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Abstract

Anthrax is a potentially fatal biological pathogen and could be used as a bi-
ological weapon with devastating consequences. In particular, in the case of an
hypothetical anthrax attack on Maricopa County, AZ, the current governmental
response plan is inadequate. The currently used plume model predicts an unre-
alistically high number of infections because it assumes that anthrax spores are
symmetrically distributed over a large area and that 100% of those who breathe
the spores get infected. Since the predictions are unrealistically high, it is logis-
tically impossible to deliver that many antibiotics before the infections progress
to an untreatable stage. We develop a fine-grained plume model by using GIS
(Geographic Information System) data. The model is based on the scalar trans-
port equation and in-host modeling in order to better prioritize the distribution
of antibiotics. We assume that the attack is carried out via drone. We obtain
the diffusion and advection coefficients of the plume of anthrax spores based on
meteorological data and use the resultant concentrations along with census data
to build a susceptibility model. This model predicts which areas will be the hard-
est hit and, therefore, what quantity of antibiotics should be delivered based on
population density. Wind conditions play a significant role in shaping the plume.
We conclude that the state and local governments should modify their simplistic
Gaussian plume models in order to take into account environmental conditions and
hence better serve the people in harm’s way.

1 Introduction

Anthrax is an infectious disease caused by the spore-forming bacterium Bacillus an-
thracis [5]. Human beings can be infected by contact with infected animals, other con-
taminated products, or exposure to B. anthracis spores [16]. There are three forms of
the disease: cutaneous, inhalational, and gastrointestinal, of which inhalational anthrax
is the most lethal, with an almost 100% fatality rate if the infection is not treated [14].
Inhalational anthrax is only caused by exposure to anthrax spores, and infection is not
communicable between individuals [10].

127



According to the Centers for Disease Control and Prevention (CDC), anthrax is
considered a high-priority risk to national security. It is on the same list as the well-
known agents smallpox, plague, viral hemorrhagic fevers (e.g., Ebola and Marburg), and
botulism [2]. Anthrax can be spread across a long distance, which constitutes a threat
to public health [10]. World Health Organization experts have estimated that 50 kg
of B. anthracis spores released upwind of a population center of 500,000 persons could
result in 95,000 deaths and 125,000 hospitalizations [20],

The lethality of aerosolized B. anthracis spores was demonstrated in 1979 when an
unintentional release from a military microbiology facility in the former Soviet Union
resulted in 64 deaths [13]. The U.S. anthrax mailings in 2001 further underscored the
dangers of this organism as a bioterrorism threat [11].

Infection occurs in three stages: incubation, prodromal, and fulminant. In the incu-
bation stage, an individual develops the infection without presenting symptoms such as
fever and chills, nausea, vomiting, headache, shortness of breath, confusion or dizziness,
etc [3]. In the prodromal stage, some of the aforementioned symptoms appear. In the
last stage, these symptoms develop abruptly and will most likely lead to death, even
with intensive treatment [10,14].

Mathematical models of anthrax infections in animal populations have been studied
with the SICA model, where S(t), I(t), C(t), A(t) represent the susceptible animals, in-
fected animals, number of carcasses, and free living spores, respectively [17]. Saad-Roy,
et al. included carcass decay and animal recovery rates from anthrax [15]. Other studies
were focused on infection models where an individual can be infected by other indi-
viduals, through carcasses, or by living free spores in the environment. Friedman and
Yakubu included migration, birth, and death from other diseases to study the impact of
anthrax transmission rates, carcass feeding, carcasses induced environmental contami-
nation, and migration rates or extinction of animal populations [6]. These mathematical
models cannot be applied in humans, however, as person-to-person infection does not
occur [10].

Lawrence et al. developed a model to compare several emergency response strategies
in case of an anthrax outbreak in a large city; their model incorporated the Gaussian
plume model in order to obtain the number of spores inhaled by a person in a given loca-
tion [18]. Legrand et al. developed and evaluated the performance of a back-calculation
method in a single outbreak to characterize a release from the observation of the first few
cases, population densities, meteorological conditions1 and population movements such
as commuting data [12]. Isukapalli and others remarked on the importance of different
factors that influence the impact of anthrax releases, such as the release source, meteoro-
logical conditions, population distributions, human activity patterns, and physiological
characteristics of individuals [8].

In addition, Zaric et al. presented a compartmental model which evaluates the costs
and benefits of different strategies for pre-attack stockpiling and post-attack distribution,
as well as the benefits of rapid detection [21]. Jain and McLean provided a framework
for modeling and simulation of emergency events, including anthrax bioterrorism [9].

Regarding the incubation period of inhalational anthrax, two principal studies have
been conducted: Brookmeyer et al. developed a model for the incubation period dis-
tribution of inhalational anthrax in humans that fits data from the Sverdlovsk, Russia
outbreak using an exponential distribution to represent the in vivo bacterial growth
phase [1]. Wilkening has improved the model proposed by Brookmeyer by using a log-
normal distribution instead [19].

According to the CDC, anthrax can be treated with antibiotics such as ciprofloxacin,
doxycycline, amoxicillin, penicillin, clindamycin, rifampin, vancomycin, levofloxacin,
and Anthrax Vaccine Adsorbed (AVA) [3]. However, the pre-exposure vaccine for an-

1One-dimensional constant velocity.
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thrax, one of the possible means to prevent infection, is limited to military personnel,
laboratory technicians, and people working directly with the disease agent.

This work focuses on inhalational anthrax and assumes that the source of anthrax
spores is a military drone flying across a population center. Also, the movement of
people and the movement of cars are not taken into account in this model. We take
into account the influence of the wind in the dispersion of the anthrax spores, consider
antibiotics as the primary treatment method, assume that individuals will certainly die
at some time if they do not receive the appropriate treatment, and consider different
effectiveness rates of antibiotics for individuals in the symptomatic and asymptomatic
stages. Finally, as the amount of antibiotics is limited, the distribution of antibiotics to
patients in different stages and different areas is considered. This could provide better
guidance for public health officials.

In order to prioritize the delivery of medicine to the most vulnerable population
(the people who live in the areas with the highest concentrations and exposure times),
this project first aims to find the diffusive and advective transport of the plume of
anthrax spores via the transport equation, which provides the concentration of anthrax
spores in each part of the county of interest. Next, the susceptibility model identifies
the most vulnerable regions and the amount of antibiotics that should be delivered to
those areas. Finally, we develop a mixed integer linear program for triage optimization
considering one delivery of antibiotics to each area, the amount of antibiotics available,
and the number of infected individuals (symptomatic and asymptomatic) in each region.
Ultimately, the triage optimization attempts to minimize the number of deaths caused
by breathing anthrax spores.

2 Methods

2.1 Transport Equation

We assume that the attack is performed via sprayers attached to a drone. For simplicity,
we utilize a 2D spatiotemporal model. The diffusion coefficient of the spores is assumed
constant, and advection is determined by the wind velocity. This phenomenon can be
considered an atmospheric dispersion problem, which, according to Ciparisse et al., can
be modeled by the advection-diffusion equation [4].

Let ϕ : R2 × R → R and ~v : R2 × R → R2 be functions and γ be the distributional
source term of anthrax spores. Then we have

∂ϕ

∂t
−D∆ϕ+∇ · (ϕ~v) = γ, (1)

where ϕ is the concentration of spores and ϕ(t = 0) = 0, i.e. before the attack, the
concentration of anthrax is negligible. Additionally, D is the eddy diffusion coefficient

of the spores in the air, ~v is the velocity of wind; ∆ = ∂2

∂x2 + ∂2

∂y2 stands for the Laplace

operator, and ∇ =
〈
∂
∂x ,

∂
∂y

〉
. For numerical purposes, γ is approximated by

γ ≈ r

4πDw
exp

[
− (x− xd(t))2 + (y − yd(t))2

4πDw

]
,

where (xd(t), yd(t)) is the position of the drone at time t, which is the time that has
passed since the drone started to spread spores, r is the release rate of spores over the
course of the drone flight, and w controls the initial width of the plume; it is chosen
so as to comport with the numerical solver while still approximating a delta function.
The source term vanishes after the drone finishes releasing its cargo. We use a Dirichlet
condition with ϕ = 0 on the boundary.
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We numerically solve Equation (1) using the a finite element method as implemented
in MATLAB by the Partial Differential Equation Toolbox. The Toolbox solves PDEs
of the form:

w
∂ϕ

∂t
−∇ · (c∇ϕ) + aϕ = f.

