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Abstract

Diseases such as mad cow disease in bovines, chronic wasting disease in cervids, and

Creutzfeldt-Jakob disease in humans are incurable illnesses caused by prions. Prion

diseases are caused when the prion protein PrPC misfolds into PrPSc, which is capable

of inducing further misfolding in healthy PrPC proteins. Recent in vivo experimental

results have shown that pharmacological chaperone treatment can be used to prevent

this conversion, where the pharmacological chaperones act as a short-term “vaccine”

against the PrPSc proteins. A second strategic approach uses interferons to decrease

the concentration of PrPSc. In this work, a model using a non-linear system of ordi-

nary differential equations is constructed to model how these two treatments slow the

proliferation of prions in the brain. Through this work it was found that interferons

have a greater effect on the prion population over time, but that the pharmacological

chaperones begin to effect the system earlier. This information can guide future prion

experiments and inform potential treatment protocols.
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1 Prion Diseases and Possible Treatments

Prions cause incurable diseases that cause irreversible neurodegeneration in the brain. Once

infected by prion disease, a person has months, years, or even decades of feeling normal before

symptoms appear. Once symptoms begin, the brain is slowly becoming spongy, deteriorating

where the prions accumulate [28]. This neurodegeneration causes a host of crippling symp-

toms, like dementia, uncontrollable spasmodic movements (present in Creutzfeldt-Jakob dis-

ease), or the inability to sleep (as in fatal familial insomnia). These diseases are always fatal

[28]. While individuals can be infected by outside sources, such as contaminated meat in

the case of mad cow disease, prion diseases can occur spontaneously [6]. Several of these

fatal prion diseases are scrapie in sheep; mad cow disease in bovines; chronic wasting disease

in cervids and kuru, and Creutzfeldt-Jakob disease in humans [6]. These diseases affect the

brain, causing neurons to die; this eventually leads to the death of the individual, as the

brain cannot perform its essential functions [6].

Currently, prion diseases have no cure [36], so any strides towards a treatment are im-

portant. Even though prion diseases are far from commonplace, they are fatal and kill

hundreds of people every year. In 2017 alone, over 500 people in the United States died from

Creutzfeldt-Jakob disease [7]. Further, the study of prion diseases has implications for other

neurodegenerative diseases, such as Alzheimer’s and Parkinson’s, as these illnesses are very

similar to prion diseases. That is, they involve the loss of function of the PrP protein which

negatively affects the brain’s function [13].

Little is known about the specific functions of the prion protein, PrP; however, it is known

that PrP slows neuronal apoptosis (cell death) [34]. Prions are created when the protease

resistant protein (PrP) misfolds [28]. These proteins appear normally in mammalian brains

[28]. The mechanisms of this folding error are not yet fully understood. However, it is known

that misfolded proteins can cause other properly folded PrP to form into a prion [28]. This

correctly folded form is sometimes called PrPC (C for “cellular” [28]). Problems begin when
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this protein folds into an isoform1, called PrPSc (Sc stands for “scrapie” [28]). Prions have

no DNA or RNA themselves, so they go against the central dogma of biology because they

are still able to replicate by inducing further misfolding [28]. The “protein only hypothesis”

proposes that prion replication happens without the involvement of nucleic acid [28]. When

the “good protein,” PrPC, folds normally, its folded form is rich in α-helices. If PrP folds

into a β-sheet-rich form instead of one rich in α-helix structures, it forms PrPSc and thus

becomes a prion [38].

Figure 1: The Heterodimer model shows how one monomer of misfolded protein, PrPSc,
converts a monomer of PrPC [39].

There are two common hypotheses used to describe prion spread. The first hypothesis

is the heterodimer2 model. This model assumes that when a PrPSc protein comes into con-

tact with a PrPC protein, the prion unfolds the healthy protein and acts as a template to

turn the PrPC into PrPSc (see Figure 1) [18]. This simple model, however, does not include

the experimental fact that prions form polymers: chains of PrPSc monomers. The second

hypothesis is called the nucleated polymerization model, and it studies chains of prions and

how the chain length varies [27]. When a chain of prions infects a new monomer, it adds the

PrPC to the chain, causing it to misfold, and the chain grows by one monomer. However,

if the chain breaks, there are two options. First, the polymer can break into two smaller

polymers; second, if one of the polymer’s length is below a certain threshold, it dissociates

into monomers, [23]. In this model, the monomers are not infectious by themselves, but
1One gene can form proteins that differ in both structure and composition; these different expressions

are called isoforms [1]
2A heterodimer is protein composed of non-identical monomers [39].
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they can join an existing polymer. This work will take into consideration the polymerization

model (see Figure 2).

These replication models are usually in one or two spatial dimensions. The two-dimensional

models study prion aggregations [20], and they have explained how incubation times and in-

oculation doses are highly correlated. Essentially, the period before the symptoms appear is

related to the amount of prions going into the brain [20]. The one-dimensional models treat

PrPSc as fibrillic structures that can add new monomers on either end of a chain. This has

not only been experimentally studied [4] but also it has been widely analyzed mathematically

[23, 17, 26, 8].

Figure 2: The polymerization model describes a prion proliferation hypothesis in which
PrPSc monomers form polymer chains. These aggregates are infectious and actively recruit
free endogenous PrPC protein monomers that have undergone conformational change into
PrPSc monomers. Large PrPSc polymer chains eventually become unstable and break into
new infectious units and repeat the process [18].

1.1 Possible Treatments for Prion Diseases

Recent experimental research has shown that there are possible treatments for prion diseases

[2, 24, 25, 38]. These treatments can be categorized in four mechanistic ways, as described by

Kamatari [14]. In Figure 3, the first mechanism (I) is a stabilization of the PrPC structure by

direct association of a molecule to prevent formation to the PrPSc isoform. Mechanism II is
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an indirect association between the interfering molecule and PrPC; this blocks the interaction

between PrPC and PrPSc, slowing the rate at which PrPSc is able to spread. Mechanism

III removes PrPC from the system, and mechanism IV prevents PrPSc from proliferating by

associating PrPSc with molecules other than PrPC. See Figure 3 for a visual depiction of

these mechanisms.

