destruction were set to the same value, it makes sense that destruction
to coral has about the same magnitude of effect on coral as harvest on wrasse has
to wrasse in the ecosystem. We once again note that CoTS benefit from increased
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destruction to coral or increased harvest of wrasse for the same reasons written in the
explanations of Figures 10 and 11.

From our sensitivity analysis, we observed that CoTS stand to gain from increases
in destruction or harvest. However, Table 6 and Figure 10 show that the CoTS would
benefit more from an increase in destructive fishing practices because that occurrence
would take away from the wrasse’s additional carrying capacity more than it would
decimate the CoTS main food supply. Sensitivity indexes for wrasse with respect to
harvest and coral with respect to destruction suggest that harvest affects wrasse to
the same extent that destruction affects coral.

9 Seasonal Harvesting

Fishers in Raja Ampat increase the harvest effort during the northwest monsoon
season when the weather is relatively mild, and decrease it during the southeast
monsoon season when weather conditions are poorer. In some villages, this seasonality
is amplified with the practice of sasi, by which restrictions are placed on harvest for a
portion of each year to allow fish populations to replenish themselves. Such seasonality
is interesting to consider in this model, especially when compared to constant effort
harvesting. Therefore, harvest and destruction is modeled through sinusoidel sine
function. We then run simulations on MATLAB. The proposed seasonality functions
for harvesting and destruction functions are given by

H(t) = H1(sin(2πt− 1.5) +H),

and

D(t) = D1(sin(2πt− 1.5) +D),

where H1 = eh and D1 = ed represent the ranges of harvesting and destruction pres-
sure; and H and D represent the portion of total wrasse and coral biomass removed
from the system via harvest and destruction in one year. To make results more com-
parable to those of the constant effort harvesting simulations, these functions are
non-dimensionalized by dividing by γ2. The functions simplify to

h(t) = h1(sin(2πt− 1.5) + h), (9.1)

and

d(t) = d1(sin(2πt− 1.5) + d), (9.2)
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where h1 = eh and d1 = ed. The functions give the graphs plotted in Figure 14.

Figure 14: Graph of harvesting/destruction functions

The periods of the functions span a year - starting in July and ending in June.
High fishing season, then, is situated in the center of the time interval, in the months
October to March. Recall that this corresponds with the mild northwest monsoon
season, and also the time during which some villages in Raja Ampat enforce sasi.

9.1 Simulations

To compare seasonal harvesting to constant effort harvesting, three simulations will be
considered: constant destruction with varying harvest; constant harvest with varying
destruction; and constant harvest and destruction. Initial conditions w(0) = 0.1,
c(0) = 0.28 and s(0) = 0.02 are used.

Two values for e - in h1 and d1 - will be considered. At Boo and Kofiau Islands,
researchers observed at most 16 fishing boats and at least 10 fishing boats during
the years 2006-2011. Assuming no variation in wrasse catch per boat, we say that
there is a 10 : 16 of harvest and destruction during low season versus high season.
The harvesting function maximum and minimum values can be written as h + h1

and h − h1. Likewise, destruction function maximum and minimum values can be
written as d+ d1 and d− d1. Assuming no variation in wrasse catch per boat, we let
h+h1
h−h1 = 16

10
and d+d1

d−d1 = 16
10

, giving us h1 = 3
13
h and d1 = 3

13
d, thus, e = 3

13
. This is

the first value we consider for e. The second is set as 0.9 for the purpose of exploring
how considerable difference between high and low seasons affect biomasses. We first
consider varying d and h, respectively, when e = 3

13
.
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Figure 15: Comparison between varying d and varying h for e = 3
13

. Lines indicated
in the legend correspond to constant effort harvesting, while the magenta, green, cyan
lines correspond to seasonal harvesting.

We next consider varying d and h, respectively, when e = 0.9.

Figure 16: Comparison between varying d and varying h for e = 0.9. Lines indicated
in the legend correspond to constant effort harvesting, while the magenta, green, cyan
lines correspond to seasonal harvesting.

There appears to be little difference in trends for seasonal harvesting versus for
constant effort harvesting over time. The largest difference, though slight, is in wrasse
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biomass for e = 0.9 and varying d.
We next consider the case when h = d = 0.008 for both e = 0.9 and e = 3

13
.

Figure 17: The dashed line denotes constant effort harvesting, while the solid lines
result from seasonal harvesting

Wrasse appears to be the most affected by seasonal harvesting and destruction.
Seasonality drives wrasse biomass to a lower equilibrium biomass than constant effort
harvesting does, and more-so for e = 0.9 than for e = 3

13
. When e = 0.9, less

harvesting and destruction during low season, and more during high season. The
decrease in wrasse biomass over time may be due to the low fecundity of the wrasse,
given that it is such a long-lived fish. Populations are slow to rebound after any
disturbance, and this periodic disturbance at high levels - both from wrasse harvesting
and destruction of its habitat - could be damaging to wrasse biomass over time. That
said, the difference is quite small, almost to the point of being negligible. More
numerical analysis, in addition to mathematical analysis, will have to be done on the
seasonal harvesting model in the future for any conclusions to be made regarding it.
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10 Discussion

Coral Reefs in the Indonesian Province, Raja Ampat, are experiencing a decline in
coral coverage. Lack of predation on Crown-of-Thorns Seastars - due to the over-
fishing of predators beneficial to the coral reefs such as the Humphead wrasse - and
destruction by blast and cyanide fishing have devastated many coral reefs.

Our simulations showed that increases in wrasse fishing lead to increases in CoTS
biomass. This increase in CoTS biomass also leads to an increase in coral predation.
Therefore, overfishing indirectly leads to a more rapid depletion of the coral by CoTS
predation. Our sensitivity analysis also shows that CoTS would benefit greatly from
a sudden rise in fishing of the wrasse. This result stems from the wrasse predating
on CoTS at a rate that keeps their biomass at a level that is tolerable to the coral.

We also found that destruction of the coral by blast and cyanide fishing has the
largest effect on the system as a whole. Our simulations showed that because the
coral supports both the CoTS and the wrasse, higher levels of destruction indirectly
hurt both the CoTS and the wrasse. However, our sensitivity analysis showed that
the CoTS would benefit more from an increase in destruction of the coral over an
increase in the harvest of its predator, the wrasse. This event must occur because
the destruction of the coral near equilibrium must limit the carrying capacity of the
wrasse greatly. As a result, CoTS are enabled to grow to a higher biomass from the
decrease in predation, despite having less prey in the environment.

While overfishing and destructive fishing practices do considerable damage to the
system, our study shows that blast and cyanide fishing are factors that need to be
controlled. These practices, if left unchecked, can damage the coral reef beyond its
ability to recover. Also, a sudden rise in the use of these methods are factors that
contribute to coral being depleted by CoTS predation.

In conclusion, because destructive fishing practices are more harmful to the sys-
tem, measures should taken to limit these practices as much as possible. Implementing
more efficient methods of enforcing the law against illegal, unreported, and unreg-
ulated (IUU) fishing practices would benefit the reef greatly. Limiting destruction
would allow these fishermen to continue in their profession while also keeping from
disturbing the natural balance of the system considerably.
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