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Abstract

Zika virus (ZIKV) has started to plague South and Central America. Following the out-
break in Brazil, cases of microcephaly and other neurological disorders arose steadily. Health
o�cials linked these cases to ZIKV which led the International Health Regulations (IHR)
committee to deem ZIKV as a Public Health Emergency of International Concern (PHEIC) in
2016. Despite the control strategies, ZIKV continues to spread in Brazil where the 2016 Sum-
mer Olympic games are to be held. Mass gatherings such as sporting events typically increase
sexual activity and the spread of sexually transmitted diseases. Thus holding the Olympics in
Rio de Janeiro subjects people to a range of health risks. This was con�rmed in February 2015
when researchers found that males can transmit the disease via sexual intercourse. Using SIR
models, we investigate three male-seeking-male (MSM) subpopulations: male natives in Rio,
male visitors from outside of Rio, and male sex workers in Rio. We formulated the basic repro-
duction number and also calculated implicitly the �nal size of the epidemic. For speci�c values
of preference, we calculated a basic reproductive number of 4.7886 which is similar to 4.4, the
basic reproductive number calculated by Dr. Towers and colleagues for the Zika outbreak in
Barranquilla, Colombia [25]. The �nal PRCC charts show that the most sensitive parameters
are c1, c2, c3. This indicates that the most important parameters to consider when trying to
decrease the infected individuals of each subpopulation is the number of sexual contacts that
each individual is involved in. Overall, the preference parameter, fi, does not reduce the �nal
size for a population the way the ci parameter can for �nal size distribution.
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1 Introduction

1.1 ZIKV Epidemiology and Global Spread

ZIKV is considered part of the 
avivirus genus along with other viruses such as dengue and West

Nile virus. Zika virus is classi�ed as an arbovirus due to its dominant transmission mechanism

coming from an infected arthropod: the female mosquito of the Aedes aegypti genus [20]. In 1947,

the virus was isolated from a rhesus monkey in the Zika forest of Uganda, where ZIKV received

its name [20]. By 1954, ZIKV spread to West Africa with recurrent outbreaks reported not only in

tropical Africa, but also in Southeast Asia [12]. Between 2007 to 2016, a total of 44 countries and

territories documented Zika viral transmission; 33 of which reported transmission between 2015

and 2016 [21]. This recent rise in the spread of Zika virus (ZIKV) has given health o�cials cause

for concern.

The Yap Islands of the Federated States of Micronesia reported in 2007, the �rst large outbreak

of ZIKV that was outside of Asia and Africa [20]. After 2015, the disease spread to areas outside

of the traditional regions, eventually reaching South and Central America. ZIKV eventually pro-

gressed to in Brazil in May 2015 [9]. At the time, researchers believed that ZIKV was originally

introduced during the 2014 FIFA World Cup event in where no Paci�c countries with documented

ZIKV had competed. It was also suggested that ZIKV was introduced in Rio de Janeiro (Rio)

during the August 2014 Va'a World Sprints Canoe Championship, an event where various Paci�c

countries participated. Mass gatherings such as the previously mentioned events, attract global

travelers, which exposes many people to a large range of health risks. Now, there is data available

and the situation does not seem safe: Rio's suspected Zika cases are the highest of any state in

Brazil (26,000), and its Zika incidence rate is the fourth worst (157 per 100,000) [1]. According to

Brazil's o�cial data, Rio is not on the fringes of the outbreak, but inside its heart [1]. This is not

comforting data, considering that the city of Rio de Janeiro is the location of the 2016 Summer

Olympics.
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1.2 Transmission of ZIKV in Brazil and Olympics

The dominant ZIKV transmission mechanism in Brazil is via mosquitoes which are prominent

in tropical regions. Typically, the virus is transmitted from human to human by the bite of an

infected female mosquitoes [20]. Infected humans are the main carriers and spreaders of ZIKV.

Humans serve as a source for uninfected mosquitoes because when a mosquito feeds on an infected

human, it becomes infected as well [17]. An infected mosquito can transmit ZIKV for the rest of

its life. After an infected mosquito bite, disease symptoms usually appear following an incubation

period of three to twelve days [17].

In addition to incidences of mosquito-borne ZIKV transmission, ZIKV has been detected in

serum, saliva, urine, and semen [14]. These incidences led to the realization that ZIKV can be

transmitted sexually through vaginal, anal, and oral intercourse [20]. Since 2015, countries such

as Argentina, Canada, Chile, France, Italy, New Zealand, Peru, Portugal, and more recently, the

USA have had cases of sexually transmitted ZIKV [9]. This is a concern because within the span

of a month, six cases of sexually transmitted ZIKV arose throughout the United States, starting

with the �rst incident in Dallas, TX on February 2, 2016 [9] [18]. It was also found that Europe

had its �rst case of sexually transmitted ZIKV in France on February 2016 [12].

ZIKV infections are often asymptomatic or have mild symptoms that can last around two

to seven days and have an insigni�cant impact on sexual activity [25]. Since ZIKV is sexually

transmissible, it is necessary to avoid sexual contact or to use preventive measures such as condoms.

This is particularly important to pregnant women in areas where ZIKV is circulating. Based on the

reported dengue data from 2015, WHO estimated that up to four million people in the Americas

could be infected by ZIKV in 2016 [21]. Without e�ective intervention, the situation has the

potential to worsen, due in part to the upcoming 2016 Summer Olympics in Rio de Janeiro (Rio).

