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Abstract

Prostate cancer cells depend on androgen for proliferation and survival. Cancers that recur
after first line treatment are then treated with androgen ablation. Although initially successful,
this treatment modality inevitably fails because tumors become androgen-independent. A vari-
ety of pathways are known to lead to androgen independence. At present, however, no clinical
method exists to predict which mode of resistance will develop. In this ongoing study, we propose
a compartmental model that could potentially be used to determine which pathway of castration
resistance the patient will develop. The model is structured by cell cycle stage. We use sensitivity
analysis to test the biological validity of the model and parameters to ascertain when and how
castration resistant prostate cancer occurs. Here we validate the model by fitting its solutions
to a subset of data from a large-scale trial of intermittent androgen ablation therapy. Different
resistance pathways yield different patterns of frequencies of cells in each cell cycle stage; therefore,
the model should detect these patterns and subsequently the mechanism of resistance developing
in an individual patient. Such a tool can provide oncologists critical information that they can use
to plan treatment to avoid or delay resistance and increase both length and quality of life.
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1 Introduction

1.1 Background

Prostate cancer is the most common non-skin cancer in American men and the second leading cause
of cancer mortality (Sung et al.). At least 85% of prostate cancer cases are treatable with surgery and
radiation (John Hopkins Medicine, 2021). However, between 20% to 30% of patients with prostate
cancer that have been treated the cancer returns (John Hopkins Medicine, 2021). Nearly all prostate
cancers begin as androgen-dependent and are attacked with either radiation or androgen deprivation
therapy (Feldman & Feldman, 2001). This treatment chemically castrates patients to lower prostate-
specific antigen (PSA), an enzyme released by the prostate and is found in high concentrations in
men with prostate cancer (Feldman & Feldman, 2001). Although there are improved clinical outcomes
while on treatment, over time some cells survive and proliferate. This results in androgen-independent
prostate cancer (AIPC), a fatal form of prostate cancer that metastasizes (Feldman & Feldman, 2001).
There’s no treatment for this form of cancer, thus, prostate cancer treatment focuses on reducing
androgen levels right before androgen-dependent cells die.

For prostate cancer to progress, there must be more cells proliferating than dying (Hanahan &
Weinberg, 2000). Androgen regulates this proportion by stimulating growth and hindering apoptosis
(Feldman & Feldman, 2001). This means that prostate cancer requires a certain level of androgen
for it to progress. The testes release testosterone and it circulates the blood. Since testosterone, the
principal androgen, is removed from the body in androgen ablation the cancer regresses (Feldman &
Feldman, 2001). When testosterone enters a prostate cell, about 90% gets converted to dihydrotestos-
terone (DHT) by an enzyme called 5α-reductase as it has five times a higher affinity for the androgen
receptor (AR) (Feldman & Feldman, 2001). The AR is attached to heat-shock proteins but dissociates
from them when it binds (Feldman & Feldman, 2001). This activation is regulated by protein kinase
A and causes translocation to the nucleus (Feldman & Feldman, 2001).

Many studies show that although only a couple AR mutations have been found in primary prostate
cancer, it is suspected that as much as up to 50% of metastatic prostate cancer cases have AR mutations
(Feldman & Feldman, 2001). Intermittent androgen deprivation therapy tries to delay these mutations
that would eventually lead to AIPC. There are five mechanisms by which AIPC can evolve: the
hypersensitive pathway, the promiscuous pathway, the outlaw pathway, the bypass pathway, and the
lurker cell pathway (Feldman & Feldman, 2001). In the hypersensitive pathway, the AR has increased
sensitivity to androgen to make up for the lowered levels of testosterone, more AR is made by gene
amplification, or the rate of converting testosterone to DHT is increased (Feldman & Feldman, 2001).
In the promiscuous pathway, the specificity of the AR expands and leads to AR activation by molecules
other than androgens (Feldman & Feldman, 2001). In the outlaw pathway, the AR is phosphorylated
by the mitogen-activated protein kinase (MAPK) pathway or protein kinase B, creating a ligand-
independent AR (Feldman & Feldman, 2001). In the bypass pathway, other survival mechanisms
remove the need for the AR or the ligand (Feldman & Feldman, 2001). In the lurker cell pathway, cells
that are androgen-independent exist in the prostate the entire time, even before therapy is introduced
(Feldman & Feldman, 2001).