Figure 3: Four distinct methods of anti-prion treatment. Mechanism I describes the as-
sociation of a molecule to PrPC, causing the protein structure to stabilize and effectively
preventing misfolding to PrPSc. Mechanism II also works by stabilizing the PrPC structure,
but the introduced molecule does not directly associate with the PrPC protein. Mechanism
III describes the removal of PrPC from the population, and Mechanism IV describes an
interaction between an interfering molecule and any other molecule that is not PrPC (e.g.
PrPSc or denatured PrP protein, PrP∗).

This paper will focus on Mechanism I, specifically through the use of pharmacological chap-

erones3. Many different types of molecules are able to act as pharmacological chaperones.

Antibodies are a special class of these pharmacological chaperones. In vivo experiments

have shown that antibodies can be used to block the proliferation of prions [2] by forcing

the secondary structure of PrP protein into an α-helix form rather than β-sheets which

are associated with PrPSc (see Figure 4). Specially-engineered molecules can be designed

to bind at locations critical to the correct folding of PrPC [22]. However, pharmacological
3Pharmacological chaperones are small, cell-permeable molecules that assist correct protein folding [21].
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Figure 4: Pharmacological chaperones bind to unfolded PrP, forcing it to fold into α-helix-
rich form and thus PrPC instead of PrPSc which is rich in β-sheets.

chaperones tend to have a short half-life (though the specific half-life depends on the drug

that is being used), which means that eventually treated PrPC will become susceptible to

misfolding again [32]. This suggests that we must keep the concentration of pharmacological

chaperones high in order to keep the disease at bay.

Another treatment involves interferons, a part of the immune system that raises the

body’s immune response by signaling other proteins [5]. It has been documented that there

is a naturally occurring increase in type I interferon (I-IFN) expression in a brain affected

with a prion disease. This has been shown to be the case in scrapie-infected hamster and

mouse brains by identifying upregulated gene expression [29, 35]. However, it is not well-

known how this innate reaction recognizes and attacks the infected proteins given that

PrPC and PrPSc do not differ in amino acid sequences [28]. Ishibashi et al. (2012) [11]

proposed that PrPSc infection induces a response from Toll-like receptor (TLR) proteins, a

class of pattern-recognizing receptors essential to the immune response signalling pathway

[3]. These proteins are upstream of I-IFN, which results in a cascade of signals inducing
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immune response [11]. Moreover, ex vivo experiments in scrapie infected mice have shown

that inducing I-IFN via TLR signalling reduces PrPSc concentration in the model host during

the early stages of infection [12]. With these two treatments, prion formation can be slowed

with pharmacological chaperones and the prion population can be significantly diminished

with interferons.

In the model, a possible treatment for prion diseases is considered: a two-fold therapy,

a combination of pharmacological chaperones and interferons. The findings of this research

evaluated the efficacy and potency of these treatments within their safe ranges. As both

pharmacological chaperones and interferons do reduce the concentration of prions, we ex-

amined whether or not a combination of sub-maximal dosages would work. This study has

implications for prion disease therapies, diseases which are currently not only incurable but

untreatable. This paper constructs a non-linear system of differential equations based off

the previous work by Nowak et al. [23] with the addition of interferon and pharmacological

chaperone treatments. We find several equilibrium points and examine their stability, as

well as analyze several important aspects such as the R0 (basic reproduction number) and

the growth rate of prion proliferation. Sensitivity analysis provides insight on how much

each treatment affects the population of prions. Numerical simulations provide even more

insight into each treatment on its own, as well as their combination. We conclude with an

examination of efficacy and potency and answer the question of how these treatments can

be used to treat prion diseases.

2 Prion Proliferation Treatment Model

This model implements the polymerisation hypothesis for proliferation of prions. Two types

of treatments are incorporated in this biological model. The first one consists of a dose of

pharmacological chaperones which prevent prion formation based on in vivo experiments by

Gunther et al. [10]; the second treatment consists of a dose of interferons that decreases the

amount of prions in the brain [12]. Our model is based on two previous mathematical models.
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Masel et al. (1999) [18] used the hypothesis of nucleated polymerisation as the mechanism

of proliferation. Masel et al. then established a deterministic infinite dimensional dynamical

system to model the dynamics between the population of the susceptible monomers and

the polymers of prions with a distinct equation to describe the population of polymers of

each possible length; however, this paper did not consider any treatments. In a subsequent

paper, Masel et al. (2000) [17] used a theoretical kinetic model to calculate the growth

rate of protein aggregates as a function of certain drugs which blocks the ends of amyloids.

However, the treatment examined in that model differs mechanistically from those examined

here.

Figure 5: Detailed kinetic model that includes the nucleated polymerisation hypothesis and
the incorporation of the treatments.

Figure 5 describes the kinetic model in detail. To consider the dynamics of this system,

the model posed here examines what can happen with a PrPC monomer. PrPC monomers are

naturally produced at a rate Λ. There are several paths that this monomer can take once it

has joined the system. A polymer of PrPSc can convert this monomer, which happens at rate

βS. From there, the polymer will either split or simply grow longer. The breakage rate is bi,j,

where i is the length of the polymer and j (and thus i−j) are the lengths of the new polymers

after it splits. When the polymer breaks, two events can happen. It can break in two smaller

polymers, each with a length greater than n, and they will continue converting monomers.