1.3 Model Overview

When ZIKV emerged in South America, the spread of ZIKV was rapid throughout South and

Central America, reaching Mexico in November 2015 [9]. As the number of incidences of micro-

cephaly, Guillain-Barr�e syndrome, and other neurological disorders linked to ZIKV increased, the
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World Health Organization (WHO) declared ZIKV a Public Health Emergency of International

Concern (PHEIC) on February of 2016 [19]. ZIKV is spreading throughout the South and Central

Americas and is a potential threat to the visitors and participants of the 2016 Rio Olympics [9].

Another concern is that in Brazil, being a sex worker is legal [7]. Sex is not frowned upon and

there is expected to be an increase in sexual activity during the Olympics.

Males have been known to sexually transmit ZIKV due a large viral load of ZIKV found in

their semen that can last up to six months [14]. Since male individuals represent a long term

reservoir for ZIKV, they are considered super spreaders. There is a large amount of men who have

sex with men (MSM) in Brazil and Rio in particular, contains 14.30 % of Brazil's LGB population

[22]. This, as well as the fact that sex working is legal in Brazil, led us to contruct a male-to-male

model where we look at three groups: homosexual males that are visitors outside of Rio, natives

in Rio who are not sex workers, and male sex workers in Rio.

The overall goal of this paper is to �nd out how the behavior of MSM a�ect the transmission

dynamics of ZIKV at the 2016 Olympic Games in Rio. More speci�cally, to show that heterogeneous

mixing enhances the transmission of ZIKV. Therefore, we propose a deterministic ODE system of

equations.

2 Methods

2.1 Model Framework

For our model, we consider the sexual transmission of ZIKV and take into consideration male-

to-male sexual contact. We focus on the total population of men seeking men (MSM) at Rio de

Janeiro during the Olympics. We then split that population into three subpopulations: MSM

visitors outside of Rio, natives in Rio, and male sex workers in Rio. We then describe each of those

populations as a separate class. The dynamics of these three separate populations incorporate a

short time scale, 30 days, and the analysis is over the duration of a single outbreak.
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2.2 Assumptions

Since the incubation period of the disease is relatively small, it is neglected in this research. Thus a

typical individual becomes infectious instantaneously after being infected. It is also assumed that

initially all visitors are susceptible [20].

Disease free equilibrium was computed in order to get an analytical expression of R0. However,

the endemic equilibrium is not computed due to the short time period of the Olympics. The

Olympics are 17 days long, but we are looking at a 30 day time scale due to taking traveling into

consideration.

We let fi notate an individual's preference of another individual in the same group. We can

assume that f3 << f1 < f2. This is because we have conclude that male sex workers are the least

likely to have sexual contact within their group due to the lack of gain from the experiences versus

sexual contacts with the other groups. We then assume visitors will be next to have contact within

their own group due to the fact that they will most likely be mixing with the male sex worker or the

male native groups. We assume that the native population will have the most mixing within their

own group because the Olympics will a�ect them the least. We are assuming that they will behave

as normal for the most part, and will mostly keep to themselves despite the in
ow of visitors from

the event.

2.3 ZIKV Epidemic Model

We denote Ni as the total subpopulation size of each class, with i establishing which subpop-

ulation we are looking at. We let i = 1; 2; 3 to denote visitors, natives, and male sex workers,

respectively. The transmission process is modeled through the interactions of the following epi-

demiological variables. We let Si; Ii; and Ri denote the susceptible, infectious, and recovered

individuals respectively,
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Figure 1: Flowchart for the SIR model of each subpopulation.

Our model describes the impact of heterogeneous mixing in Rio during the Olympics and the

deterministic ODE system of equations is given by:

dS1

dt
= �S1�1

�
P11

I1

N1
+ P12

I2

N2
+ P13

I3

N3

�
;

dI1

dt
= S1�1

�
P11

I1

N1
+ P12

I2

N2
+ P13

I3

N3

�
� 
I1;

dR1

dt
= 
I1;

dS2

dt
= �S2�2

�
P21

I1

N1
+ P22

I2

N2
+ P23

I3

N3

�
;

dI2

dt
= S2�2

�
P21

I1

N1
+ P22

I2

N2
+ P23

I3

N3

�
� 
I2;

dR2

dt
= 
I2;

dS3

dt
= �S3�3

�
P31

I1

N1
+ P32

I2

N2
+ P33

I3

N3

�
;

dI3

dt
= S3�3

�
P31

I1

N1
+ P32

I2

N2
+ P33

I3

N3

�
� 
I3;

dR3

dt
= 
I3;
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where the total number of each subpopulation is, Ni = Si + Ii +Ri.

Table 1: Parameter De�nitions and Units

Parameters Description Units

�i rate of infectivity time per contact

ci contacts per unit time contacts
time

fi preference of contacting an unitless

individual in the same group


 recovery rate 1
time

Table 2: Parameter Values

Parameters Description Range Values References

�i Rate of Infectivity - ci � :043 [27]

c1 Visitor's Contacts per Week ( 3
28 ,

6
28 )

6:8
28 [2]

c2 Native's Contacts per Week ( 3
28 ,

6
28 )

3:4
28 [2]

c3 Sex Worker's Contacts per Week ( 27 ,
20
7 )

11
7 [23]

fi Preference of Contacting an Individual in the Same Group (0; 1) Estimation -


 Recovery Rate - 1
180 [12]

We set �i = pci, where p is the probability that a contact is e�ective for ZIKV transmission

given that a susceptible has contact with an infected individual and ci is the average number of

contacts of group i per person per unit time. Therefore, �i is interpreted as the average number

of e�ective contacts a susceptible has per unit of time. Furthermore, when fi = fj = 0 the

preference term is removed from the equation and there is simply proportional mixing between

subpopulations.
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We assumed the preferred mixing of the three subpopulations and used the formula,

Pij = fi�ij + (1� fi)
(1� fj)cjNjP3

n=1(1� fn)cnNn

(1)

�ij =

8>>>>>>><
>>>>>>>:

1, i = j

0, otherwise

where Pij = probability that an individual in group i has a contact with an individual on group j

given that the i group has engaged in a sexual contact. Where fi is an individual preference for

their own group and (1-fi) is an individual's preference for a di�erent group [3] [11] [6].