1.2 Life cycle

The cell cycle is a sequence of events that take place in a cell as it grows and later divides. Any given
cell spends its time in a phase called interphase in which it grows, duplicates its chromosomes, and
prepares for cell division (Alberts et al., 2002). It then leaves interphase to undergo mitosis and finish
dividing. There are four stages to interphase: G1, G0, Synthesis (S), and G2 . The first stage, G1, is
known as the growth phase since this is when the cell grows (Alberts et al., 2002). In this stage, the
cell synthesizes nutrients and enzymes that will be needed later for replication and division (Alberts
et al., 2002). During the S phase, the cell synthesizes a copy of the DNA in the nucleus. This extra
copy of the DNA then gets condensed during G2, and the cell is preparing for division (Alberts et al.,
2002). Once interphase is complete, the cell then moves on to mitosis (Alberts et al., 2002). Here, the
cell splits to form two identical daughter cells. After mitosis concludes, the daughter cells enter their
own interphase and begin a new round of the cell cycle (Alberts et al., 2002).

The type of cell determines how the time is split in each cell cycle phase. Some types of cells, such
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as embryo and tumor cells, divide quickly, where the daughter cells may potentially go through another
round of the cell cycle instantly. However, other types of cells divide very slowly or do not divide at
all. Those that do not divide exit the G1 phase and enter the resting stage of G0 (Alberts et a., 2002).
A cell in G0 is not actively growing nor preparing to divide. It already has a specific purpose. For
example, in G0 a liver cell will be helping to filter blood and a neuron will be conducting signals. G0
is the permanent phase for several cells, whereas clones may reenter the cell cycle by moving into the
S phase.

1.3 Previous Works

In previous works, such as Portz and Ideta, the models predicted the behavior of AD and AI cells
during Intermittent Androgen Suppression therapy. Within Portz, the dynamics of androgen suppres-
sion therapy are modeled through Androgen Dependent (AD) cells, Androgen Independent (AI) cells,
and mutation rates. Existing models reflect the mutation of AD cells to AI cells during Androgen
suppression treatment. Our model also recognizes the importance of androgen for proliferation and
apoptosis and includes it as a parameter. Unlike previous models that include a rate for mutation of
AD cells to AI cells to reflect the ratio of cells during treatment, the focus of our model is to predict
the type of pathway an AD cell will change into an AI cell. Our model focuses on the phases that each
cell resides in and hope to determine the behavior of malignant cancer cells.
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2 Model

Figure 1: Life cycle graph of the stages of cell development.

Figure (1) outlines the cell cycle and notation. We assume that cells begin their life cycle in the G1

stage (Alberts et al., 2002). This stage is the growth phase, and it is where cells synthesize RNA and
proteins, and finish growing to their maximum size (Alberts et al., 2002). There is a checkpoint near
the end of the G1 stage that is regulated by retinoblastoma protein (pRb) (Hanahan and Weinberg,
2000). For a cell to enter the S stage, pRb allows E2 factors (E2F) to enable cells to multiply (Hanahan
and Weinberg, 2000). Then, cells move to the G0 stage. This stage is the resting phase, and it is where
99% of cells will spend the rest of their life, unless pRb enables E2 factors so a healthy cell may leave
G0 to enter S (Hanahan and Weinberg, 2000). The cell is busy working hard to maintain homeostasis
here and does not begin to replicate chromosomes or divide (Alberts et al., 2002). Cells transition
from G1 to G0 the rate α(1 − m), where α is the basic rate modified by m which is a measure of
malignancy (Table 1). The measure of malignancy determines the likelihood that a cell will bypass
G0. For example, should m be 1/2, we can assume that half of the cells will skip the G0 stage and
move right into S at rate mβ1(A). The S stage is where cells begin replicating their chromosomes to
prepare for mitosis (Alberts et al., 2002). The base transition rate, β1(A), is a function of androgen,
A, as entry into this stage is highly dependent on androgen (Table 2) (Feldman & Feldman, 2001).
On the other hand, healthy cells in G0 will also transition to S when their density is below a carrying
capacity, K. To reflect this transition from G0 into S, we model this transition rate as a function
βS(x2), where x2 is the number of cells in G0 (Table 2). Cells in S then move into G2 at rate δ. The
G2 stage is where cells complete replicating chromosomes and look for and repair errors. At the end of
G2, cells complete mitosis and cytokinesis at rate λ, and two daughter cells enter G1 at rate 2λ (Table
1). Mitosis and cytokinesis occur during the G2 stage; however, as these happen quickly, instead of
representing them as compartments, we leave them as rate λ leaving the G2 class. We assume in each
of these stages that cells die at rate µ(A), which is a function of androgen since prostate cell survival is
highly dependent on this hormone (Feldman & Feldman, 2001). When errors cannot be fixed, normal
cells will induce apoptosis.