This is equivalent to Equation (1) with parameters w = 1, c = D, a = 0 and f =
γ −∇ · (ϕ~v).

One likely method of attack is the use of a drone to release the weaponized anthrax
over a large area. For our analysis, we select a straight line for the path of the drone pass-
ing through central Phoenix with a constant velocity with duration of 5 hours. Census
data was obtained from Arizona State University (ASU) geospatial data directory.

The raw data of wind consists of velocity vectors specified at given latitudes, longi-
tudes, and points in time. The locations are converted to the State Plane Coordinate
System for the Arizona Central Zone using a transverse Mercator projection. The wind
velocity field is created by interpolating the observations at each measurement station
over time and then spatially interpolating for each frame of the simulation.

2.2 Susceptibility Model

From the solution of the transport equation specified in section 2.1, the concentration
of spores in the position (x, y) at time t, denoted ϕ(x, y, t), is obtained. The time- and
space-averaged concentration over a block Ωi until time t is given by

Ci =
1

tµ(Ωi)

∫ t

0

∫

Ωi

ϕ(x, y, s)dµ ds,

where µ is the Lebesgue measure. To approximate Ci, we impose a grid over the rect-
angular bounding box and use the PDE Toolbox’s built-in interpolation function to
compute the solution at each grid point within the block. The product of the inner
integral and the factor 1/µ(Ωi) is approximated by taking the arithmetic mean of the
concentration at every grid point. We then perform the time averaging by summing the
space-averaged concentrations at each timestep and multiplying by ∆t/t, where ∆t is
the length of a timestep. We use the value Ci, together with the number of inhabitants
in each block, to build the susceptibility model. The number of inhabitants is given by
the Census data obtained from ASU geospatial data directory.

Consider f the respiratory flow rate and t the total exposure time to anthrax. Then
ft is the volume of air inhaled by an individual. Thus, Cift is the total number of
spores inhaled by an individual until time t. Also, consider p the proportion of inhaled
spores that are deposited in the body. Therefore, Ni(t) = fptCi is the total number
of spores inhaled by one individual until time t in a block of the Phoenix metropolitan
area, which can be approximated as:

Ni(t) = fptCi = fp∆t
n∑

j=1

Cji ,

where Cji is the spatial average of the concentration in the ith block at the jth timestep
and n is the total number of timesteps.

Let us assume that spore germination and clearance follow Poisson processes with
rates λ and θ, respectively. Then, the probability that a spore has not been cleared
within τ days is given by the exponential survival function e−θτ , and the probability
density of spore germinating at time τ is given by the exponential probability density
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function λe−λτ . Therefore, according to the incubation period model of anthrax pro-
posed by Brookmeyer et al. [1], the probability that one spore germinates within time
τ is: ∫ τ

0

λe−λse−θs ds =
λ

λ+ θ

[
1− e−(λ+θ)τ

]
.

Assuming that the probability derived above is small, germination prior to clearance
can be approximated as a Poisson process with rate Nλ

λ+θ

[
1− e−(λ+θ)τ

]
. Then, the

probability that at least one spore germinates is the complement of the probability that
no spores germinate, namely:

1− exp

[
− Nλ

λ+ θ

(
1− e−(λ+θ)τ

)]
.

Taking τ → ∞, the probability that an individual gets infected in life time, assuming
that the individuals are uniformly distributed in the block, is called the attack rate:

AR = 1− exp

(−Nλ
λ+ θ

)
.

For a generic block i, let Mi be the total number of inhabitants in the block. Assuming
that the risk of getting infected indoors and outdoors is the same and that nobody
changes their behavior, the total number of infected individuals in the block i at time t
is given by:

Fi(t) = Mi

[
1− exp

(−Ni(t)λ
λ+ θ

)]
.

The number of symptomatic individuals in block i at time t is given by:

Pi(t) = Mi

[
1− exp

(
Ni(t)λ

λ+ θ

[
1− e−(λ+θ)t

])]
.

Therefore, the number of asymptomatic individuals in the block i at time t is given by:

Ii(t) = Fi(t)− Pi(t).

2.3 Triage Optimization

In this section, we present a model to optimize triage for antibiotic distribution in
response to an anthrax attack. See Table 1 for parameter definitions.

Table 1: Parameter and definition for the triage model.

Parameter Definition

T Total number of antibiotics available to be delivered
Ti Number of antibiotics delivered to block i
t Time since the attack happened

Ii(t) Number of asymptomatic but infected individuals in block i at time t
Pi(t) Number of symptomatic individuals in block i at time t
Fi(t) Total number of infected individuals in block i at time t
Mi Total population in block i
EI Efficacy of antibiotics for asymptomatic infected individuals
EP Efficacy of antibiotics for symptomatic individuals

Xi, Yi, Zi Indicator variables for the triage strategy in block i
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Considering a generic block i, from the above susceptibility model we can obtain the
number of infected individuals which are asymptomatic Ii(t) and symptomatic Pi(t) in
the block i at time t. In this block, the total number of infected individuals in need of
antibiotics is Fi(t) = Ii(t) + Pi(t).

If the total supply of antibiotics is less than the exposed population, i.e. T <
∑
iMi,

we must decide how to distribute the limited supply so as to maximize lives saved. Once
individuals progress to the prodromal stage and becomes symptomatic, antibiotics are
less likely to save them. Offsetting the higher efficacy of antibiotics for individuals in
the incubation stage is the fact that giving antibiotics to the asymptomatic is subject to
wastage of doses given to uninfected individuals from whom the asymptomatic infected
cannot be distinguished. Therefore, a triage strategy must be chosen for each distri-
bution site. We consider three triage strategies represented by the indicator variables
Xi, Yi, Zi ∈ 0, 1 where

Xi + Yi + Zi = 1,

If Xi = 1, we treat only asymptomatic individuals, and the efficacy of antibiotics for

asymptomatic individuals is EXi = EI Ii(t)
M−Pi(t)

;

If Yi = 1, we treat only symptomatic individuals, and the efficacy of antibiotics for
symptomatic individuals is EYi = EP ;

If Zi = 1, we treat both symptomatic and asymptomatic individuals, and everyone
has the same probability to receive antibiotics. The efficacy of this strategy is EZi =

EP Pi(t)
Mi

+ EI Ii(t)Mi
.

Let Bi = EiTi be the number of saved people in the block i at time t, where
Ei ∈ {EXi , EYi , EZi }. Then, our optimization problem at a given time can be represented
as a mixed integer linear program as follows:
Maximize ∑

i

Bi

Subject to

Xi + Yi + Zi = 1,∑

i

Ti ≤ T,

Ti ≥ 0,

Xi = 1 → Ti ≤Mi − Pi and Bi ≤ TiEXi ,
Yi = 1 → Ti ≤ Pi and Bi ≤ TiEYi ,
Zi = 1 → Ti ≤Mi and Bi ≤ TiEZi .