Otherwise, it can split into a polymer and small chain (whose length is less than the threshold

n) which will dissociate into separate PrPSc monomers (see Figure 6 for a visual depiction of

the breakage process). This monomer can join an existing polymer, occurring at rate βR, but
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it cannot be treated with pharmacological chaperones to prevent it from rejoining a chain

as the pharmacological chaperones can only act on PrPC. The introduction of interferons,

however, may mean that our polymer is eliminated much sooner. The interferons induce

an additional death rate for PrPSc, called µI . If the PrPC monomer is not treated with

pharmacological chaperones, it can be infected. The addition of pharmacological chaperones

into the system can be described by the dosage rate, D. Once a PrPC monomer has been

treated, it will be immune from PrPSc until either the pharmacological chaperone or the

PrPC monomer degrades. Degradation of pharmacological chaperones and PrPC happen at

rates µA and µS, respectively. These interactions are summarized mathematically in the

equations section.

Figure 6: The possible events for a PrPSc polymer. In event I, a PrPSc polymer contacts a PrPC,
inducing a conformational change in which the PrPCis added to the polymer. In event II, the
PrPSc breaks into fragments. There are two unique breakage events. In breakage event I the PrPSc

polymer breaks to create one PrPSc monomer and one PrPSc polymer. In breakage event II, the
PrPSc polymer breaks to create two PrPSc polymers.

2.1 Assumptions

In addition, we implement assumptions made in the model of Masel et al. [18], such as the

fact that the infection rate to convert PrPC to infectious PrPSc (βS) and the rate to convert

non-infectious PrPSc to infectious PrPSc (βR) are the same for PrPSc of all lengths i ≥ n,
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i.e. βS = βR. Also, the rate at which prions break is the same for all lengths i ≥ n, so we

let bi,j = b. Furthermore, the death rates for PrPC and non-infectious PrPSc are the same,

or µS = µR [18]. It is important to note that death rate of PrPSc, µP , is different. The

model allows µI to either affect the non-infectious PrPSc monomers or not; this is achieved

by the term σ, where 0 ≤ σ ≤ 1 is a probability representing the degree to which the PrPSc

monomers are affected by the interferons.

The transmission of prions follows the polymerisation hypothesis. The prion polymers

are considered linear, that is, PrPC can only attach to the ends of PrPSc polymers [18]. For

simplicity the population of PrPC is considered to be a well-mixed homogeneous system.

Since the reaction that involves the misfolding of a protein are extremely fast and are mea-

sured in microseconds [16], we consider the time to fold or unfold a protein is negligible.

We also make several assumptions about the treatments introduced in this paper. For the

first treatment, each of the pharmacological chaperones introduced in the body binds to one

PrPC in order to prevent the misfolding process. It is also assumed that the pharmacological

chaperone in question has high specificity, meaning we can neglect the rate at which this

pharmacological chaperone binds to things which are not PrPC. Moreover, the dosage of the

pharmacological chaperones that is included in the brain and the dosage of interferon are

assumed as constant over time.

2.2 Mathematical Model

In this model, a non-linear system of ordinary differential equations is studied. This model

introduces pharmacological chaperones and interferons into a prion-infected brain. The

system of infinite differential equations is presented first, followed by the reduced, closed

system of six equations that will be used to study the dynamics of the prion population in

an individual’s brain.
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dS

dt︸︷︷︸
Rate of change

of PrPC

= Λ︸︷︷︸
Birth

− µSS︸ ︷︷ ︸
Death

− αAS︸ ︷︷ ︸
Treated with

pharmacoperones

+ µAT︸ ︷︷ ︸
Loss of
immunity

− βSS
∞∑
i=n

Pi︸ ︷︷ ︸
Infection

,

dT

dt︸︷︷︸
Rate of change

of Treatment

=− µST︸ ︷︷ ︸
Death

+ αAS︸ ︷︷ ︸
Treated with

pharmacological chaperons

− µAT︸ ︷︷ ︸
Loss of
immunity

,

dPi
dt︸︷︷︸

Rate of change of
PrPSc of size i

=− µPPi︸ ︷︷ ︸
Death

− µIPi︸ ︷︷ ︸
Death by
inteferons

+ βSSPi−1︸ ︷︷ ︸
Pi−1→Pi

− βSSPi︸ ︷︷ ︸
Pi→Pi+1

+ βSRPi−1︸ ︷︷ ︸
Pi−1→Pi

− βSRPi︸ ︷︷ ︸
Pi→Pi+1

−
i−1∑
j=1

bi,jPi︸ ︷︷ ︸
Pi breaks in

length j

+
∞∑

j=i+1
(bj,i + bi,i−j)Pj︸ ︷︷ ︸
Pj breaks in

length i

,

dR

dt︸︷︷︸
Rate of change of
PrPSc monomers

=− µRR︸ ︷︷ ︸
Death

− µIσR︸ ︷︷ ︸
Death by
inteferons

− βSR
∞∑
i=n

Pi︸ ︷︷ ︸
Infection

+
n−1∑
i=1

∞∑
j=i+1

(bj,i + bi,i−j)iPj︸ ︷︷ ︸
Pj breaks into

infected monomers

,

dA

dt︸︷︷︸
Rate of change

of pharmacoperones

=− µAA︸ ︷︷ ︸
Death

− αAS︸ ︷︷ ︸
Binding the

PrPC

+ D︸︷︷︸
Dosing

.

(2.1)

System 2.1 can be closed, and the resulting six equations are better to consider than

the previous infinite system. T and A, which measure treated PrPC and pharmacological

chaperones respectively, are as in system 2.1. Instead of an equation for each polymer of

length i, we have a class P , which counts polymers of PrPSc. P is defined as Σ∞i=nPi. An

additional class must also be introduced in order to close this system. We define Z to be

the total number of PrPSc monomers in the polymer chains, formally Z = Σ∞i=niPi.