Let x⃗ ∈ R4
≥0 be the cell population in each phase of the cell cycle. We define it as,
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x⃗ = [x1, x2, x3, x4]
⊺
. (1)

Our xi is used to represent each stage of the cell life cycle; the subscript states which stage in
particular. Respectively, when i = 1, 2, 3, 4, the stage of the cycle is then G1, G0, S, and G2.

Our model takes the following form:
dx⃗

dt
= Ax⃗, where A is the following projection matrix:


− (α(1−m) +mβ1(A) + µ) 0 0 2λ

α(1−m) − (βS(x2) + µ) 0 0
mβ1(A) βS(x2) − (δ + µ) 0

0 0 δ − (λ+ µ)

 . (2)

We assume that healthy tissue homeostasis is regulated based on the number of cells in G0. As
the G0 population approaches a fixed set point, K, the rate at which cells in G0 commit to division
decreases. When the G0 population equals or exceeds K, normal cells will stop dividing and remain in
G0. We model this biological mechanism by making βS a function of x2, as follows:

βS(x2) = β̂S

(
1− x2

K

)
. (3)

As cell survival and transition from the growth phase to the synthesis phase are androgen-dependent,
both β1 and µ are functions of androgen (Feldman & Feldman, 2001). Specifically, we assume that the
transition of malignant cells from G1 to S can be modeled using Michaelis-Menten formalism; that is,

β1(A) = βmax

(
A

kβ +A

)
. (4)

The mortality function, µ, is assumed to be an exponentially decreasing function of A, with a
maximum death rate of µmax when A = 0 and a minimum of µmin as A → ∞. We model these
assumptions as follows:

µ(A) = µmaxe
−ηA + µmin, (5)

where η is the sensitivity of cell survival to androgen (Table 1).

Table 1: Parameters used in the model; their description, values, units and source.
Parameter Description Value Unit Source

α Rate at which cells move from G1 to G0 1/4 hrs [4]
δ Rate at which cells move from S to G2 1/11 hrs [7]
λ Rate at which cells move from G2 to G1 1/7 hrs [4]
m Measure of malignancy 0 1

β̂S Maximum Rate of Transition from G0 to S 1 1
k Homeostatic set point 1 1

βmax Maximum growth rate of cells 1
kβ Androgen sensitivity of cells moving from G1 to S 1

µmax Maximum rate at which cells die with respect to androgen 1/60 1
µmin Minimum rate at which cells die with respect to androgen 1/1000 1
η Sensitivity of cell survival to androgen 0 1

βS(x2) Rate at which cells move from G0 to S 3 gm
β1(A) Rate at which cells move from G1 to S 4 gm
µ(A) Rate at which cells die in all classes 5 gm
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Table 2: Variables, their meaning, equation and unit.
Variable Description Equation Unit

t Time Hours
x⃗(t) Population vector of cells in state xi(t) i ∈ {1, 2, 3, 4} at time t 1 1
X(t) Total mass of the tumor

∑
1 gm

A(t) Serum Androgen Concentration 4 µg/ml

3 Results

3.1 Mathematical

Given the life cycle model, we have the following differential equations:

ẋ1 = 2λx4 − (α(1−m) +mβ1(A) + µ)x1 (6)

ẋ2 = α(1−m)x1 − (βs(x2) + µ)x2 (7)

ẋ3 = mβ1(A)x1 + βS(x2)x2 − (δ + µ)x3 (8)

ẋ4 = δx3 − (λ+ µ)x4. (9)

We solve for the variables to obtain the fixed points,

E0 = [0, 0, 0, 0] (10)

E1 = [x∗
1, x

∗
2, x

∗
3, x

∗
4]. (11)

Where in E1, the equations for the equilibria are:

x∗
1 =

−2Kλδµ

β̂S
(β̂S + µ)

(λ+ µ)(δ + µ)(α(1−m) +mβ1(A) + µ)
(12)

x∗
2 =

K

β̂S

(
β̂S + µ̂

)
(13)

x∗
3 =

−Kµ

β̂S
(β̂S + µ)