Table 3: Subpopulation Values

Parameters Description Values References

N1 Population of MSM Visitors 40; 777 [8] [24]

N2 Population of MSM Natives 130; 718 [16] [22]

N3 Population of Male Sex Workers 5; 000 [15] [22]

S1 Susceptible Visitors 40; 777 Estimation

S2 Susceptible Natives 129; 760 Estimation

S3 Susceptible Sex Workers 4; 963 Estimation

I1 Initially Infected Visitors 0 [13]

I2 Initially Infected Natives 958 [13]

I3 Initially Infected Sex Workers 37 [13]

R1 Initially Recovered Visitors 0 Estimation

R2 Initially Recovered Natives 0 Estimation

R3 Initially Recovered Sex Workers 0 Estimation
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There are 500,000 expected visitors coming to the Olympics this year, and 242,718 will be male

[8]. Since 21% of males in the world are men who have sex with men, there should be approximately

50,971 MSM males coming from outside of Rio to the Olympics this year [24]. However, we assume

that only 80% of the MSM visitor population will be participating in sexual activity, which leads

us to consider 40,776 visitor individuals in our SIR model.

There are approximately 3.082 million males in the city of Rio, and 14.30% of individuals

in Brazil are MSM males, therefore our number of MSM male natives is 440,726 [22]. We then

subtracted the male sex worker population of 5,000 individuals and that gave us 435,726 native

individuals. However, we assumed that 3% of the MSM natives will be participating in the sexual

activity during the Olympics, which leads us to consider 130,726 native individuals in our SIR

model.

It is estimated that there is approximately at least 450 sex workers working on every given

night at the Olympics [15]. We multiplied that number by 7 for each day of the week and received

a number of 3,150 individuals. However, since that is the worse case scenerio, we decided to round

that number to 5,000 individuals. Therefore, 5,000 male sex workers is the amount of individuals

we consider in our model.

3 Mathematical Analysis

3.1 The Derivation of R0

We are considering three subpopulations in Rio de Janeiro: male visitors, male natives, and male

sex workers. In order to derive the basic reproductive number R0, we use the Next Generation

Matrix [4]. The computation of the basic reproduction number follows below. Two matrices X and

Y are de�ned as: matrix X (disease compartments) is the infected population and matrix Y includes

the susceptible and recovered populations. Matrix F includes the newly infected individuals and

cannot be negative while matrix V includes the output from the infected compartments:

XT =

"
I1 I2 I3

#
;
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YT =

"
S1 S2 S3 R1 R2 R3

#
;

F=

2
6666666664

S1�1P11
I1
N1

+ S1�1P12
I2
N2

+ S1�1P13
I3
N3

S2�2P21
I1
N1

+ S2�2P22
I2
N2

+ S2�2P23
I3
N3

S3�3P31
I1
N1

+ S3�3P32
I2
N2

+ S3�3P33
I3
N3

3
7777777775
, V=

2
6666666664


I1


I2


I3

3
7777777775
,

Considering the disease free equilibrium point (N1,0,0,N2,0,0,N3,0,0), the matrix is as seen

below:

F =

2
6666666664

�1P11
N1�1P12

N2

N1�1P13
N3

N2�2P21
N1

�2P22
N2�2P23

N3

N3�3P31
N1

N3�3P32
N2

�3P33

3
7777777775
; V =

2
6666666664


 0 0

0 
 0

0 0 


3
7777777775
; zs

V �1 =

2
6666666664

1



0 0

0 1



0

0 0 1



3
7777777775
; FV �1 =

2
6666666664

�1P11



N1�1P12
N2


N1�1P13
N3


N2�2P21
N1


�2P22



N2�2P23
N3


N3�3P31
N1


N3�3P32
N2


�3P33



3
7777777775
;

Let: a = N1

N2

; b = N1

N3

; c = N2

N3

= b
a
; f = �1



; g = �2



and h = �3




By these substitutions we are able to simplify the previous matrix to the following:

FV �1 =

2
6666666664

fP11 afP12 bfP13

gP21
a

gP22 cgP23

hP31
b

hP32
c

hP33

3
7777777775
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Therefore, the characteristic polynomial of FV �1 is given by:

P (�) =jA� �Ij = ��3 + tr1(A)�
2 � tr2(A)�+ tr3(A)

For A = FV �1 we obtain:

tr1 =fP11 + gP22 + hP33;

tr2 =fgP11P22 � fgP21P12 + ghP22P33 � ghP32P23 + fhP11P33 � fhP31P13;

tr3 =fghP11P22P33 � fghP11P32P23 � fghP12P21P33

+ fghP12P31P23 + fghP13P21P32 � fghP13P31P22:

The characteristic polynomial is now:

P (�) =� �3 + (fP11 + gP22 + hP33)�
2 � (fgP11P22 � fgP21P12

+ ghP22P33 � ghP32P23 + fhP11P33 � fhP31P13)�+ fghP11P22P33

� fghP11P32P23 � fghP12P21P33 + fghP12P31P23 + fghP13P21P32

� fghP13P31P22:

In order to use the basic reproductive number formula [5], the polynomial is multiplied by -1 and

is obtained �3 � r�2 + s�� t = 0 and we need to get �3 � r�2 + s�+ t = 0. Then:

r =fP11 + gP22 + hP33

s =fgP11P22 � fgP21P12 + ghP22P33 � ghP32P23 + fhP11P33 � fhP31P13

t =� (fghP11P22P33 � fghP11P32P23 � fghP12P21P33 + fghP12P31P23

+ fghP13P21P32 � fghP13P31P22):

Each one of the, Rij
0 , represents the basic reproductive number of an infected individual from
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a sub-population i with a susceptible individual from a sub-population j. Those are the basic

reproductive numbers for the interaction between two sub-populations. Since in this model we are

considering three sub-populations, we have an R0 that represents the interaction between three

sub-populations. If the R0 is bigger than 1, there is an epidemic, but if is less than 1 there is no

epidemic.

R
ij
0 =

�iPijNi


Nj

; where i; j 2 f1; 2; 3g

R11
0 =

�1P11



;R12

0 =
�1P12N1


N2
; R13

0 =
�1P13N1


N3
; R21

0 =
�2P21N2


N1
;

R22
0 =

�2P22



;R23

0 =
�2P23N2


N3
; R31

0 =
�3P31N3


N1
; R32

0 =
�3P32N3


N2
; R33

0 =
�3P33




Then, the dominant root of the polynomial is the basic reproductive number [5]

R0 =
r

3
+

3

vuut�2r3 � 9rs� 27t

54

�
+

s�
3s� r2

9

�3

+

�
2r3 � 9rs� 27t

54

�2

+
3

vuut�2r3 � 9rs� 27t

54

�
�

s�
3s� r2

9

�3

+

�
2r3 � 9rs� 27t

54

�2

Then, r; s and t are the coe�cients of � in the characteristic polynomial and are written in terms

of the Rij
0 :

r =R11
0 +R22

0 +R33
0 ;

s =R11
0 R22

0 �
R11
0

P11

R22
0

P22
P21P12 +R22

0 R33
0 �

R33
0

P33

R22
0

P22
P32P23 +R11

0 R33
0

�
R33
0

P33

R11
0

P11
P31P13

t =�R22
0 R33

0 R11
0 +

R22
0

P22

R33
0

P33
R11
0 P32P23 +

R22
0

P22

R11
0

P11
R33
0 P12P21

�
R22
0

P22

R33
0

P33

R11
0

P11
P12P31P23 �

R22
0

P22

R33
0

P33

R11
0

P11
P13P21P32 +

R33
0

P33

R11
0

P11
R22
0 P13P31

Special Case for the R0:

If we want to consider just one population, we can set fi = 0, c1 = c2 = c3 and N1 = N2 = N3.
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If the contacts of the three subpopulations are the same, then the infectious rate is the same

(�1 = �2 = �3). Then Pij =
1
3 and R

ij
0 = �

3
 .

Therefore, the R0 =
�


like the simple SIR model for one population.

3.2 Final Size

Final Size is the �nal number of susceptible individuals in any population after the disease has

ceased to exist (I = 0). Let i = 1; 2; 3 we can consider the original six \Susceptible" and \Infected"

di�erential equations where they will be written as:

dSi

dt
= �Si�i

�
Pi1

I1

N1
+ Pi2

I2

N2
+ Pi3

I3

N3

�
dIi

dt
= Si�i

�
Pi1

I1

N1
+ Pi2

I2

N2
+ Pi3

I3

N3

�
� 
I1:

Adding these equations, we get:

(Si(t) + Ii(t))
0

= �
Ii(t)

Since (Si(t) + Ii(t))
0

= �
Ii(t), we can make the statement that Si(t) + Ii(t) is a positive

decreasing function, therefore the limit exists. The derivative of a positive decreasing function

tends to zero, and this yields that 
Ii(t)! 0, and since 
 > 0 this implies Ii(t)! 0. The goal of

this process is to get to a point where we can understand what Si(1), and in order to do this, we

can integrate both sides of the equation from 0 to 1. Integrating this equation we get

(Si(t) + Ii(t)) j
1

0 = �


Z
1

0

Ii(t) dt

(Si(1) + Ii(1))� (Si(0) + Ii(0)) = �


Z
1

0

Ii(t)dt

Si(1)�Ni = �


Z
1

0

Ii(t) dt

The derivative of a positive decreasing function tends to zero, therefore 
Ii(t) ! 0, and since


 > 0 this implies Ii(t)! 0. Hence, Si(0) + Ii(0) = Ni. Then,
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Z
1

0

Ii(t) dt = Ni � Si(1) (2)

considering the original equation in a simpli�ed form, we use the method of separation of variables

[4]:

Z
1

0

dSi

Si
= ��i

3X
j=1

Pij

Nj

Z
1

0

Ij(t);

log(Si)j
1

0 = �

3X
j=1

�iPij

Nj

Z
1

0

Ij(t);

log (Si(1))� log (Si(0)) = ��i

3X
j=1

Pij

Nj

Z
1

0

Ij(t);

log
Si(0)

Si(1)
= �i

3X
j=1

Pij

Nj

Z
1

0

Ij(t):

Expanding this equation we have

log
Si(0)

Si(1)
= �i

�
Pi1

N1

Z
1

0

I1(t) +
Pi2

N2

Z
1

0

I2(t) +
Pi3

N3

Z
1

0

I3(t)

�
; (3)

substituting relation from equation (2) into the right hand side of (3) we get,

log
Si(0)