3 Results

The simulations for each part of the model were performed within a domain that con-
tains the Phoenix metropolitan area. The subdomain defining our region of interest is
given by the polygon with latitude-longitude nodes: n1 = (32.9543404◦;−112.7548012◦),
n2 = (32.9543404◦;−112.0282588◦), n3 = (33.5702774◦;−112.0282588◦) and n4 =
(33.5702774◦;−112.7548012◦)2. This region was chosen for its high population den-
sity. We surround the region of interest with an outer subdomain large enough that the
concentration at the boundary does not significantly exceed zero and we use Dirichlet
boundary conditions ϕ = 0. This outer subdomain is the polygon with latitude-longitude
nodes: n1 = (33.6962990◦;−111.6616590◦), n2 = (33.6962990◦;−112.3928047◦), n3 =

2WGS 84 Coordinate Reference System, Authority ID: 4326
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(33.2628358◦;−112.3928047◦) and n4 = (33.2628358◦;−111.6616590◦). For the geo-
graphic unit of analysis we use the Census block groups within the region of interest, of
which there are 2079. The transport equation (1) was numerically solved using the MAT-
LAB PDE Toolbox. The principal configurations used to get an answer from the solver
were: 6704 triangles in the mesh of the subdomain of the region of interest, 6672 trian-

gles in the mesh of the outer subdomain, an eddy diffusion constant D = 8.6×105 m2

day [7],
and a plume width w = 2.4. For simplicity, we assumed that the vehicle takes 5 hours to
complete the route. For the release rate of anthrax spores r, we used 4 different values
r ∈ {0.5 × 1017, 1 × 1017, 1.5 × 1017, 2 × 1017} spores per day, which means that in 5
hours 10 kg, 20 kg, 30 kg, and 40 kg of spores 3 are spread for each value of r respec-
tively. Under the previous considerations, the concentration of anthrax in the Phoenix
metropolitan area at 12 hours, 24 hours, 36 hours and 48 hours when assumed 20 kg of
anthrax being spread is shown in Figure 1.

(a) (b)

(c) (d)

Figure 1: Concentration of spores in the Phoenix metropolitan area at different times
after the attack. The path of the vehicle is represented by the dotted blue line. (a): 12
hours; (b): 24 hours; (c): 36 hours and (d): 48 hours.

The susceptibility model was run using the concentrations of anthrax computed from
the solution of the transport equation. Because, the solver was run 4 times using dif-
ferent spread rates, the susceptibility model was also run 4 times to get the number of
asymptomatic infected and symptomatic individuals depending of the spread rate r. To
compute the total number of spores deposited in the body, we used a respiratory flow
rate f of 43.2 meters cubed per day, the proportion of spores deposited in the body
p = 0.7145 and the time of exposure which is the time lapsed since the attack happened.
In addition, the clearance rate of spores in the lung is θ = 0.07 per day [1], the spore
germination rate is λ = 5 × 10−6 per day [1], and the number of people in each block
was obtained from the census data.

3 1 kg = 1× 1015 spores [13]
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MATLAB codes were written to implement the susceptibility model. The necessary
inputs are: the average concentration of spores inhaled in the block until the moment
the model was run, the total population in the block, and the time t at which the model
is run. Then, the number of asymptomatic but infected and symptomatic individuals is
obtained in each block at the specified time.

(a) (b)

(c) (d)

Figure 2: Illustration of number of asymptomatic infected and symptomatic individuals
using different amount of spores. (a): 10 kg of spores; (b): 20 kg of spores; (c): 30 kg
of spores; (d): 40 kg of spores.

The number of asymptomatic infected and symptomatic individuals over time when
different spread rates are used is shown in Figure 2. Figures 2 (a), 2 (b), 2 (c), and 2
(d) show the variation of the total number of asymptomatic infected and symptomatic
individuals when different amount of spores are spread over a square enveloping the
Arizona Central zone during a period of 2 days. The total number of infected people
in the different stages was obtained by addition of the number of infected people in the
corresponding stage from each block of the Phoenix metropolitan area obtained by the
susceptibility model.
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Figure 3: Number of asymptomatic infected and symptomatic individuals from the block
with the highest average concentration of spores in an attack performed with 20 kg of
spores.

Figure 3 shows the variation of the total number of asymptomatic infected and symp-
tomatic individuals in the block with the highest average concentration of spores. This
block was found by getting the maximum value from the average concentrations in each
block and then the susceptibility model was run to obtain the number of symptomatic
and asymptomatic individuals at each time.

(a) (b)

Figure 4: Frequency of the triage X, Y and Z at 24 hours (a) and 48 hours (b) after
the attack performed with 20 kg of spores and assuming that there were antibiotics for
the 75% of the exposed individuals.

The frequency of the triage strategies in the 2079 blocks of the Phoenix metropolitan
area, which maximize the number of recovered individuals, is shown in Figure 4. The
number of times that each triage strategy was chosen is shown on the top of each bar.
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These graphs were plotted on semilog axes to better visualize the differences between
the triage strategy frequencies.

Table 2: Solution to the optimization problem 24 hours after the attack and 48 hours
after the attack in the ten blocks with the most infected people. The solution is described
by the triage strategy, number of antibiotics delivered to the block and the number of
recovered individuals.

Block Hours Strategy
Antibiotics Lives Percentage
Delivered Saved of Survivors

1
24 X 3675.7 2479.9 68.871
48 Y 0 0 0

2
24 X 2356.3 1694.5 67.204
48 X 3199.6 2223.7 58.639

3
24 X 2319.5 1650.3 67.519
48 X 1797 1421.7 52.141

4
24 X 451.11 260.37 10.805
48 X 2666 1633.1 62.105

5
24 X 0 0 0
48 X 2260.9 1320.3 50.612

6
24 X 2227.2 1561.5 67.927
48 X 2611 1597.3 62.133

7
24 X 2357.9 1548.3 69.448
48 X 2068.5 1479.6 57.561

8
24 X 2626.9 1562.8 71.117
48 X 2059 1443.6 58.326

9
24 Y 0 0 0
48 X 2448.6 1498.9 62.121

10
24 X 2302.4 1505.8 69.529
48 X 1938.1 1377.9 57.801

Output from the triage optimization at 24 and 48 hours after release is shown in
Table 2 for the 10 blocks with the highest numbers of infected people. The triage
strategy (X, Y , or Z), the time, the amount of antibiotics assigned to the block, the
number of lives saved with antibiotics, and the percentage of infected individuals who
survive are shown in the table.

4 Discussion

According to Figure 1, the wind enables the anthrax plume to reach blocks which are
far away from the path that the drone follows in the Phoenix metropolitan area, which
implies that more people are affected by the attack. In fact, the wind performs a main
role in our model and has a profound influence on the number of infected people. The
concentration of spores can reach 105 spores per cubic meter for sustained periods and
affects blocks that are far away from the trajectory of the drone [see Figures 1 (b) and 1
(c)]. Then, 48 hours after the attack, the plume vanishes of the interest area [see Figure
1 (d)].

Assuming that the population is uniformly distributed within the blocks and that
the risk of infection is the same indoor and outdoor; two days after the attack with 10 kg
of spores there are around 800, 000 people infected (600, 000 asymptomatic and 200, 000
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symptomatic). Also, under the same assumptions, two days after the attack with 20 kg,
there are around 1, 300, 000 people infected (900, 000 asymptomatic and 400, 000 symp-
tomatic), with 30 kg there are around 1, 600, 000 people infected (1, 100, 000 asymp-
tomatic and 500, 000 symptomatic), and with 40 kg there are around 1, 800, 000 people
infected (1, 200, 000 asymptomatic and 600, 000 symptomatic) [see Figure 2]. As ex-
pected, in Figure 2 we observe that the number of infected individuals increases over
time because the wind helps the plume to reach more blocks at each moment. This
number is also influenced by the amount of anthrax being released , which increases the
concentration of spores in the blocks, and therefore, increases the probability that indi-
viduals get infected and develop symptoms. In addition, the number of asymptomatic
infected individuals reaches a maximum around 2 days after release.

In the block with the highest number of infected individuals, the proportion of in-
fected people reaches approximately 5% of its total population if the response occurs in
the first 24 hours after the attack [see Figure 3], but when the response occurs after 24
hours, the number of infected individuals (symptomatic and asymptomatic) increases
dramatically. This can happen because the concentration of anthrax in the block was
low in the first 24 hours after the attack, but it increased in the later 24 hours because
of the influence of the wind.

Overall, the most frequent triage strategy is to prioritize treatment of symptomatic
individuals in the first two days [see Figure 4]. However, asymptomatic individuals are
prioritized in blocks with a high proportion of infected individuals [see Table 2]. In these
blocks, a smaller proportion of the antibiotics is wasted on the uninfected population,
so the higher efficacy of early treatment outweighs this loss. This means that although
there is a loss of medicine when treating asymptomatic individuals, because some of
them are not infected, the high effectiveness rate for asymptomatic individuals gives as
a result a higher number of saved people than that of treating that many symptomatic
individuals. This happens only when the number of infected individuals in a block is
close to its total population. In addition, the triage depends on the time at which the
model is run. Sometimes the number of symptomatic people in a block is so much larger
than in other blocks that it is not advisable to allocate medicine to that block.