δ + µ
(14)

x∗
4 =

−Kδµ

β̂S
(β̂S + µ)

(δ + µ)(λ+ µ)
. (15)

Consider the case when µ = 0. We then have no dying cells, so it follows that there is an unceasing
division of cells and eventually, x2 will reach K and we get βS(x2) = β̂S (Equation 3). Thus, the entire
population will accumulate at stage x2. Now, consider µ = 1. We can immediately observe that no
cells will proceed to the next stage since the cells will all die from whatever stage they are located at.
Thus, having 0 < m < 1 allows a flow between stages.

Consider when m = 0. Cells in stage x1 proceeds directly to x2. However, if m = 1 then cells skip
x2, and thus cells do not enter a resting phase and there is a greater division of cells. This may lead
to cancer.

It was essential to calculate the Jacobian so that the eigenvalues could be obtained. With this, the
properties of the linear stability of the system and the equilibrium can be found. We use the local
stability theorem.

Theorem 1 (Local Stability Theorem) If at least one eigenvalue of the Jacobian matrix of this
system at x∗ has a positive real part, the system is unstable. If all eigenvalues have negative real part,
then the system is locally asymptotically stable.
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J =



−(mβ1(A) + α(1−m) + µ̂) 0 0 2λ

α(1−m) −

(
β̂s

k
+ µ̂

)
0 0

mβ1(A)
β̂s

k
−(δ + µ̂) 0

0 0 δ −(µ̂+ λ)


Now with the Jacobian, we obtained the eigenvalues. However, given the complexity of these, we

opted to evaluate these cases at specific numerical solutions so that the behavior of the system could
be observed.

Following the structure of the life cycle model, a matrix model was implemented to help expand
into the stability analysis of prostate cancer (Equation 2).

The R0 of the model was calculated to better validate the behavior of the system. To do this, the
probability that the cell will survive and transition to the next phase was calculated for each possible
stage. As follows,

P{x1 → x2, x2 → x3, x3 → x4, x4 → x1} =
α

α+ µ

β̂S

β̂S + µ

δ

δ + µ

λ

λ+ µ
.

Thus, we see that:

R0 =
2αβ̂Sδλ

(α+ µ)(β̂S + µ)(δ + µ)(λ+ µ)
. (16)

When R0 > 1, the tumor persists, but when R0 < 1 there is extinction of the tumor.
We see the same results when compared to the real part of the dominant eigenvalue.

Figure 2: The real part of the dominant eigenvalue plotted against death.

Highlighted with orange in the figure above is the range of a viable tumor. Once it passes the
bifurcation point, the tumor becomes extinct.

3.2 Computational

We began computational analysis after finishing our mathematical analysis. We started out by calcu-
lating the default solution, which tells us how our model should behave (Fig. 3, Tab. 3).

The default solution was done using MATLAB’s ODE45 function, which is a fifth order Runga-
Kutta method with six stages that is used to solve ordinary differential equations. Specifically, it uses
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the Runge-Kutta-Fehlberg method of integration. To do this, it calculates six slopes and multiplies
each by the chosen time-step and then takes the weighted average of these.

Figure 3: The default solution. The values for the parameters used are found in Table 3.

Table 3: Parameter values used in the default solution.
Parameter Value

µ 0.01766666670
δ 1/11
β1 1/6
λ 1/7
α 1/6

β̂S(x2) 1/10
k 3/4
m 0

9



Recall that we have two fixed point, the trivial E0 = 0⃗ and interior E1 = x⃗∗ ∈ R4. The fixed points
were calculated using the default solution’s parameters to yield,

x∗
1 = 0.15150 (17)

x∗
2 = 0.36860 (18)

x∗
3 = 0.17260 (19)

x∗
4 = 0.09780 (20)

(Table 3). Which were graphed over the default solution to demonstrate that the populations indeed
went to the above values (Fig. 3).

Figure 4: The default solution with calculated equilibria.

Recall that we calculated the basic reproduction number R0,

R0 =
2αβ̂Sδλ

(α+ µ)(β̂S + µ)(δ + µ)(λ+ µ)
. (21)

Recall that when R0 > 1, we have a viable tumor, and when R0 < 1, it dies off. From the default
solutions parameters, we calculated its R0 to get 1.1451. We see that on the default solution, it goes
to equilibria and does not die off, which means that the trivial fixed point is unstable, the interior
fixed point is stable, and R0 > 1. We began doing some basic sensitivity analysis by testing out some
different values for our parameters.