Si(1)
= �i

�
Pi1

N1

�
N1 � S1(1)




�
+
Pi2

N2

�
N2 � S2(1)




�
+
Pi3

N3

�
N3 � S3(1)




��
;

=
�i




�
Pi1

�
1�

S1(1)

N1

�
+ Pi2

�
1�

S2(1)

N2

�
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�
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��
;

hence the �nal size relation is a system of three equations in three unknowns S1(1); S2(1) and

S3(1) given by:

log
S1(0)

S1(1)
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�1
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�
1�

S1(1)

N1

�
+ P12

�
1�

S2(1)

N2

�
+ P13

�
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S3(1)

N3

��
;

log
S2(0)

S2(1)
=

�2




�
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�
1�

S1(1)

N1

�
+ P22

�
1�

S2(1)

N2

�
+ P23

�
1�

S3(1)

N3

��
;

log
S3(0)

S3(1)
=

�3




�
P31

�
1�

S1(1)

N1

�
+ P32

�
1�

S2(1)

N2

�
+ P33

�
1�

S3(1)

N3

��
:
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Note however that this is a system of non-linear transcendental equations and one must use

non-linear equation solvers to obtain the solution. Once we obtain S1(1); S2(1) and S3(1), we

can then �nd the number of disease cases from,

3X
i=1

[Ni � Si(1)]

When we consider the situation in which the visitors are not accounted for, and there are only

the natives and male sex workers, we will be able to look speci�cally at S2(1) and S3(1).

4 Results

4.1 R0 Value

The basic reproductive number can be calculated by selecting speci�c values of individual preference

for each subpopulation. We assumed that in a real life scenario, the preference of male sex workers

for male sex workers is very low due to the lack of gain from the experience. Also, the preference

of natives for their own group is bigger than the preference of visitors for their own group. We let

f1 = 0:4, f2 = 0:6 and f3 = 0:01 and use our estimated sexual contact values for each subpopulation

to obtain the basic reproductive number of our system, 4.7886. This result is similar to 4.4, the

basic reproductive number calculated for the Zika outbreak in Barranquilla, Colombia by Dr.

Towers and colleagues [25].

4.2 Special Cases with the SIR model

We ran a simulation where we evaluated the �nal epidemic size for our model with various fi

(preferences) and ci (contacts). Table 4 shows the di�erent cases for which the number of infected

individuals was calculated at 30 days, that is the approximate time that people could spend in

Rio de Janeiro for the Olympic Games. We also calculated the �nal epidemic size (FES) for the

entire length of the outbreak. The �rst three cases are the special ones when fi = 0, fi = 0:5 and

fi = 1. For cases 4, 5 and 6, the preference of individuals within their own group was �xed and the
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number of contacts was varied and for cases 7, 8 and 9 the contacts were �xed and the preferences

varied.

Table 4: Number of infected individuals and �nal epidemic size (FES) for di�erent cases of prefer-
ences and contacts

Case Preferences (f1; f2; f3) Contacts (c1; c2; c3) Number of infected individuals at 30 days FES

Case 1 0, 0, 0 6:8
28 ;

3:4
28 ;

11
7 279.8 94,330.87

Case 2 0.5, 0.5, 0.5 6:8
28 ;

3:4
28 ;

11
7 294.7 83,038.1456

Case 3 1, 1, 1 6:8
28 ;

3:4
28 ;

11
7 331.6 13,083.374

Case 4 0.4, 0.7, 0.01 1, 0.5, 10 15,633.2676 172,591.921

Case 5 0.4, 0.7, 0.01 0.5, 0.33, 10 14,273.6013 162,493.0755

Case 6 0.4, 0.7, 0.01 0.5, 0.33, 6 4,241.2 162,394.5997

Case 7 0.3, 0.6, 0.01 6:8
28 ;

3:4
28 ;

11
7 271.5 86,860.7888

Case 8 0.5, 0.8, 0.01 6:8
28 ;

3:4
28 ;

11
7 271.1 79,372.5979

Case 9 0.5, 0.8, 0.05 6:8
28 ;

3:4
28 ;

11
7 272.6 79,163.911

4.3 Peak Time with the SIR Model

Table 5 shows the peak times for di�erent scenarios of contacts and preferences between individuals.

The result of the simulation produced a peak time value for each subpopulation in each di�erent

case. The peak time is the day at which the number of infected individuals in each sub-population

reaches the maximum value. Each one of the nine cases of Table 5 has the same preferences and

contacts values as Table 4.
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Table 5: Peak Time for di�erent cases of preferences and contacts

Case Peak time for I1 (days) Peak time for I2 (days) Peak time for I3 (days)

Case 1 487 523 331

Case 2 447 462 181

Case 3 0 1 122

Case 4 109 187 37

Case 5 147 229 32

Case 6 176 261 57

Case 7 414 492 258

Case 8 385 487 216

Case 9 385 487 213

The goal was to predict the number of male visitors, natives and sex workers that are going

to be infected at the end of the Olympics. Since the Final Epidemic Size (FES) is obtained after

the Olympic Games, we calculated the number of infected individuals at 30 days and the actual

FES. The FES was found to be at approximately at 4,000 days, when the disease dies out. Table

4 shows the three special cases that were considered when �xing the number of contacts per day

and varying the preference of individuals within their own group from 0, 0.5 and 1. The results

showed that when fi is the same for each subpopulation and increases, that the number of infected

individuals increased and the FES decreased. Notice that when the fi = 1, there are no infected

male visitors which means that the FES is zero. Table 5 shows the peak time for each infected

subpopulation in each case. For the �rst three cases, when fi is increased the peak time for each

infected subpopulation decreased; since individuals are mixing more within their own group, the

dynamic of the epidemic is going to be faster and the peak time is obtained faster. When fi = 1

visitors are having contacts only within their own group they have no peak time due to no visitors

being initially infected.