The closed system of equations is then given by:
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dS

dt
= Λ− µSS − αAS + µAT − βSSP, (2.2a)

dT

dt
= −µST + αAS − µAT, (2.2b)

dP

dt
= −(µP + µI)P + bZ − (2n− 1)bP, (2.2c)

dZ

dt
= βSSP + βRRP − (µP + µI(t))Z − n(n− 1)bP, (2.2d)

dR

dt
= −µRR− µIσR− βRRP + n(n− 1)bP, and (2.2e)

dA

dt
= −µAA− αAS +D. (2.2f)

Here, P represents the number of PrPSc polymers and Z represents the total number

of PrPSc monomers within those chains. For details on how the system was closed, see

Appendix B.2. The parameters used to describe the dynamics of the system are summarized

in Table 1.

3 Analysis

For analysis, the model will be examined in several different cases: both treatments are being

administered (D 6= 0 and µI 6= 0), only pharmacological chaperones administered (D 6= 0

and µI = 0), and only interferons administered (D = 0 and µI 6= 0). The no treatments

case (D = 0 and µI = 0) is very similar to the model described in Masel et al. [18]. Any

differences in analysis between this case and that which is presented by Masel et al. will be

noted.

3.1 Existence of Prion-Free Equilibrium

In order to calculate the prion-free equilibrium (PFE), assume the population of prions P

is zero. Then from Equations and 2.2d and 2.2e of System 2.2, the following equations are
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Name Description Value Units Reference
State variables Initial Condition

S Susceptible population of
PrPC

[300,750] nM [9]

T PrPC proteins treated with
pharmacological chaperones

0 nM

P PrPSc chains nM
Z Total of monomers for each

PrPSc polymer in the chains
nM

R PrPSc smaller than n 0 nM
A Pharmacological chaperone

population
0 nM

Parameters
Λ Natural production of PrPC [1800, 3000] nM

day [31]
µS Degradation rate of PrPC [3,5] 1

day [31]
µP Degradation rate of PrPSc

polymers
0.047 1

day [31]

µR Degradation rate of PrPSc

monomers
[3,5] 1

day [31]

µA Degradation rate of pharma-
coperones

62.0352 1
day [19]

µI Degradation rate of PrPSc due
to interferons

[0,0.0882] 1
day

σ Interferons diminish R [0,1] –
βS Infection rate of PrPC 0.00292 1

(day)nM [31]
βR Infection rate of PrPSc

monomers
0.00292 1

(day)nM [31]

α Rate that a pharmacoperone
binds to a PrPC

0.051408 1
(day)nM [19]

bi,j Rate of breakages of the PrPSc

of length i in a PrPSc of length
j and i− j

0.0314 1
day [31]

n Minimum polymer length {2,3,4,5,6} – [31, 33]
D New dosages of pharmacologi-

cal chaperones being added
[0,71500] nM

day [15]

Table 1: Table of parameters for the ODE’s of (2.1), where nM = nMol
L

.
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obtained:

dZ

dt
= −(µP + µI)Z,

and dR

dt
= −(µR + µIσ)R.

(3.1)

Therefore,

lim
t→+∞

Z(t) = 0 and lim
t→+∞

R(t) = 0. (3.2)

Using equation 2.2a, S satisfies the equation

αµS(µA + µS)S2 + [(µA + µS)(µAµS − Λα) + αDµS]S − ΛµA(µA + µS) = 0.

The roots of this quadratic equation are

S1 = (Λα− µAµS)(µA + µS)− αµSD −
√

∆
2αµS(µA + µS) ,

and S2 = (Λα− µAµS)(µA + µS)− αµSD +
√

∆
2αµS(µA + µS) ,

where ∆ = [(µAµS − Λα)(µA + µS) + αµSD]2 + 4αΛµSµA(µA + µS)2. Notice that ∆ > 0,

αµS(µA + µS) > 0, −ΛµA(µA + µS) < 0 and S2 > S1 (See more details in Appendix #).

Then this quadratic equation must have a positive root S∗ = S2. From equations 2.2b and

2.2f, we obtain the relations

T ∗ = αS∗D

(µA + µS)(µA + αS∗) and A∗ = D

µA + αS∗
.

That is, T ∗ and A∗ exist and are positive, and they must have biological relevance. Therefore,

the prion-free equilibrium must exist.

In our model, the PFE of the system is given by E∗ = (S∗, T ∗, 0, 0, 0, A∗), where

S∗ = 1
2

(
Λ
µS
− D

µA + µS
− µA

α

)
+

√√√√ΛµA
αµS

+ 1
4

(
D

µA + µS
+ µA

α
− Λ
µS

)2

, (3.3)
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T ∗ = 1
2

(
Λ
µS

+ D

µA + µS
+ µA

α

)
−

√√√√ΛµA
αµS

+ 1
4

(
D

µA + µS
+ µA

α
− Λ
µS

)2

, and (3.4)

A∗ =1
2

(
D

µA
+ µA + µS

α
− Λ

(
1
µS

+ 1
µA

))
+√√√√ΛµA

αµS
+ 2Λ

α
+ ΛµS
αµA

1
4

(
D

µA + µS
+ µA

α
− Λ
µS

)2

.

(3.5)

Where P ∗ = Z∗ = R∗ = 0 (see Appendix B.3 for details). These equilibrium values will al-

ways be real and positive, regardless of the parameter values (see Appendix B.3 for details).

Additionally, notice that S∗ + T ∗ = Λ
µS
, so when D = 0 (i.e. when no pharmacological

chaperone treatment is being used) the PFE becomes ( Λ
µS
, 0, 0, 0, 0, 0), the same equilibrium

as in previous models which did not include treatment [18]. It can be seen then that the

introduction of the pharmacological chaperone treatment lowers S∗. When µI = 0, the

prion-free equilibrium does not change with respect to the PFE.