When we let K = 0, the trivial fixed point is stable, and the tumor becomes extinct. The interior
fixed point does not exist, and R0 < 1.
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Figure 5: Default solution where K = 0.

When K = 1, the mass of the tumor is greater than the previous solution. The trivial fixed point
is unstable, the interior fixed point is stable, and so the tumor persists and reaches equilibria. Here,
R0 is greater than 1.

Figure 6: Graph when K = 1.

x∗
1 = 0.20210 (22)

x∗
2 = 0.49150 (23)

x∗
3 = 0.23020 (24)

x∗
4 = 0.13040 (25)
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We let m = 1/4, and see that the interior fixed point is table, the trivial fixed point is unstable,
and the solution oscillates before reaching equilibria.

Figure 7: Graph when m = 1/4.

x∗
1 = 0.20440 (26)

x∗
2 = 0.49710 (27)

x∗
3 = 0.23280 (28)

x∗
4 = 0.13180 (29)

For both of these next graphs, where β̂S is 1/4, and β̂S is 3/4, the trivial and interior fixed points
are unstable. The behavior of both solutions is a limit cycle. The mass of the tumor is greater when
β̂S is equal to 3/4, as it is the maximum transition rate from G0 to S.

Figure 8: Graph when β̂S = 1/4. Figure 9: Graph when β̂S = 3/4.
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Table 4: Parameter values used to calculate the above solutions.
Parameter Value

µ 0.0176666667
δ 1/11
β1 1/6
λ 1/7
α 1/6

β̂S 1/10, 1/4, 3/4
k 0, 3/4, 1
m 0, 1/4

Lastly, here is a table showing the different states and behaviors of the trivial and interior fixed
points our model can have. We discovered these from testing different parameter values, as shown
above in our solutions.

Table 5: Behavior of trivial and interior fixed points when stable or unstable.
Trivial Interior Behavior

Stable DNE Extinction
Unstable Stable Equilibria
Unstable Unstable Limit Cycle

3.3 Statistical

Initially, a preliminary statistical analysis was done on patient data. First, patient’s serum PSA vs
serum testosterone levels were plotted with a regression line. The equation for the regression line is:

ŷi = 2.10540 + 0.45419xϵ̂i, (30)

where ϵ ∼ N(0, 5.0942).

Figure 10: Plot of all patient Serum PSA vs Serum Testosterone data.
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Next, the data was plotted by treatment cycle.

Figure 11: Plot of patient serum PSA vs serum testosterone data by treatment cycle.

The equations for the regression lines of each cycle in ascending order are:

ŷi = 1.21264 + 0.45665x+ ϵ̂i

where ϵ ∼ N(0, 5.482),

ŷi = 1.74126 + 0.22534x+ ϵ̂i

where ϵ ∼ N(0, 4.3392), and

ŷi = 2.72088 + 0.54586x+ ϵ̂i

where ϵ ∼ N(0, 5.3712).

4 Discussion

4.1 Future Works

In our future works we will complete thorough sensitivity analysis and statistical analysis. Once
completing our statistical analysis, we can begin to incorporate patient data to the model.
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7 Appendix

7.1 Proof of Expected Value of an Exponential Random Variable

Figure 12: Image demonstrating exponential random variable r going from example classes S1 to S2.
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The rate of the population leaving S1 to S2 is dS1

dt = −rt. Using seperation of variables, we know
that S1(t) = S0e

−rt. We want to obtain the average time that a cell is in S1. Thus, we can find
the average time using the Expected value formula. E[X] =

∫ xmax

xmin
xf(x) dx. We use the probability

distribution function F(t) = 1− e−rt and obtain the probability function as f(t) = re−rt, t ≥ 0.

E[t] = te−rt +

∫ ∞

∞
xf(x) dx

= 0 +
e−rt

−r

=
1

r
.