5 Conclusion

Our model shows that, when wind is taken into account, the number and location of
casualties vary drastically from a simple plume model. We advise the government to take
this into account when deciding how to allocate resources. Moreover, this study advises
to strongly consider the wind flow if evacuation plans are going to be implemented. In
addition, the implemented susceptibility model addresses the influence of the amount
of spores being dispersed in the total number of infected individuals, which should be
considered for the distribution of antibiotics. As previous works have corroborated, an
adequate medical response within the first 24 hours following an attack is crucial to
reducing the death toll.

The implemented triage optimization strategy advises to treat symptomatic individ-
uals in most of the cases; however, when all of the population within a block is infected,
our triage model recommends to treat asymptomatic people before using any remaining
resources to treat symptomatic people. Future work on this topic includes investigating
a nonlinear objective function that is potentially more ethical than the one we consider
here. In any case, a rapid governmental response informed by predictive capabilities is
critical in reducing the impact of such a disaster as this type of attack.
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Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a significant contributor
to the growing concern of antibiotic resistant bacteria, especially given its stubborn
persistence in hospital and other health care facility settings. In combination with
the general persistence of S. aureus (colloquially referred to as staph), MRSA
presents an additional barrier to treatment and is now believed to have colonized
two of every 100 people worldwide. According to the CDC, MRSA prevalence
sits as high as 25-50% in countries such as the United Kingdom and the United
States. Given the resistant nature of staph as well as its capability of evolving
to compensate antibiotic treatment, controlling MRSA levels is more a matter of
precautionary and defensive measures. The subject of the following research is the
method of "search and isolation" which seeks to isolate MRSA positive patients in
a hospital so as to decrease infection potential. Although this strategy of search
and isolate is straightforward, the question of just whom to screen is of practical
importance. We compare screening at admission to screening at discharge. To do
this, we develop a mathematical model and use both stochastic and deterministic
simulations to determine MRSA endemic levels in a hospital with either control
measure implemented. The more successful control measure will better control
endemic potential and proliferation of MRSA.
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1 Introduction
Methicillin-resistant Staphylococcus aureus (MRSA) is a bacterium that colonizes the
skin of human beings as well as their proximate environment. Although this is intrin-
sically true for staph, antibiotic resistance has made eradication much more difficult.
The evolution of antibiotic resistance in staph, however, is not a new development. The
discovery of penicillin in the 1920s allowed for a very effective treatment for S. aureus
and other infectious diseases, remaining effective until only a few decades later when
Bondi and Dietz identified the enzyme penicillinase being produced by staph, completely
nullifying any power of the drug [2]. Currently, more than 90% of S. aureus cultures are
resistant to penicillin [20]. Methicillin was developed as a response to penicillin resis-
tance, but as early as the 1960s, the same decade it was developed, MRSA had already
been isolated in the United Kingdom. Fifty years following initial isolation, MRSA has
spread worldwide and has developed potent endemicity in health care facilities across
the United States and Europe. Currently, approximately 90,000 Americans suffer from
MRSA infections every year with a mortality rate of 22% [29].

Since MRSA is both the most prevalent and the most destructive in hospital settings,
this is the context which the following paper assumes. Screening and isolation is a very
common control strategy implemented in hospitals battling MRSA outbreaks. Screening
typically involves the swabbing of the nares of a patient to determine colonization, and
is performed at admission. A positive result yields the placement of the patient into a
region of the hospital where bacterial spread is hindered, aptly termed an isolation unit
(IU). Here, further transmission of the bacteria is assumed to be zero. Preference may
or may not be given to certain patients with higher susceptibility to MRSA carriage,
including any individuals who have a history of hospital admission, have a history of
antibiotic use, belong to a certain age group, have an open wound or skin infection,
etc. However, screening at discharge has been proposed as an alternative to screening
at admission.

Several mathematical models have attempted to capture the transmission dynamics
of MRSA in hospitals. Chamchod and Ruan present a compartmentalized model for
MRSA that considers patients as either uncolonized, colonized, or infectious [6]. Health
care workers (HCWs) exist in their own compartments as either contaminated or uncon-
taminated and behave as vectors for the bacteria. Chamchod and Ruan consider MRSA
transmission dynamics in light of antibiotic usage and subsequent resistance. Patients
are considered at a higher risk of developing MRSA if they’ve a history of antibiotic us-
age. Cooper et al. consider additionally the contributions of the community to endemic
levels in hospitals [7]. However, the community that Cooper et al. considers is com-
prised entirely of previous patients of the hospital. The authors highlight that timing
of intervention, resource provision, isolation practices, and the correct combination of
procedures is the key to successful eradication. Bootsma et al. constructs two models to
study MRSA transmission: one model considers transmission within a single hospital,
while another model considers transmission within a system of hospitals [3]. In all the
aforementioned models, screening, if any occurred, is performed at admission.

MRSA is classified in accordance with where it originates: community-acquired
MRSA (CA-MRSA) and hospital-acquired MRSA (HA-MRSA). As a result of its persis-
tence and antibiotic resistance, MRSA is able to maintain endemic rates within health
care facilities for extended periods of time. MRSA epidemics in hospitals are respon-
sible for the majority of deaths attributed to the bacteria, and its endemicity yields
exorbitant costs of treatment and precautions in lieu of effective antibiotic treatment.
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Hospitals with high endemic rates become sources of infection instead of facilities for
recovery. Consequently, the attention of this research focuses on HA-MRSA only.

1.1 Epidemiology
One aspect deserving elaboration is the notion of colonization. A patient is considered
colonized when the bacteria is present on his physical person. Common places include
the nares, throat, and groin [18]. Robicsek et al. estimate that MRSA colonization
half-life in a patient can be up to 40 months [24].

Carrying the bacteria is different from being infected. Infection occurs when MRSA
is allowed to enter the body, typically by way of skin lesions or wounds. Thus, from
this information it can be inferred that health care workers (HCWs) are the main car-
riers of MRSA, as they interact with individual patients the most and are likely to be
contaminated for longer periods of time due to continuous exposure to the bacteria [1].
Following the example of Chamchod and Ruan, HCWs will be considered separate from
the patient population and treated as vectors of the bacteria.

1.2 Screening strategies
Screening is used to detect patients who have been colonized by MRSA. There is no
unique screening procedure followed by hospitals in general. Molecular techniques, such
as polymerase chain reaction (PCR) methods, are generally faster and more accurate in
comparison to culture techniques. Nonetheless, Kunori et al. estimates that the former
technique is more expensive than the latter [19]. For the purposes of our study, we
assume that the hospital uses rapid MRSA testing. The question of just how many pa-
tients should be screened is important. Universal screening-at-admission is costlier and
generally inefficient. Roth et al. found that universal screening-at-admission costs over
twice as much as compared to alternative screening methods [25]. One such common
alternative is targeted screening, whereby patients deemed at high-risk of developing
MRSA colonization/infection are screened. Such patients include those with frequent
hospital stays, a history of antibiotic usage, or are hospitalized with skin wounds/lesions
on their skin.

1.3 Research Question
This article extends the mean field approach of MRSA models to include novel aspects
with respect to screening and isolation processes. Typical methods of screening occur
only at admission. We introduce the “screening-at-discharge” method, which will "flag"
patients at discharge if they are colonized with MRSA. Upon readmission, flagged pa-
tients are moved to isolation. Our final goal is to determine which strategy is more
effective in reducing MRSA endemicity.

2 Methodology

2.1 Baseline model
Our model considers a town of 58, 000 with a single hospital of 600 beds and a health
care staff of 150 HCWs [6]. For the baseline model, patients are considered to be uncol-
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onized (U), colonized (C), or infected (I). A patient is colonized when MRSA bacteria
is present on his/her body, but the bacteria has not progressed to infection. Health care
workers (HCWs) are considered to be either uncontaminated (H) or contaminated (HC).