3.2 Stability Condition of the Prion-Free Equilibrium

Theorem 3.1. The model given by System 2.2 always has a prion free equilibrium E∗ =

(S∗, T ∗, 0, 0, 0, A∗) when R0 < 1, where

R0 =
b
√

1
4 + S∗βS

b
− b

2
µI + µP + b(n− 1)

Moreover, equilibrium E∗ is locally asymptotically stable when R0 < 1, and when R0 > 1,

E∗ is unstable.

A summary of the proof of the theorem can be seen by examining the eigenvalues of the
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Jacobian matrix evaluated at E∗, which are the following:

λ1 = −µS < 0,

λ2 = −(µR + µIσ) < 0,

λ3 = −b(n− 1)− (µI + µP ) + b

√
1
4 + S∗βS

b
− b

2

λ4 = −1
2b(2n− 1)− (µI + µP )− 1

2

√
4S∗bβS + b2 < 0,

λ5 = −α2 (A∗ + S∗)− µA −
1
2µS + 1

2
√
M,

and λ6 = −α2 (A∗ + S∗)− µA −
1
2µS −

1
2
√
M,

where M = α2(A∗ + S∗)2 + 2αµS(A∗ − S∗) + µ2
S. It is easy to show that λ5 < 0 and

λ6 < 0 when M is positive. On the other hand, λ3 < 0 if φ1 < 0 (R0 < 1), where

φ1 =
√

∆ + (Λα − µAµS)(µA + µS) − αµSD, R0 = b(G1−n)
(µI+µP )+b(n−1) . For the details of the

full proof, see Appendix B.5. As a result, equilibrium E∗ is locally stable when φ1 < 0 and

R0 < 1, as when those criteria are met all the eigenvalues are negative.

3.3 Basic Reproductive Number

In Masel et al. [18], the basic reproductive number (R0) of the system was found heuristically,

i.e. by multiplying the rate of creation of new prions by the average lifespan of a prion

(time spent in P ). Table 2 shows basic reproductive values found heuristically and through

a Next Generation Matrix for both Masel et al.’s system and system 2.2. Also, values

found for system 2.2 are written as functions of the treatment paramters D and /muI , and

R0(0, 0) = R0 for both the heuristic and Next Generation Matrix values. For either system,

when R0 = 1 or R0(D,µI) = 1, the heuristic and Next Generation R0 can be reduced to the

exact same condition. This implies that these values have the same region of existence [30].

To show the heuristic expressions were determined, take RH
0 (D,µI). In this model, the

terms which represent the degradation of prions are (µP + µI + (n − 1)b)P and the terms
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Case Heuristic Next Generation Matrix

Masel 1999 [18] R0
H =

√
βbS∗+ b2

4 −
b
2

µP +b(n−1)
R0

NG = b(βS∗−n(n−1)b)

µP (µP +(2n−1)b)

System 2.2 RH
0 (D,µI) =

√
βbS∗+ b2

4 −
b
2

(µP +µI)+b(n−1)
RNG

0 (D,µI) = b(βS∗−n(n−1)b)

(µP +µI)((µP +µI)+(2n−1)b)

Table 2: The R0 values for System 2.2 and previous literature found using different methods.

which represent the creation of new prions are b(Z−nP ). By normalizing these terms by 1
P
,

those terms become (µP + µI + (n− 1)b) and b(G− n), where G = Z
P
is the average length

of prion polymers. The derivative of the average length of the prion polymers (G) is

Ġ = Ż

P
− ṖZ

P 2 = βSS + βRR− n(n− 1)b− bG2 + (2n− 1)bG.

Notice that near the prion-free equilibrium, Ġ ≈ βSS
∗ − n(n − 1)b − bG2 + (2n − 1)bG.

Therefore, this equation approximately describes behavior of a very small initial infection.

The roots of this differential equation are

G+,− = n− 1
2 ±

√
1
4 + S∗βS

b
.

Because n is always greater than or equal to one, G+ = n − 1
2 +

√
1
4 + S∗βS

b
is always

positive. The other root, G−, will be negative when 0 < βSS
∗ − n(n − 1)b. This is true

when RNG
0 (D,µI) > 0, so G− is always negative for biologically-relevant parameter ranges.

Thus, as can be seen in the phase diagram below (see Figure 7), once an infection has

been introduced to the system, the average polymer length G will reach a fixed value, G+.

That means that the number of secondary infections can be represented by RH
0 (D,µI) =

b(G+−n)
(µI+µP )+b(n−1) . The difference between n and G+ in the numerator represents the minimum

size n required to be infectious. Specifically, the smallest possible value for Z is nP , where

each prion chain is of its minimum length. Normalizing each of these terms shows that the

minimum size of the average length G is n, so RH
0 (D,µI) > 0 for biologically significant
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parameter values.

Figure 7: Phase plane for G, the average polymer length. G+ and G− are the fixed points
of G. G+ is a stable value for the average polymer length.

Next take the value found using a Next Generation Matrix. The secondary infection rate

representing population changes in the number of monomers in prion chains (Z) is

(βS∗ − n(n− 1)b)︸ ︷︷ ︸
Rate of new PrPC infected

by a single prion chain

1
((µP + µI) + (n− 1)b)︸ ︷︷ ︸

Average time spent in P

,

and the secondary infection rate representing population changes in number of infections

polymers (P ) is

b︸︷︷︸
Rate of new
chains created

(polymers breaking)

1
(µP + µI)

.︸ ︷︷ ︸
Average time spent in Z

Multiplying these together gives RNG
0 (D,µI) = b(βS∗−n(n−1)b)

(µP +µI)((µP +µI)+(n−1)b) . Thus, RNG
0 (D,µI)

represents prion replication as a two stage process in which a prion must first grow longer

and then break in order to create a new infectious chain. Thus, this value represents the

secondary infections of P over two time steps, rather than one. As such, like many vector

disease models, the geometric mean of RNG
0 (D,µI) is also a valid basic reproductive number.