For the cases 5 and 6, when the preference of each group is �xed (f1 = 0:4, f2 = 0:7 and f3 = 0:01)

and the contacts of male visitors and natives are the same, but the contacts of male sex workers
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decrease from 10 to 6. Also, the number of infected individuals at 30 days decreased and the FES

does not changed considerably. This is expected since the male sex workers are having less sexual

contacts and one assumption was that a percentage of that subpopulation was initially infected.

For case 7 and 8 the number of contacts were �xed and the preference of male natives and visitors

within their own group was increased so the number of infected individuals at 30 days does not

changed considerably, but the FES decreased.

The following �gures show the comparison between the random mixing and the preferred mixing

for infected individuals from our three subpopulations. In the random mixing, individuals do not

make contact within their own group and in the preferred mixing individuals make contact within

their own and other group. Figure 2 A) shows the infected male visitors and natives for fi = 0, 2

B) shows the analogous for fi = 0:5 and 2 C) shows for fi = 1. From the graphics we are able to

determine that when the preference value increases, the maximum number of infected individuals

decreases. Therefore preferred mixing is better for male natives and visitors. When the preference

value is 1, visitors are only engaging in sexual contact with themselves and therefore are not

infected. Figure 3 A) shows the infected male sex workers for fi = 0, 3 B) shows the analogous

for fi = 0:5 and 3 C) shows for fi = 1. The result is that when the preference value increases, the

maximum number of infected individuals increases. Therefore, random mixing is favored for the

male sex workers.

19



Figure 2: Simulation for Infected Male Visitors and Natives
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Figure 3: Simulation for Infected Male Sex Workers

The following graphics show the relationship between the peak time and the preference value

fi. Figure 4 shows the peak time for the infected male visitors at di�erent values of fi. When fi is

the same for all subpopulations and is increasing, the peak time for the infected male visitors de-

creases, but at a certain value it starts increasing again. Then, for that particular value the system

is not monotonic. Figure 5 shows the peak time for the infected male natives at di�erent values of

fi. When fi is the same for the three subpopulations, it seems that the peak time decreases while

fi increases. Figure 6 shows the peak time for the infected male sex workers and the result is that

the peak time decreases while fi increases.
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Figure 4: Peak Time for Infected Male Visitors at di�erent values of fi

Figure 5: Peak Time for Infected Male Natives at di�erent values of fi
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Figure 6: Peak Time for Infected Male Sex Workers at di�erent values of fi

4.4 Uncertainty Analysis

Uncertainty in the chosen parameter values introduces variability to the model's results. Since

there is parameter uncertainty, there is variability in the results. In particular, the more uncertain

parameters are, the more signi�cant the variability introduced [26]. Being doubtful of the values

of parameters associated with these processes creates model parameter uncertainty [26]. Thus, a

sensitivity analysis is often performed to assess this variability in the model prediction [26].

Uncertainties can a�ect the model output in each time step of the simulation, so it is important

to analyze how the parameters a�ect the model [26]. However, adjusting the model to �nd solutions

for di�erent data sets involves the use of di�erent parameter sets [26]. Since uncertainty involves the

idea of randomness, the alteration of parameter values over space and time cannot be predicted with

certainty [26]. Thus, we use random variables throughout the uncertainty analysis to determine

how the uncertainty in our parameters and variables a�ects the outcomes of the model [26].

In order do this, it is important to determine the probability that a parameter will be within

some speci�ed range of values which is de�ned by a probability distribution [10]. For this project

Latin Hyper Cube Sampling (LHS) will be used to generate values for our parameters corresponding
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to preference (fi) and contacts per day (ci). The LHS procedure divides the range of values for

a given parameter into equally probable intervals, thus the LHS is a strati�ed form of random

sampling. Probability distributions are assigned to parameters, the intervals in the distribution are

divided into equi-probable regions, and these intervals are then each sampled without replacement

[10]. LHS compared to simple random sampling schemes requires fewer samples to achieve the

same level of accuracy [10].

A complete uncertainty analysis involves a comprehensive identi�cation of all parameters of

uncertainty that contribute to the joint probability distributions of each input or output variable

[26]. R0 and �nal size were considered to see how the parameters a�ect the possible outcomes.

Using the LHS method under uniform distribution, three experiments were conducted to analyze

the uncertainty in our ODE systems. For both R0 and �nal size, the experiments correspond to

the same sampling. For the value ranges of fi and ci refer to Table ??. Experiment 1 samples

from varying fi in the speci�ed range in with constant ci's from LHS. Experiment 2 takes varying

values of ci from the speci�ed range with constant fi values. Lastly, Experiment 3 uses the same

ranges for ci and fi in Experiments 1 and 2, meaning that six parameters were varied for each

simulation (f1, f2, f3, c1, c2, and c3).

Experiment 1 with Varying fi

Constants Values

N1 40776.8

N2 130717.8

N3 5000.0

c1
6:8
28

c2
3:4
28

c3
11
7

Table 6: R0 Experiment 1 Constants for Uncertainty Analysis on fi.
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Experiment 2 with Varying fi

Constants Values

N1 40776.8

N2 130717.8

N3 5000.0

f1 0.0412

f2 0.8967

f3 0.0263

Table 7: R0 Experiment 2 Constants for Uncertainty Analysis on ci.