Admitted patients are either colonized or infected with probabilities λC and λI ,
respectively; they are uncolonized, otherwise. Our baseline model is represented by the
following system of ordinary differential equations:

dH

dt
= δHC − β̂1H

C

N
− β̂2H

I

N
dHc

dt
= β̂1H

C

N
+ β̂2H

I

N
− δHc

dU

dt
= (1− λC − λI)Λ− (µU + γU )U − β1U

C

N
− β2U

Hc

N
− β3U

I

N
+ αC

dC

dt
= λCΛ− (µC + γC)C + β1U

C

N
+ β2U

Hc

N
+ β3U

I

N
− (φ+ α)C

dI

dt
= λIΛ− (µI + γI)I + φC

(1)

where β1 denotes the transmission rate between colonized and uncolonized patients, β2
refers to the transmission rate between contaminated HCWs and uncolonized patients,
and β3 is the transmission rate between infected and uncolonized patients. An uncol-
onized patient must first be colonized before becoming infected. µ and γ are used to
denote death and discharge/treatment rates of each compartment. φ is the rate at which
colonized patients become infected. Colonized patients are decolonized at a rate of α;
thus 1/α captures the average time of decolonization. 1/δ gives the average time an
HCW remains contaminated. β̂1 is the rate of contamination between uncontaminated
HCWs and colonized patients, while β̂2 denotes the transmission efficiency between un-
contaminated HCWs and infected patients.

The total population (N) is given as the sum of total HCWs (NH) and total patients
(NP ). NH is assumed constant, as well as NP . This latter assumption can be made with
the correct choice of Λ, or the rate at which patients are admitted into the hospital. A pa-
tient is admitted into the hospital whenever an existing patient leaves, either by death
or discharge. For the baseline model, Λ = (µU + γU )U + (µC + γC)C + (µI + γI) I.
With these assumptions, total population within the hospital is constant.

Patients and HCWs are assumed to mix homogeneously.Strictly speaking, the as-
sumption of homogeneous mixing can be challenged, since most patients are confined to
their rooms for the majority of the time and do not necessarily contact other patients
directly. However, they may be in contact with equipment and surfaces, and thus indi-
rectly contaminate both HCWs and other patients. We consider these indirect contacts
when calculating transmission rates.

There are two assumed mechanisms of contamination for uncontaminated health
care workers. The first mechanism is contact with colonized patients while the second
mechanism is contact with infected patients. We assume that a health care worker does
not become contaminated from other HCWs [27][4]. Because it is possible for a HCW to
become contaminated more than once in the same day, we do not account for frequency
of particular patient contacts.

The baseline compartmental model is shown in the following diagram:
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Figure 1: Baseline model diagram.

2.2 Screening at admission
Next, we consider screening at admission. We maintain the structure of the baseline
model with the addition of the isolation compartment, denoted by Z, referred to as the
isolation unit (IU). For simplicity, we assume that the IU has infinite capacity. If a
patient is tested positive for MRSA at admission, he/she will be moved to the IU for
the remainder of his/her time in the hospital. No distinction is made between infected
and colonized patients when screened for MRSA. Only newly admitted patients may be
placed in the IU, with the exception being an identified infected patient in the hospital
according to some rate κ. 1/κ is taken to be the sum of the average incubation period
of MRSA infection (4.5 days) and the average duration of culture and sensitivity testing
(2.5 days according to [15]). It is assumed that patients are screened at admission with
probability ρ. The model representing the aforementioned MRSA hospital dynamics is
as follows

dH

dt
= δHC − β̂1H

C

N
− β̂2H

I

N
dHc

dt
= β̂1H

C

N
+ β̂2H

I
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− δHc
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dt
= (1− λC − λI)Λ− (µU + γU )U − β1U

C
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Hc

N
− β3U

I

N
+ αC

dC

dt
= λCΛ(1− ρ)− (µC + γC)C + β1U

C

N
+ β2U

Hc

N
+ β3U

I

N
− (φ+ α)C

dI

dt
= λIΛ(1− ρ)− (µI + κ)I + φC

dZ

dt
= (λC + λI)Λρ+ κI − (µZ + γZ)Z

(2)

For this model, Λ = (µU + γU )U + (µC + γC)C + (µI) I + (µZ + γZ)Z. Note that
patients infected with MRSA are not discharged, but are treated in isolation. As with the
baseline model, the population remains constant. Note also that we omit consideration
of Z regarding transmission between contaminated and uncontaminated groups. This
is because we assume that Z << N . Admitted patients tested positive for MRSA move
into the IU at a rate given by (λC +λI)ρΛ. Patients in isolation are assumed to die at a
rate of µZ and are discharged/treated at a rate of γZ . Patients infected with MRSA are
not treated outside the IU. The schematic for this system is shown on the next page.
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Figure 2: Screening at admission model diagram.

2.3 Screening at discharge
In order to reformulate the model so as to consider screening at discharge, we com-
partmentalize the community in terms of flagged (F ) and unflagged (FU ) individuals.
Patients are flagged if they test positive for MRSA at discharge, and are unflagged oth-
erwise. Patients who are flagged, when readmitted to the hospital, are placed in the
isolated compartment. Our model becomes:
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)
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dt
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= (1− ρ)(γCC + (1− τ)γZZ) + γUU + τγZZ − Λ

(
FU

kF + FU

)

− µFU
FU + bFU

(3)

In addition to the previous model, success of patient treatment is included. Treatments
are successful of complete eradication with probability τ and otherwise fail with proba-
bility 1− τ . We also consider the factor k, which represents the number of times more
likely that a flagged patient is to be readmitted to the hospital as compared to an un-
flagged patient.

Consequently, the total admission into the hospital is given by Λ = (µU + γU )U +
(µI) I + (µC + γC)C + (µZ + γZ)Z in order to retain a constant hospital population.
The unflagged population is comprised of the wider community as well as patients who
were not identified as MRSA-positive when they were discharged from the hospital.
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Recruitment rate and death rate for the unflagged group are denoted by µFU
and bFU

,
respectively. Individuals in the flagged compartment die at a rate of µF . The birth
and death rates of the community were chosen so that the community population is
asymptotically constant. The disease dynamics of this model is represented graphically
as follows:

Figure 3: Screening at discharge diagram.

2.4 Parameter estimation
Several parameters discussed prior deserve further elaboration, contained within this
subsection. For β2, the transmission rate between contaminated HCWs and uncolonized
patients, we assumed that patients could not be colonized more than once during a
single day. We further assumed that patients, on average, will have contact with three
distinct HCWs any given day. [14] reports that HCWs make 7.6 contacts per patient per
day. If HCWs make 84 patient contacts every day, this means that each HCW will have
11.05 unique patient contacts every day. Thus, β2 is calculated to be the product of
unique patient contacts and the transmission efficiency. On the other hand, HCWs can
be contaminated more than once in any given day, so we disregard unique patient con-
tacts when making this calculation. That is, transmission rate from colonized patients
to uncontaminated HCWs, denoted by β̂1, is the product of total contacts per day and
the transmission efficiency. The transmission efficiency between infected patients and
uncontaminated HCWs is double that of colonized patients and uncolonized HCWs.

1/δ gives the average time an HCW remains contaminated. Because data for this
term is either lacking or varies greatly (e.g. an HCW can become decontaminated by
merely washing his hands or an HCW can be colonized with MRSA for weeks at a time),
we computed δ numerically based on the findings of Albrich and Harbarth (2008), who
found that average MRSA carriage amongst HCWs is around 4.6% [1]. Furthermore,
γZ and µZ are assumed to be averages of the discharge/treatment and death rates, re-
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spectively, of colonized and infected patients. That is, γZ =
γI + γC

2
and µZ =

µI + µC
2

.