Therefore, we see that the expected value of an exponential random variable is indeed 1
r . ■

7.2 Code for the model

close all; clc; clear all;

% Initial values G1 = .1; G0 = .3; S = .1; G2 = .2;

% Parameter values
alpha = 1/6; lambda = 1/7; delta = 1/11;
k 1 = 1; bmax 1 = 0.1; A = 1;
eta = 0.025; umax = 0; umin = 0;
beta hatS = 0.1; k = 3/4; m = 0;

% Michaelis-Menten and Death equations
betaA 1 = bmax 1 * (A / (k 1 + A));
muA 1 = umax * exp(-eta * A) + umin;

% Set the time span
tspan = 0:1000;

% Put parameters and initial values into arrays to pass into the model
y0 = [G1 G0 S G2];
parameters = [alpha lambda delta muA 1 beta hatS k m betaA 1];

% Use ode45 to solve our system of equations.
[t,y] = ode45(@cancer,tspan,y0,[],parameters);
figure(1) % Gives the graph its own window
plot(t,y(:,1),’LineWidth’,1.5); hold on % this will graph our G1
plot(t,y(:,2),’LineWidth’,1.5); % this will graph our G0
plot(t,y(:,3),’LineWidth’,1.5); % this will graph our S
plot(t,y(:,4),’LineWidth’,1.5); hold off % this will graph our G2
title(’Population of Cells in Each Phase’,’Interpreter’,’latex’);
xlabel(’Time’,’Interpreter’,”latex”) % add a label to the x axis
ylabel(’Cell Populations’,’Interpreter’,”latex”) % add a label to the y axis
legend(’x 1’,’x 2’,’x 3’,’x 4’) % create the legend
saveas(gcf, ’bhs34new.png’) % saves a png of the graph

R0 = (2 * lambda * beta hatS * alpha * delta) / ((alpha + muA 1) * (beta hatS + muA 1) *
(lambda+muA 1) * (delta + muA 1))

% Plot all populations on a log plot
figure(3) % Gives the graph its own window semilogy(t,y(:,1),’LineWidth’,1.5); hold on % this will
graph our G1
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semilogy(t,y(:,2),’LineWidth’,1.5); % this will graph our G0
semilogy(t,y(:,3),’LineWidth’,1.5); % this will graph our S
semilogy(t,y(:,4),”LineWidth”,1.5); hold off % this will graph our G2
% title(’(Log) Population of Cells in each Phase’);
% Making the graph slightly nicer xlabel(’Time’,’Interpreter’,”latex”) % add a label to the x axis
ylabel(’Cell Populations’,’Interpreter’,”latex”) % add a label to the y axis
legend(’x 1’,’x 2’,’x 3’,’x 4’) % create the legend
saveas(gcf, ’k at 0.75.png’) % saves graph as a png

% Our main model. We pass in our initial populations values as an array to
% the ”y” parameter, and we pass in our parameter values as an array
% to the params parameter function dydt = cancer( ,y,params)

% Assign value to parameters using params vector
alpha = params(1); lambda = params(2); delta = params(3); muA 1 = params(4); beta hatS =
params(5); k = params(6); m = params(7); betaA 1 = params(8);

% Assign values to proportions of cells in each stage from the y vector
x1 = y(1); x2 = y(2); x3 = y(3); x4 = y(4);

if (x2 >= 0) && (x2 <= k)

beta S = beta hatS * (1 - x2/k);
else

beta S = 0;
end

dydt = [ 2*lambda*x4 - (1-m)*alpha*x1 - m*betaA 1*x1 - muA 1*x1; % dx1/dt

(1-m)*alpha*x1 - beta S*x2 - muA 1*x2; % dx2/dt

m*betaA 1*x1 + beta S*x2 - delta*x3 - muA 1*x3; % dx3/dt

delta*x3 - lambda*x4 - muA 1*x4 % dx4/dt
];

end

7.3 Code to calculate fixed points

% Our model as a function of time
syms t ’real’

% Define variables for our state vector, to be used in the projection
% matrix in the for vec(x)(t) = P* vec(x)
syms x(t) [4,1]; % State vector
assume(x(t), ’real’);

% Define our general parameters
syms alpha beta S beta 1 delta lambda ’real’
assume([alpha, beta S, beta 1, delta, lambda] > 0);

% Define our mortality parameters, we will just use mu here syms mu ’real’ %mu max mu min eta A
’real’
assumeAlso(mu > 0);
%assumeAlso([mu, mu max, mu min, eta, A] > 0);
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% New parameters for the betaS function
% beta hat is the beta hat S
syms beta hat m K ’real’
assumeAlso([beta hat, m, K] > 0);

% Parameters for beta1 function
%syms A beta max K beta
%assumeAlso([A, beta max, K beta] > 0);