Experiment 3 with Varying fi

Constants Values

N1 40776.8

N2 130717.8

N3 5000.0

Table 8: R0 Experiment 3 Constants for Uncertainty Analysis on ci and fi.

Figure 7: Compares the overall distribution of values for R0 produced by the experiments.
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Figure 8: Compares the frequency and distribution of values for for R0 produced by the experi-
ments.

Measures of central tendency for R0

Experiment Mode Median Mean Variance

Varying fi (1) 3.8384 5.2210 5.6053 2.2348

Varying ci (2) 0.8147 7.4661 8.1204 26.2594

Varying ci & fi (3) 0.6804 7.9714 8.6862 29.8724

Table 9: Values for Data Measurement and Statistics of the Distribution of R0.

For the experiments on R0 with the initial assumptions on population size and values for fi and

ci, the R0 values have a smaller width of distribution than the R0 values in Experiment 1 where

the uncertainty of fi is analyzed. Also, Figure 7 on page 25 shows that in Experiment 1, R0 is less

sensitive to changes in fi. However, Figure 8 on page 26 also shows that changes in fi can result

in R0 greater than 1, implying that the 2016 Olympics can undergo a widespread occurrence of

ZIKV under these initial assumptions.

In Figure 7, the distribution of R0 is still smaller than the distribution of values for R0 in

the other experiments. The R0 range goes from 3.5 to 12.5 for Experiment 1 in Figure 8 which

reasonable according to Towers et al. the estimated R0 value is 4.4 [25].

For Experiments 2 and 3, Figure 8 shows that R0 has a wider distribution of values as ci varies
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uniformly. With fi constant, this shows that controlling the number of contacts per day may

reduce R0 more e�ciently than controls on the preference parameters relating to fi.

The same experiments were applied to the uncertainty analysis of Si(30) and S(30) (total

Olympics population), which are calculated as the total number of infections during the duration

of the Olympics between t = 0 and t = 30 (S(0) - S(30))

Experiment 1 with Varying fi

Constants Values

N1 40776.8

N2 130717.8

N3 5000.0

c1
6:8
28

c2
3:4
28

c3
11
7

Table 10: Si(30) Experiment 1 Constants for Uncertainty Analysis on fi.

Figure 9: Histogram comparing the frequency distribution of S(30) for visitors, natives, and male
sex workers with varying fi and constant values from table .

Changes in fi creates skewed data points for the visitors and male sex workers supopulation.

Figure 9 on page 27 shows how the distributions peak is o� center toward the limit with a tail that
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stretches away from it for visitors and male sex workers. The visitor subpopulation is left skewed

while the male sex worker subpopulation is right skewed. The natives have the smallest range for

its distribution of S2(30) values, hence fi does not a�ect S2(30) as much as S1(30) and S3(30).

For Experiment 2, we used the following values as constants while ci varied uniformly.

Experiment 2 with Varying fi

Constants Values

N1 40776.8

N2 130717.8

N3 5000.0

f1 0.1608

f2 0.3779

f3 0.0145

Table 11: Si(30) Experiment 2 Constants for Uncertainty Analysis on ci.

Figure 10: Histogram comparing the frequency distribution of S(30) for visitors, natives, and male
sex workers with varying ci.

Figure 10 on page 28 shows that variations in ci has the greatest a�ect on the native's subpop-

ulation at the 2016 Olympics because the range of the distribution for S2(30) is the greatest for

Experiment 2. The male sex worker subpopulation is least a�ected by the ci parameter (Figure 10).
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Also, for Experiment 2, the range for the distribution of values in all subpopulations increased

compared the the range for the distribution of values in Experiment 1 (see Figure 9 and Figure 10)

Experiment 3 with Varying fi

Constants Values

N1 40776.8

N2 130717.8

N3 5000.0

Table 12: Si(30) Experiment 3 Constants for Uncertainty Analysis on ci and fi.

Figure 11: Histogram comparing the frequency distribution of S(30) for visitors, natives, and male
sex workers with varying ci and fi with constant values from table.

As ci and fi both vary, S3(30) becomes bimodal while S1(30) and S2(30) are right skewed

(see Figure 11 on page 29. This suggests that the male sex worker subpopulation has two local

maximums where the data points stop increasing and start decreasing. These a�ects can be

contributed to the ci parameter because of how much changes in ci a�ected each subpopulation

compared to changes in fi.
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Relative Maxima and Minima Si(30)

Experiment 1 Range Variance

S1(30) 83.6731 197.4159

S2(30) 30.4108 37.9532

S3(30) 152.5820 360.7195

Experiment 2 Min. Variance

S1(30) 186.2558 1.6353e+03

S2(30) 885.7896 4.6594e+04

S3(30) 322.2019 715.6933

Experiment 3 Min. Variance

S1(30) 7.6877e+03 1.4267e+06

S2(30) 1.1994e+04 4.4181e+06

S3(30) 4.9457e+03 3.2140e+06

Table 13: Compares the ranges for Si(30) between the experiments and the subpopulations. This
summarizes how the uncertainty in parameters a�ects the ranges of values for Si(30).

Figure 12: Boxplot comparing the overall distribution of values for S(30), total �nal size after the
Olympics, with the di�erent experiments.

30



Figure 13: Boxplot comparing the distribution of values for S(30) between the di�erent subpopu-
lations produced by experiment 1 (left), Experiment 2 (center), and Experiment 3 (right).

Figure 13 on page 31 shows how the range of distributions changes between experiments and

subpopulations as the parameter values vary. Recall that Experiment 1 corresponds to a�ects of

variations in the fi parameter; Experiment 2 corresponds to a�ects of variations in the ci parameter;

and Experiment 3 corresponds to a�ects of variations in the ci and fi parameters.