Interestingly enough, for the parameter values used in this work RH
0 (D,µI) ≈

√
RNG

0 (D,µI)
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Figure 8: The geometric mean of RNG
0 (D,µI) is approximately equal to the heuristic value,

RH
0 (D,µI)

as can be seen in Figure 8.

When the treatment methods are being implemented, it can be seen that the interferon

treatment lowers the R0 by increasing the death terms of prion polymers and monomers from

µP to (µP +µI). The effect of the pharmacological chaperone treatment is not as immediately

obvious. When the pharmacological chaperone dose is set to zero (D = 0), as in Masel et

al. 1999, S∗ = Λ
µS
. This means that when doses of pharmacological chaperones are being

introduced, S∗ is a different value. This S∗ is less than Λ
µS

because S∗ = Λ
µS
− T ∗ > 0.

Therefore, the pharmacological chaperone treatment lowers R0 by lowering the number of

susceptible PrPC proteins at the PFE.

3.4 Endemic Equilibrium

To analyze the endemic equilibrium, assume that the interferons do not affect R, the non-

infectious PrPSc monomers that are not joined to polymer chains (i.e. σ = 0). Due to the
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complexity of the system, the endemic equilibrium will only be analyzed in the special case

where the antibody treatment is not being administered (D = 0). Unlike the prion-free

equilibrium and secondary infection rate, the endemic equilibrium of System C.2 is different

from that of Masel et al. (1999) when neither treatment is being administered (D = 0 and

µI = 0). When D = 0 the endemic equilibrium (EE) is given by (S∗E, T ∗E, P ∗E, Z∗E, R∗E, A∗E)

where:

S∗E =Λ(µI + µP )
µS

1
R0

T ∗E =0

P ∗E =µS
βS

(R0 − 1)

Z∗E =µS((2n− 1)b+ µI + µP )
bβS

(R0 − 1)

R∗E =n(n− 1)b
βS

(1−R−1
0 )

A∗E =0

(3.6)

Thus the endemic equilibrium exists only if R0 > 1. Additionally, when µI = 0, S∗E +R∗E is

equal to the value of S at the endemic equilibrium in Masel et al. 1999. This occurs because

in Masel et al.’s paper, PrPSc monomers are added back into the susceptible population,

whereas in this paper, PrPSc monomers are placed in the treatment resistant population

(R).

3.5 Interferon Analysis

There are several experimental treatments that aim to stop prion proliferation, one of which is

the direct dosing of interferons. Experiments done by Ishibashi et al. (2019) have indicated

that the interferon signalling interferes with prion propagation. In this research, a group

of mice was infected with prions and then were treated with different concentrations of

interferons. The concentrations of prions was measured after 48 hours of the inoculation of

interferons. Due to the interferon signalling, there was a decrease in the prion population.
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From this experiment, the following experimental data was obtained:

{concentration (nM), ratio PI/P0}={0.00001,1.00},

{178970,1.05},{894849,0.93},{1.7897*106,0.945},{3.5794*106,0.90},{8.94849*106,0.65}

For each of the samples treated with different concentrations, it is measured the ratio

Pratio = PI/P0 between the amount of prions before and after the interferons were introduced.

Then, the data was interpolated with a Hill equation as shown in Figure 9.

0 2× 106 4× 106 6× 106 8× 106 1× 107
0.6

0.7

0.8

0.9

1.0

Figure 9: PI/P0 vs concentration. The ratio of prions measured in experiments with respect to the different
concentrations of interferons. A Hill equation was used to interpolate the data.

From this interpolation the following equation was obtained.

Pratio = 1
1 + ( I

13989.5∗103 )1.44313 (3.7)

where I is the concentration of interferons. Then, assuming that the dosage D and the death

rate caused by interferons µI are constant, we rewrite the total death rate of the polymer

chain µP + µI as µP + (k)µP . We assume that the behavior of prions with respect to time

(including the treatment) is given by an exponential decay:

P (t, I0) = c0e
−(1+k)µpt (3.8)

The ratio between the amount of prions when there is treatment and when there is not

treatment is given by
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Pratio(I) = PI
P0

= c0e
−(1+k)µP t

c0e−µP t
= e−µpte−kuP t

e−µP t
= e−kuP t (3.9)

Because the experiment dosed interferons over 48 hours, we assume t = 2 days and solve

for k.

k(I) = − log(Pratio(I))
2µP

(3.10)

where Pratio(I) is equation 3.5, a ratio between 0 and 1.

Note that the experimental data I was a unique dose. The Pratio values were measured

after two days of inoculation. It is assumed for calculations that the dose per day is the half

of the total dose.

3.6 Growth Rate

The rate of exponential growth, r, is defined as the per capita change in number of chains of

prions per unit of time [37]. According to Masel et al. (2000) [17], this parameter is the most

important one to analyze the replication of infectious prions.It depends on the kinetics of

the entire system and includes polymer replication and elongation. This exponential growth

is the result of chains breaking into two polymers that are able to replicate. It is affected by

changes in D (dosage of pharmacological chaperones) and µI (the interferon-induced prion

death rate) and is therefore useful to analyze their impact on the system.

To calculate the growth rate, it is assumed that S, A, R, and T are initially at a steady

state. This reduces our original closed system of differential equations to a linear system of

equations for Z and P :

dP

dt
= −(µP + µI)P + bZ − (2n− 1)bP,

dZ

dt
= βSP + βRP − (µP + µI)Z − n(n− 1)bP,

(3.11)

Note that the relation between P and Z is linear at all times. In fact, Z = GP , where G
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Figure 10: These plots shows the value of the prion growth rate against the concentrations
of the pharmacological chaperone and interferon dosages.

is the average chain length (see 3.3). The rate r then determines the exponential growth of

both P and Z. Then taking the Jacobian matrix and calculating the dominant eigenvalue of

that matrix will provide the growth rate r. The system of P and Z will decay and accumulate

exponentially at this rate r. The growth rate is given by

r = b(1− n)− b

2 +
√
b

4

2
+ βb(R∗ + S∗)− (µI + µp), (3.12)

where S∗ and R∗ represent the S and R values of the PFE. By replacing the value of

k obtained in 3.10 into r, we obtain an expression that depends on the concentration of

interferons. The exact derivation of the formula can be found in Appendix C.