% Define the projection matrix
P = [-(mu + alpha*(1-m) + m*beta 1), 0, 0, 2*lambda; % G1 stage
alpha*(1-m), -(beta hat*(1 - x2/K) + mu), 0, 0; % G0 stage
m*beta 1, beta hat*(1 - x2/K), -(delta + mu), 0; % S stage
0, 0, delta, -(lambda + mu)]

% Now, use the diff function
modelP = diff(x, t) == P*x

% We just need to see the RHS of this eqn. So let’s do that
ModelPRHS = rhs(modelP)
% Let’s look for equilibria now
% Going to substitute ys in for our x i(t)’s
syms y [4,1]
assumeAlso(y, ’real’)
assumeAlso(y >= 0)
ModelPRHSAuto = formula(subs(ModelPRHS, [x1, x2, x3, x4], [y1, y2, y3, y4]))

% Solving for x4
Solx4 = solve(ModelPRHSAuto(4) == 0, y4, ’ReturnConditions’, true);
% ReturnConditions means it tells us when this is true
Solx4.y4 % Print the solution

Solx4.conditions % What conditions is it true?

% Sub in x4, our goal is to have x1 be a function of x3, too.
Solx1 = subs(ModelPRHSAuto(1), y4, Solx4.y4)
% Solving for x1
Solx1 = solve(Solx1 == 0, y1, ’ReturnConditions’, true)
Solx1.y1 % x1 is now a function of x3
Solx1.conditions

% Sub in our solved x4
Solx2 = simplifyFraction(subs(ModelPRHSAuto(2), [y1 y4], [Solx1.y1 Solx4.y4]))

Solx2 = collect(Solx2, y2)
Solx2 = solve(Solx2 == 0, y2, ’ReturnConditions’,true)

Solx2.y2 = simplifyFraction(Solx2.y2)
Solx2.y2
% Sub in x1, x2, x4
Solx3 = subs(ModelPRHSAuto(3), y4, Solx4.y4)
Solx3 = subs(Solx3, y1, Solx1.y1)
Solx3 = subs(Solx3, y2, Solx2.y2)

test1 = simplify(Solx3(1))
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test1 = simplifyFraction(test1)
test1 = collect(test1, y3)
test1 = solve(test1 == 0, y3, ’ReturnConditions’,true)
test1.y3
test2 = simplify(Solx3(2))
test2 = simplifyFraction(test2)
test2 = collect(test2, y3)
test2 = solve(test2, y3, ’ReturnConditions’,true);
test2.y3
test2.conditions
NewSolx3 = [test1.y3 test2.y3]
Evalx3pt1 = subs(NewSolx3,[alpha, beta 1, delta, lambda, beta hat, m, K, mu],[1/6, 1/2, 1/11, 1/7,
1, 0, 3/4, 0.0176666667])
Evalx3pt2 = subs(NewSolx3, [alpha, beta 1, delta, lambda, beta hat, m, K, mu], [1/11, 1/2, 1/8, 1/5,
1, 1/4, 3/4, 0.0176666667])
Evalx3pt3 = subs(NewSolx3,[alpha, beta 1, delta, lambda, beta hat, m, K, mu],[1/6, 1/6, 1/11, 1/7,
0.25, 0, 3/4, 0.0176666667])
solnx3pt3 2 = double(Evalx3pt3(2))
solnx3pt2 2 = double(Evalx3pt3)

Ex3 = solnx3pt2 2(2)
solnx1 = subs(Solx1.y1,[alpha, beta 1, delta, lambda, beta hat, m, K, mu, y3],[1/6, 1/6, 1/11, 1/7,
0.25, 0, 3/4, 0.0176666667, Ex3]);
Ex1 = double(solnx1)
solnx2 = subs(Solx2.y2,[alpha, beta 1, delta, lambda, beta hat, m, K, mu, y3],[1/6, 1/6, 1/11, 1/7,
0.25, 0, 3/4, 0.0176666667, Ex3]);
Ex2 = double(solnx2(2))
solnx4 = subs(Solx4.y4,[alpha, beta 1, delta, lambda, beta hat, m, K, mu, y3],[1/6, 1/6, 1/11, 1/7,
0.25, 0, 3/4, 0.0176666667, Ex3]);
Ex4 = double(solnx4)

Equilibria1 = [Ex1, Ex2, Ex3, Ex4]
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