The term κ represents the rate at which patients develop MRSA infection, are identi-
fied as having MRSA, and subsequently isolated. Assuming a 4.5-day incubation period,
followed by a 2.5-day period for culture and susceptibility testing, our value of κ comes
out to 0.13. This value is close to the value of 0.14 used by [3]. Since patients who
develop infection are identified and isolated over the span of 7 days and are assumed to
stay in the hospital for 16 days, each transmission rate concerning infected patients is
multiplied by a factor of 7/16, as they are assumed to be no longer infectious in isolation.

k represents the number of times more likely that a flagged patient is to be readmit-
ted to the hospital as compared to an unflagged patient. Stochastic simulations revealed
that regardless of our value of k, the rate of patient admission from the flagged compart-
ment would approach a stable equilibrium. This follows intuitively from the fact that,
for large k, F will become small quickly and remain small for t → ∞. On the other
hand, if k is small, F will remain large and remain so for all t. The death rate for either
community compartment is just the average lifespan of an American, and the birth rate
of the unflagged compartment is chosen so that the population of the community is
asymptotically constant.

3 Analysis

3.1 Disease Free Equilibrium and Reproductive Number
3.1.1 Baseline model

The rate of patients being admitted per unit time Λ is a function of the number of
patients leaving the hospital, in order to retain a constant hospital patient population.
We should have

Λ = ωUU + ωCC + ωII (4)

where ωJ is the sum of the death (µJ) and discharge (γJ) rates of compartment J , i.e.
ωJ = γJ + µJ .

For the system of equations found in (1), a disease-free equilibrium (DFE) does not
exist when either λC > 0 or λI > 0. There are proportions of colonized and infected
patients, given by the probabilities λC and λI , being admitted at each time step. This
forbids the existence of a state without any contaminated patient. Therefore, we con-
sider the case where all new patients are uncolonized (λI = λC = 0) in order to analyze
the potential spread of MRSA bacteria within the hospital and calculate an adjusted
reproduction number.

Equating the right hand side of system (1) to zero with λC = λI = 0, the system at
DFE has conditions given by

H∗ = NH

U∗ = NP

HC
∗ = C∗ = I∗ = 0

(5)

To calculate the basic reproduction number R0 of this adjusted system, we employ
the next-generation matrix method [11, 30]. The basic reproduction number is the
largest eigenvalue or spectral radius of FV −1, where F and V are the Jacobian matrices

147



Parameter definition Symbol Values Reference

Total number of patients NP 600 N/A

Total number of HCWs NH 150 N/A

Prob. that admitted patient is colonized λC 0.0374 [13]

Prob. that admitted patient is infected λI 0.0067 [26]

Death rate of uncolonized patients µU 5.58x10−5 day−1 [16]

Death rate of colonized patients‡ µC 8.25x10−5 day−1 [21]

Death rate of infected patients µI 4.87x10−4 day−1 [23]

Death rate of isolated patients‡‡ µZ 2.85x10−4 day−1 estimated

Death rate of unflagged individuals∗∗∗ µFU
3.48x10−5 day−1 N/A

Death rate of flagged individuals µF 3.48x10−5 day−1 N/A

Birth rate of community bFU
2.018 day−1 N/A

Discharge rate of uncolonized patients γU 0.189 day−1 [13]

Discharge rate of colonized patients γC 0.143 day−1 [10]

Treatment rate of infected patients γI 0.063 day−1 [12], [17], [8]

Treatment rate of isolated patients γZ 0.1015 day−1 estimated

Decontamination rate of HCWs δ 1.813 day−1 [14]

Decolonization rate of colonized patients α 0.001 day−1 [21], [6]

Progression rate from colonized to infected φ 0.04 day−1 [6]

Progression rate from infected to isolated κ 0.13 day−1 estimated

Prob. of successful treatment τ 0.68 [22]

Screening probability ρ varies N/A

Table 1: Parameter definitions, values, and references

of vectors F and V , evaluated at the disease free equilibrium of the system (5).

Specifically, F is a matrix of terms that account for newly contaminated patients
and HCWs, while V contains terms corresponding to the transitions and outflow of
patients and HCWs from these compartments. Recall that newly sick individuals are
going to either the contaminated HCW compartment, HC , or to the colonized patient
compartment, C. We have
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Parameter definition Symbol Parameter
values Reference

Rate of patient colonization after contact
w/colonized patients β1 0.27 day−1 [14], [9]

Rate of patient colonization after contact
w/contaminated HCWs β2 1.68 day−1 [14]

Rate of patient colonization after contact
w/infected patients β3 0.03 day−1 [12]

Rate of HCW contamination after contact
w/colonized patients β̂1 0.27 day−1 [14], [28]

Rate of HCW contamination after contact
w/infected patients β̂2 0.24 day−1 estimated

Table 2: Transmission rates, values, and references

Furthermore, the F and V matrices are

F =




0 β̂1NH

NH+NP

β̂2NH

NH+NP

β2NP
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β1NP

NH+NP

β3NP

NH+NP

0 0 0
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 and V =
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δ 0 0

0 α+ φ+ ωC 0

0 −φ ωI




Each element nij of the next generation matrix is the average number of new colo-
nized or infected individuals of the ith compartment produced by the interaction with
or progression from individuals of the jth compartment, at each time step. For ex-
ample, the first element is zero because we assumed that no new contaminated HCWs
will be the result of interactions with other contaminated HCWs. Proceeding with our
calculations,

FV −1 =




0 NH
∗(β̂2φ+β̂1ωI)

(α+φ+ωC)ωI

NH
∗β̂2

ωI

NP
∗β2

δ
NP

∗(β3φ+β1ωI)
(α+φ+ωC)ωI

NP
∗β3

ωI

0 0 0


 (6)

where NP ∗ = NP

NH+NP
, and NH∗ = NH

NH+NP
.

The reproduction number is thus:

R0 =
1

2


N

∗
P (β3φ+ β1ωI)

(α+ φ+ ωC)ωI
+

√√√√
(
N∗
P (β3φ+ β1ωI)

(α+ φ+ ωC)ωI

)2

+ 4

(
N∗
H(β̂2φ+ β̂1ωI)

(α+ φ+ ωC)ωI

)(
N∗
Pβ2
δ

)


(7)
We can represent the reproduction number as

R0 =
1

2

(
RP +

√
R2
P + 4 ·R2

H

)
(8)

where RP is the colonization/infection potential of patients and RH is the contamination
potential of HCWs. These two represent processes occurring simultaneously: a direct
transmission between patients and a two-step cycle of transmission between patients
and HCWs.
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RH is the geometric mean of (1) the average number of new contaminated HCWs
by transmission from colonized patients and (2) the average number of new colonized
patients by transmission from contaminated HCWs. The first factor, as seen in equation
(9), has two terms that account for different transmission pathways: one direct (HCWs
being contaminated by colonized patients) and the other indirect (HCWs being contam-
inated by infected patients). This term is

RH =

√√√√N∗H

(
β̂1

α+ φ+ ωC
+

φ

α+ φ+ ωC
· β̂2
ωI

)(
N∗Pβ2
δ

)
(9)

Now, rewriting the expression for RP , we find that it is the average number of new
colonized patients produced by contacts between uncolonized and colonized patients. As
in the first term of RH , RP is the sum of two terms: direct transmission characterized
by colonized patient transmission, and indirect transmission characterized by infected
patient transmission. Thus,

RP = N∗P

(
β1

α+ φ+ ωC
+

φ

α+ φ+ ωC
· β3
ωI

)
(10)

Furthermore, since RH , RP > 0, we have from (8) that:

R0 =
RP
2

+
1

2

√
R2
P + 4R2

H >
RP
2

+
1

2

√
R2
P = RP (11)

Applying the triangle inequality, we also find that:

R0 =
RP
2

+
1

2

√
R2
P + 4R2

H <
RP
2

+
1

2
(RP + 2RH) = RP +RH . (12)

Combining these results, we can say that, in general, RP < R0 < RP + RH . The
latter part of this inequality means that the two infection potentials RP and RH have
a net effect (given by the reproduction number R0) which is less than their sum. We
can explain this by the fact that patients transmit MRSA to both patients and HCWs,
but HCWs can transmit the bacteria back to patients. So, this overlap of transmission
explains the aforementioned result. Recall that, as no new infected or colonized patients
are being admitted into the system, this reproduction number accounts only for the
spread of MRSA within the hospital facilities.