Therefore, as the dosage of either treatment increases the growth rate decreases. Figure

10 particularly shows how I andD, the proposed treatments, directly affect the population of

prions. To examine this system, r is plotted against our two treatment variables: µI , in order

to study the effect of the interferon treatment, and D, which shows how the pharmacological
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chaperones affect the growth rate of PrPSc, see Figure 10.
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Figure 11: These plots shows the value of the prion growth rate against the concentrations
of interferon dosages. From left to right, it is plotted for 3 different dosages: 0 nM, 500
000/4 nM, and 500 000/2 nM.

In Figure 11, holding D constant and plotting r against I, it can be seen that the growth

rate decreases as I increases. Since the interferons remove PrPSc from the population, this

limits how fast P can grow. Figure 11 shows three plots for three different D, that indicate

how the system is affected with the variation of D.This makes sense biologically because as

pharmacological chaperones are added to the system, there are fewer PrPC monomers that

can be added to PrPSc chains. That means that P , the polymers, must grow more slowly

when the dosage is increased. However, the pharmacological chaperones change the growth

rate much less than the interferons do, and it becomes evident that I reduces the growth

rate much more than D does. This indicates that the interferon treatment reduces the prion

population much more than pharmacological chaperones do.
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Figure 12: 3D representation of the value of the prion growth rate against the concentrations
of the pharmacological chaperone and interferon dosages.

It was expected that the introduction of these treatments would reduce the concentration

of prions in the brain. Our model shows that PrPSc decreases until it reaches the PFE by

adding the treatment. Moreover, the model demonstrates the comparative efficacy of the

treatments. From the analysis of the growth rate, we can see the first treatment has less ef-

ficacy. That is, more pharmacological chaperones are required to produce the desired result,

which is to reduce the growth rate. Pharmacological chaperones, however, are more potent;

that is, they reach their full effect more quickly. The interferon treatment is the opposite:

more efficient but less potent. It can be seen that in Figure 14; R0 decreases with both

treatments, increasing the pharmacological chaperones or increasing the interferons. The

range for both are different; big changes in pharmacological chaperones make no significant

changes in R0, and low changes in interferons make considerable changes in R0. Similar

changes are evident in r, the growth rate of the prion population. Increasing the pharma-

cological chaperone dose decreases r, but only by a small amount. On the other hand the

25



Name Value Units Reference
Initial Conditions

S 600 nM [9]
T 0 nM
P 3 nM
Z 90 nM
R 0 nM
A 0 nM

Parameters
Λ 2400 1

day [31]
µS 4 1

day [31]
µP 0.047 1

day [31]
µR 4 1

day [31]
µA 62.0352 1

day [19]
µI [0,0.0882] 1

day
σ 1 –
βS 0.00292 1

(day)nM [31]
βR 0.00292 1

(day)nM [31]
α 0.051408 1

(day)nM [19]
bi,j 0.0314 1

day [31]
n 3 – [31, 33]
D [0,71500] nM

day [15]

Table 3: Table of parameters for the numerical simulations. nM = nano-moles/Liter

introduction of interferons lowers the growth rate significantly. Just like with R0, big changes

in pharmacological chaperones have a small effect on r while small doses of interferons have

a large impact on r.

4 Numerical Analysis

This section includes the numerical simulations used to study the effect of treatment on prion

proliferation in the brain. Parameters values were obtained from literature, particularly from

Rubeinstein et al. [31]. For the parameters values see Table 3.
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Figure 13: Sensitivity indexes of R0. Left: with respect to D against different values of D.
Right: with respect to µI against different values of I.

4.1 Sensitivity Analysis

Sensitivity analysis was done on the basic reproductive number with respect to the treatment-

related parameter values, D and µI . The sensitivity indexes were found by taking partial

derivatives of R0 with respect to either D or µI and then normalizing these values by multi-

plying them by D
R0

or µI

R0
, respectively. The value of the sensitivity index of R0 with respect

to D represents the percent change in R0 when D is increased by 1%. In Figure 13, it can be

seen that within the parameter ranges under consideration in this work, R0 is more sensitive

to interferon treatment than pharmacological chaperone treatment, which indicates that the

pharmacological chaperone treatment will be more effective at reducing the growth rate of

the prion population initially.

4.2 Numerical Results

The model presented in this paper concerns the effectiveness of two treatments, pharma-

cological chaperones and interferons, so this analysis examines which of these treatments

affects the population of PrPSc the most.

Figure 14 compares R0 values at time tfinal with respect to different values of D and µI ,

respectively. From this graph, it is evident that the more each treatment increases, the more

R0 lowers, indicating the treatments are effective. Note that R0 decreases much more with

respect to an increase in µI , the death rate induced by interferons. This suggests that using

interferons is the more effective treatment for prion diseases. It is important to note that
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Figure 14: Contour plot of R0 vs. Interferons (µI) and Pharmacological Chaperone Dosage
(D)

the pharmacological chaperones affect R0 as well. However, these results indicate that the

secondary infection rate is much more sensitive to the changes in µI , a sign that treatment

of prion diseases with interferons may be more useful.