Measures of central tendency for S(30)

Experiment Mode Median Mean Variance

1 267.0955 285.5336 288.9192 111.5656

3 62.1114 469.3810 487.4168 5.3551e+04

3 174.4761 5.0424e+03 5.6545e+03 1.7585e+07

Table 14: Values for Data Measurement and Statistics of the Distribution of S(30) under varying
fi, ci, and ci and fi

Figure 13 show that changes in the initial assumptions produce di�erent outcomes for the ranges

of values in the �nal size. The widest distribution of values when varying parameters is produced

in Experiment 3 (see Figure 11). However, since the subpopulations generally Figure 9 have a

smaller range than Figure 10, the resulting ranges in Figure 11 could be due to the variations in

ci as it is in Figure 10. Also, the total �nal size, using the estimated values from literature, can
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get as large as 160,000, a signi�cantly larger number than all of the possible total �nal size values

produced by the initial assumptions.

Overall, the preference parameter, fi, does not reduce the �nal size for a population, as the

way the ci parameter can for �nal size distribution. Also, the number of contacts per day, ci has a

greater range of uncertainty. Hence, there exists a combination of ci's that contributes to reduce

the total �nal size nearing 0. For Experiment 3 exhibits the largest range of uncertainty which is

a reasonable result due to the fact that 6 parameters (f1, f2, f3, c1, c2, and c3) are being varied

uniformly to produce the �nal sizes.

4.5 Sensitivity Analysis

We conducted LHS/PRCC (Latin Hypercube Sampling/Partial Rank Correlation Coe�ecient)

Sensitivity Analysis. The purpose of LHS/PRCC analysis is to understand how the uncertainties

of the parameters used in a model e�ect predictions and distributions, and to rank the parameters

by impact onto those predictions [10]. As was aforementioned, the LHS was used to generate values

for the parameters of preference (f1, f2, f3) and contact (c1,c2,c3). Here, we are considering the

PRCC in order to create a single histogram in which the parameters that a�ect the �nal sizes of

each of our three populations: visitors, natives, and male sex workers.

The �gures above each show which parameters are the most sensitive to the �nal size of each

population. In Figure ??, it is shown that the distributions for each of the populations are uniform.

This result comes out of the codes that were used to create the charts of PRCC outputs for each

�nal size. In Figure 14a, we can see that the �nal size of the visitor population is highly impacted

by the number of contacts that happen between the visitors and the visitors, natives, and male

sex workers, c1.

Similarly, we can see the correlation between c2, the number of sexual contacts of the natives

to the visitors, natives, and male sex workers, and the �nal size of the native population. Here we

can understand why in Figure 14b these parameters are the most sensitive. We can also notice

that these scatter plot correlations are random, since there is a uniform distribution.

Lastly, we can see the correlation between c3, which is the number of sexual contacts from the
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(a) This shows the PRCC output in bar chart form
of the parameters against S1(1).

(b) This shows the PRCC output in bar chart form
of the parameters against S2(1).

(c) This shows the PRCC output in bar chart form
of the parameters against S3(1).

male sex workers to the visitors, natives, and male sex workers and S3(30).It can also be noticed

that f3 is negligible since the chance that male sex workers would be interacting with prostitutes

in this event period is very small. Here we can see in Figure 14c that only one parameter c3 is

sensitive to the �nal size of the male sex worker population.

To conclude the description of this analysis, we can see, from Figure 14a,Figure 14b,Figure 14c

that the most sensitive parameters are c1, c2, and c3. Therefore, we can say that the number of

contacts that each individual makes in these sub populations will have the highest impact upon

the number of infected individuals at the end of the 30-day Olympic event period. We can also

notice that the histograms showed negative PRCC values, and this is because we would want to

33



Figure 15: This shows the scatterplot correlation between c1 and S1(30).

decrease the number of contacts in each sub population in decrease the number of infected visitors,

natives, and male sex workers.

5 Conclusion and Discussion

We ran simulations where we observed special cases with fi = 0; 0:5 and 1. It was determined

that the �nal epidemic size and peak time decrease as time goes to in�nity. For 30 days, it was

determined that when the preference of individuals within their own group increases, that the

number of infected individuals increase as well. We concluded that preferred mixing is better than

random mixing because the number of infected male visitors and natives is less overall. Male

sex workers have the lowest subpopulation, therefore we did not consider the number of infected
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Figure 16: This shows the scatter plot correlation between f2 and S2(1).

male sex workers since they are a small amount of the overall population. For speci�c values of

preference, we calculated a basic reproductive number of 4.7886 which is similar to 4.4, the basic

reproductive number calculated by Dr. Towers and colleagues for the Zika outbreak in Barranquilla,

Colombia [25].

The �nal PRCC charts show that the most sensitive parameters are c1, c2, c3. This indicates

that the most important parameters to consider when trying to decrease the infected individuals of

each subpopulation is the number of sexual contacts that each individual is involved in. Overall, the

preference parameter, fi, does not reduce the �nal size for a population the way the ci parameter

can for �nal size distribution. Also, the number of contacts per day parameter, ci has a greater

range of uncertainty. So, there exists a combination of ci's that contributes to total a �nal size
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Figure 17: This shoes the scatterplot correlation between f3 and S3(1).

nearing 0 for the entire population at the 2016 Olympics. For Experiment 3 exhibits the largest

range of uncertainty which is a reasonable result due to the fact that 6 parameters (f1, f2, f3, c1,

c2, and c3) are being varied uniformly to produce the �nal sizes.
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