3.1.2 Screening at Admission

In order to achieve a constant population inside the hospital we let Λ = (γU + µU )U +
(γC + µC)C + µII + (γZ + µZ)Z. As before, we assume that there are no incoming
colonized nor infected patients in order for a DFE to exist. At the DFE we have

H∗ = NH

U∗ = NP

HC
∗ = C∗ =I∗ = Z∗ = 0

(13)

Using the next-generation matrix approach, we obtain:
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F =




β̂1H
C
N + β̂2H

I
N

β1U
C
N + β2U

HC

N + β3U
I
N

0

0

0

0




V =




δHC

(µC + γC)C + (φ+ α)C

(µI + κ)I − φC
−κI + (µZ + γZ)Z

−δHC + β̂1H
C
N + β̂2H

I
N

−Λ + (µU + γU )U + β1U
C

N

+β2U
HC

N
+ β3U

I

N
− αC




F =




0 β̂1N
∗
H β̂2N

∗
H 0

β2N
∗
P β1N

∗
P β3N

∗
P 0

0 0 0 0

0 0 0 0




V =




δ 0 0 0

0 α+ µC + γC + φ 0 0

0 −φ κ+ µI 0

0 0 −κ µZ + γZ




The next-generation matrix is

FV −1 =




0
N∗

H [β̂1(κ+µI)+β̂2φ]
(κ+µI)(α+µC+γC+φ)

N∗
H β̂2

κ+µI
0

N∗
P β2

δ
N∗

P [β1(κ+µI)+β3φ]
(κ+µI)(α+µC+γC+φ)

N∗
P β3

κ+µI
0

0 0 0 0
0 0 0 0


 (14)

The basic reproduction number, given by the largest eigenvalue of the next-generation
matrix, has the same form as (8) and satisfies (11) and (12). RP and RH are given by

RP = N∗P

(
β1

α+ µC + γC + φ
+

φ

α+ µC + γC + φ
· β3
κ+ µI

)
(15)

RH =

√√√√N∗H

(
β̂1

α+ µC + γC + φ
+

φ

α+ µC + γC + φ
· β̂2
κ+ µI

)
N∗Pβ2
δ

(16)

The difference between the baseline reproduction number and the reproduction num-
ber for the discharge screening model is the introduction of the rate κ, which is the
progression of infected patients to the isolation unit. Also, note that the discharge rate
γI , which was implicit in the ωI rate, is excluded. Then, in order to make R0 smaller
than in the baseline model, κ has to be greater than γI .

A clear disadvantage of setting λC = λI = 0 in the analysis is that the screening
parameter ρ does not appear in the expression for the reproductive number. Then, it is
not possible to evaluate via the reproduction number the impact of the control strategy.
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3.1.3 Screening at discharge

At the disease-free equilibrium, for λC = λI = 0, we have

H∗ = NH

U∗ = NP

FU
∗ =

bFU
− µUNP
µFU

HC
∗ = C∗ =I∗ = Z∗ = F ∗ = 0

and the reproduction number, given by the largest eigenvalue of the next-generation
matrix, is the same as that found for the screening at admission model. Once again, our
RP and RH terms are

RP = N∗P

(
β1

α+ µC + γC + φ
+

φ

α+ µC + γC + φ
· β3
κ+ µI

)
(17)

RH =

√√√√N∗H

(
β̂1

α+ µC + γC + φ
+

φ

α+ µC + γC + φ
· β̂2
κ+ µI

)
N∗Pβ2
δ

(18)

3.2 Sensitivity analysis of R0

3.2.1 Baseline model

The sensitivity analysis performed assumes that parameters are obtained from normal
distributions. Coefficients of sensitivity are estimated from the partial derivatives of R0.
Figure 4 summarizes the indices of sensitivity for the basic reproduction number of the
(adjusted) baseline model, as it appears in equation (7). The most relevant parameters
affecting R0 are the rate of transmission between uncolonized and colonized patients
(β1) and the discharge rate of colonized patients (γC). These results suggest that the
colonization rate β1 has a major impact on the outbreak potential of MRSA in a hospital.

Figure 4: Sensitivity in the baseline model

The parameter γC summarizes the flow out from the colonized compartment due
to treatment or discharge. As more colonized patients leave the hospital, net MRSA
transmission rate drops. In the baseline model, only two other parameters have statisti-
cally significant influence on the reproduction number. The rest of the parameters, with
sensitivity indices within the critical threshold, exhibit statistically negligible effects on
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R0.

The time it takes for a contaminated HCW to become decontaminated can vary
between 6 hours and 24 days [14]. It can be seen in Figure 5 that the basic reproduction
number of the baseline model is always greater than 1 for any value of δ. This means
that reducing the decontamination rate can decrease the value of the basic reproduction
number, but it is never enough to prevent an outbreak in absence of any other control
effort.

Figure 5: Basic reproduction number versus the decontamination rate of HCWs (δ).

3.2.2 Screening at admission and discharge

In the screening at admission and discharge models we introduce the parameter κ, de-
noting the rate of progression from infected to isolated. Once again, we find that β1 and
γC have more influence on R0 than other parameters (see Figure 6). This means β1 and
γC play an important role in controlling MRSA for both implemented control strategies.

Figure 6: Sensitivity index for screening models.

Unlike the baseline model, the rate of patient colonization after contact with con-
taminated HCWs, β2, has a greater effect on the screening models. This means that
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patients are more sensitive to colonization by contacts with contaminated HCWs. An-
other difference with the baseline model is that the sensitivity index of δ, the rate of
decontamination of contaminated HCWs, is higher. Thus, δ has more impact on re-
ducing R0 in the screening models. In the screening models, 1/κ denotes the average
time that an infected patient takes to move to the isolated unit. Note in Figure 7 that
when reducing δ and κ, it is always the case that R0 > 1. This means that, in order
to reduce the prevalence of MRSA in hospitals, it is necessary to adjust other parameters.

Figure 7: Basic reproduction number with respect to the decontamination rate of HCWs
(δ) and the rate of progression from infected to isolated (κ).

4 Results

4.1 Endemic Equilibria
The endemic equilibrium corresponds to a steady state where the disease remains in
the population [5]. The baseline compartmental model for uncolonized (U), colonized
(C) and infected (I) individuals differs from a classic SIR model in that it includes a
level of HCWs with two states (contaminated and uncontaminated). The high level of
complexity associated with our model does not allow us to find a closed form solution,
hence results will be explored using numerical solutions.

In order to find the endemic equilibria of the baseline and screening models, we re-
duced the system of equilibrium conditions to one algebraic equation with one variable
and to two algebraic equations with two variables, respectively. Figure 8 shows the
solutions to these resulting equations in terms of the screening probability ρ.

It can be observed that the endemic levels of colonized and infected patients and con-
taminated HCWs within the hospital decrease as ρ increases. Furthermore, the screening
at discharge strategy (dashed lines) has a bigger impact on the infected and colonized
patient populations than the screening at admission strategy (solid lines). Specifically,
the former strategy decreases the colonized patient population at equilibrium more sig-
nificantly than the latter. However, patients in isolation for discharge screening grows
much larger for larger ρ than the isolated patient population for admission screening.
We also observe that the infected patient and contaminated HCW populations do not
differ significantly between models.
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Figure 8: Population sizes at the endemic equilibrium as ρ varies. The solid lines
correspond to screening at admission, whereas the dashed lines correspond to screening
at discharge.

For the rest of this subsection we explore the influence of specific parameters affect-
ing the endemic equilibria at the screening at admission model of subpopulations levels.
We use graphical approximations to understand the asymptotic behavior of solutions
with respect to these critical parameters.

Figure 9 depicts the number of contaminated HCWs as a function of screening prob-
ability (ρ) and rate of decontamination (δ). It would seem that screening does not affect
the contaminated HCW population. Contaminated HCW population drops to consid-
erably low levels after a threshold of δ is achieved. This occurs when δ ≈ 1. This result
illustrates that small efforts toward decontamination make a considerable difference in
reducing levels of MRSA prevalence, at least for contamination levels among HCWs.
This is an extension of the result found in Figure 5, in this case for all ρ belonging to
the interval [0, 1].

Figure 10 presents the sum of colonized, infected, and isolated patients in terms of
the same parameters ρ and δ. We shall refer to this sum as the contaminated patient
population. The decontamination rate of HCWs affects the final outcome of the total
contaminated population more significantly than ρ. Naturally, as δ increases, the total
contaminated population decreases. However, when δ falls below the threshold δ ≈ 1.5,
the contaminated patient population grows significantly, suggesting that HCW hygiene
practices are very important in controlling MRSA.
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Figure 9: Contaminated HCW population as function of screening probability (ρ) and
decontamination rate (δ).

Figure 10: Contaminated population as function of screening probability (ρ) and decon-
tamination rate (δ).

In Figures 11 and 12 we plot contaminated HCW and contaminated patient popu-
lations as functions of the discharge rate of colonized patients (γC) and the screening
probability (ρ). For the contaminated HCW population, when ρ and γC increase, the
contaminated population naturally decreases. As hospitals discharge/treat more col-
onized patients they reduce the MRSA endemicity levels inside the hospital. For the
colonized patient population, the situation is similar. However, since patient discharge
directly affects the contaminated population, the sensitivity is much more significant.
For both populations, the most significant change occurs when γC ≤ 0.2.
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Figure 11: Contaminated HCW population as a function of screening probability (ρ)
and the discharge rate of colonized patients (γC).

Figure 12: Contaminated population as a function of screening probability (ρ) and the
discharge rate of colonized patients (γC).

Figure 13 shows the contaminated HCW population as a function of the screening
probability (ρ) and the discharge rate of isolated patients (γZ). The discharge rate
of isolated patients has a biggest effect on the contaminated HCW population when
γZ ≤ 0.2. As γZ increases the contaminated HCW population also increases. This is
because we had assumed that each time a patient is discharged from the hospital, a new
patient from the community is admitted. As this number grows, the greater the chance
that these newly admitted patients will be either colonized or infected.

As can be seen in Figure 14, contaminated patient population is given as a function
of γZ and ρ. The effect of discharging isolated patients directly impacts the number
of contaminated patients in the hospital, consequently yielding a greater effect on the
contaminated patient population than the contaminated HCW population. When γZ ≤
0.02 (that is, when the average length of stay of isolated patients exceeds 50 days), the
contaminated patient population explodes. Otherwise, changes in the length of stay of
isolated patients has negligible overall effects.
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Figure 13: Contaminated HCW population as a function of screening probability (ρ)
and the discharge rate of isolated patients (γZ).

Figure 14: Contaminated patient population as a function of screening probability (ρ)
and the discharge rate of isolated patients (γZ).

4.2 Deterministic and stochastic simulation comparisons
Stochastic simulations were run for both models over the time span of three years.
Stochastic simulations were utilized to look at the variation of data from the mean-field
results reported in the deterministic models, and helped to account for variability in the
model simulations and consistency within the results. Data from infected, colonized,
contaminated, and isolated populations were recorded for different values of ρ between
0 and 1. The trivial case of ρ = 1 was omitted from the figures, as complete screening
made all populations carrying the bacteria go to zero. Naturally, as shown in Figure 14,
larger values of ρ correspond to smaller endemic populations of infected and colonized
patients. Larger values of ρ do not, however, significantly affect the contaminated HCW
population, as shown in Figure 13.
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Figures 15 and 16 show a superposition of fifty stochastic simulations against the
mean-field results of the deterministic solution.

Figure 15: Admission screening simulations - deterministic model superimposed on fifty
stochastic simulations (ρ = 0.1).

Figure 16: Discharge screening model simulations - deterministic model superimposed
on fifty stochastic simulations (ρ = 0.1).

Observed but not shown in Figure 16 is that the population of the flagged compart-
ment asymptotically approaches a limit in finite time, determined by the rate at which
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flagged individuals are readmitted and the death rate of flagged individuals.

A more careful analysis was performed to determine deviation of the results of ei-
ther model. Populations at equilibrium for infected patients and contaminated HCWs
did not change significantly with screening procedures. Thus, these results were omit-
ted, and effectiveness was measured based on colonized and isolated patient populations
alone. For values of ρ between 0 and 1, 100 stochastic simulations were run using the
parameter values found in Tables 1 and 2. For each simulation the colonized and isolated
patient population sizes at endemic equilibrium were recorded. The results are shown
in Appendixes A and B. Colors are used to indicate the frequency with which endemic
populations occurred. These graphs are shown on the following pages. Discharge screen-
ing yields lower colonized patient population equilibria and also appears to have a lower
variation about the mean-field result. However, isolated patient population increase sig-
nificantly faster to over twice that achieved with admission screening for the same value
of ρ. The greater deviation in endemic equilibria found with the admission screening
model implies that the endemic equilibria are less predictable than those generated by
the discharge screening model.

5 Discussion
MRSA prevalence in hospital facilities is a concern of increasing priority since it jeopar-
dizes the health of patients and health care workers alike. However, MRSA cannot be
treated exclusively with antibiotics due to the very realistic possibility of further resis-
tant strains. Thus, control strategies and protocols should be emphasized in health care
facilities so as to control bacterial spread and further proliferation. Screening followed
by isolation is a very common method of controlling MRSA. Of practical consideration
is the most effective means of screening. Here we evaluated the effectiveness of discharge
screening as compared to the typical alternative of admission screening.

In order to compare the two proposed strategies for MRSA control in hospitals, we
evaluated three compartmental models: a baseline model and two models for either
screening strategy. The difference in the design of the models is intended to answer
questions otherwise not addressed in the current literature regarding patients leaving
hospitals and the effect on MRSA transmission dynamics in hospitals.

Screening at discharge appears to be the more effective strategy in reducing endemic
populations within the hospital. However, discharge screening also yields a very rapid
growth in the number of isolated patients, suggesting that the strategy may not be en-
tirely practical if considering an IU with finite capacity. Admission screening also had
larger variations in endemic equilibria around the mean-value result, suggesting more
variability than what was seen with discharge screening. Infected patient and contam-
inated HCW populations were ignored, as there was no significant difference in these
populations between screening strategies.

Many areas of further research and elaboration remain. The most significant of which
include an isolation unit (IU) with finite capacity (e.g. 20 beds). This consideration
would clarify the practicality of discharge screening and resolve the issue of whether
or not the growth seen in the stochastic models can’t be accommodated. Another im-
portant consideration is cost. Although we can mathematically express the results of
the above models in a concise and simple manner, the true pragmatism must be eval-
uated in terms of cost. A significant problem associated with controlling MRSA is the
cost it incurs in treatment and various methods to prevent its spread. Future work
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can include cost-benefit analysis. MRSA represents a growing financial burden for both
families and the public health system. This situation involves more complexity due to
the antibiotic-resistant feature of the bacteria. Consequently, increasing resources, both
financial and human, have to be devoted to control the spread of this disease. These
results might guide policy makers to improve control strategies. However, a detailed cost
analysis might produce more sound results. This will help to plan budgets adequately
and to recognize needs for future infrastructure. In performing our research, parameter
values were chosen conservatively so as to provide a lower bound for any results later on.

As mentioned earlier, patients and HCWs are assumed to be mixed homogeneously.
Although greatly simplifying analysis, this is not entirely the case in reality. Some pa-
tients have more contacts with HCWs than others naturally, such as those who may
visit the intensive care unit (ICU). However, elaboration on this would require a more
narrow scope regarding our system, as is the case with Bootsma et al [3].

Parameters were taken, for the most part, from primary sources and various papers
discussing MRSA endemic dynamics. Admittedly, not all parameters were obtained the
same way. A more exhaustive analysis could include confidence intervals and hypothe-
sis testing. Finally, admission rate is chosen so that population within the hospital is
constant. That is, whenever a patient is discharged or dies, a new patient is admitted
to take his place. HCW population is also assumed to be constant. Although these
assumptions greatly simplify analysis, they are unrealistic.
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Appendix A Stochastic simulations for colonized pa-
tient populations
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Figure 17: Comparison of colonized patient populations at equilibrium between admis-
sion screening (top) and discharge screening (bottom) using stochastic simulations.
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Appendix B Stochastic simulations for isolated patient
populations
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Figure 18: Comparison of isolated patient populations at equilibrium between admission
screening (top) and discharge screening (bottom) using stochastic simulations.
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