From Figure 15, the relationship between the endemic value of P compared to the treat-

ment levels is evident. When no treatment is applied, PE is at its highest in the lower left

corner of the figure. This makes sense; treatments should limit the strength of the final infec-

tion level. Travelling along the I axis, it is observed that PE decreases steeply the more the

interferon treatment increases. This makes sense with the previous analysis of r, the growth

rate; the interferon treatment is the more effective of the two treatments. The decrease that

happens along the D-axis is much less pronounced, but still existent. Note that the phar-

macological chaperone dosage is limited due to toxicity of the treatment. Pharmacological

chaperones affect the amount of PrPSc as well, though not as much the interferons do.
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Figure 15: Contour plot of PE vs. Interferons (µI) and Dosage (D)

Figure 16: This figure shows a special case of Figure 14. Prion concentration changes over
time with various treatments implemented. Pharmacological chaperons and interferons are
represented at , 7.1429 ∗ 104 nM/day, and 1.25 ∗ 106 nM/day respectively. Each of these
dosages alone will go to endemic equilibrium. This figure shows that the treatments are able
to be combined at the same dosages to go to disease free equilibrium. With no treatment,
the prion concentration increase faster than with treatments. (For parameters, see Table 3).
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Figure 17: Interferon Dosages vs. Time. Top: The concentration of prions as a function of
time, where each line is a different dose of pharmacological chaperones (left) or interferons
(right). Bottom: The final prion concentration as a function of dose of pharmacological
(left) or interferons (right). Dotted lines on the leftmost graphs are doses beyond the toxic
threshold of pharmacological chaperones. The red line on the bottom left graph represents
the toxic dose of pharmacological chaperones. (For parameter values, see Table 3)

Figure 16 effectively shows the synergistic effect of the two treatment’s on the endemic

equilibrium (PE). While interferons are more effective than pharmacological chaperones at

both reducing the value of the endemic equilibrium and the time it takes to reach that

equilibrium, the combined treatment shows a near 100-fold decrease in endemic equilibrium

than that of the untreated infection.

Figure 17 shows the differing concentration of prions at a range of constant interferon

dosages. It can be shown that at these particular initial conditions found in Table 3, there

is a transition of stable equilibrium from a stable endemic equilibrium at low dosages of

interferons to a stable prion-free equilibrium at higher dosages. As the interferon dose

increases, the prion concentration does not increase as quickly as without treatment. The

latter two graphs in the figure shows how the final concentration of prions depends on

interferons; this value goes to zero as we increase both interferon dose and, relatedly, the

interferon-induced death rate. This treatment, at high enough doses, appears to work against

prion proliferation.
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The prion concentration over time with different constant dosages of pharmacological

chaperones and no interferon treatment was also examined. Figure 16 shows how combina-

tion of lower-dose treatments can be effective. The dosages administered of both pharma-

cological chaperones and interferons alone cannot bring the prion population to zero. Each

lowers the endemic equilibrium but does not eliminate the prion population. However, if

the low doses of both treatments are combined, they can work together to bring the prion

concentration down together. The synergistic effect is significant.

Figure 18 shows the combination of interferon and pharmacological chaperone treatments.

The red and orange lines are the same as in Figure 17. The superimposed blue and purple

lines show the effect of introducing a constant dose of pharmacological chaperones while

varying interferon dose. The upper limit for the prion concentration is much lower than

with a single treatment. The dual treatment also slows the growth of PrPSc more than

interferons alone does. The second and third graphs in Figure 18 show how interferons affect

the final prion concentration, again with both no pharmacological chaperones (red) and a

constant dose of pharmacological chaperone treatment (blue). The addition of a constant

treatment dose means that the final prion concentration is achieved sooner. This graph

shows us that using the two treatments is a way to reduce prion concentration more and

faster than either pharmacological chaperones or interferons alone.
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Figure 18: Combined Interferon and Pharmacological Chaperones. Top: The concentra-
tion of prions as a function of interferon and pharmacological chaperone doses. Red is only
pharmacological chaperone doses, while blue represents varying interferon doses and con-
stant pharmacological chaperones. Pharmacological chaperons are at a constant dose of
7.1429 ∗ 104, which is right at the toxic threshold. Bottom: The final prion concentration
as a function of dose of interferons, with and without the same doses of pharmacological
chaperones as above.

5 Conclusions

In this paper, previous models by Nowak et al. [23] and Masel et al. [18] on prion dynamics

in the brain were examined. Our work introduces two possible treatments for prion diseases.

The first treatment uses pharmacological chaperones, which prevent PrP from misfolding

into PrPSc. The other treatment uses interferons, a signalling part of the immune system

that reduces the PrPSc population. This work examined how these treatments affected the

population of prions in the brain.

From the results of the numeric simulations it was clear that both treatments affect prion

proliferation. However, through analysis of the basic reproduction number (R0) and the prion

growth rate (r), it can be seen how the treatments work in tandem. The pharmacological
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chaperones act quickly in reducing the PrPSc population, but their effect does not last

as long. On the contrary, interferon treatment does not work as quickly, but it works

more effectively as time goes on. The best treatment is a combination of pharmacological

chaperones and interferons. The pharmacological chaperones act more quickly but with less

potency, meaning that they are a good first action to take with prion diseases. Interferons

are the more potent treatment, meaning that they reduce the prion population far more

than pharmacological chaperones do over time. However, this effect takes longer to occur.

Thus, in this work it is shown that the best treatment is likely a combination of the two.

Pharmacological chaperones act quickly, reducing the amount of prions, buying some time

for the interferon treatment to work. This might suggest that pharmacological chaperones

should be administered before the interferons.

It is important to note that this is not a cure. Interferons and pharmacological chaper-

ones have only been shown to prolong the life of someone afflicted with a prion disease, not

eliminate the disease altogether. Further research beyond this work is needed if any steps are

to be made towards a cure. Mathematically, the optimization of the two treatments would

be useful. Looking for specific dosages of both pharmacological chaperones and interferons

and best timing of these doses is also important. The results in this paper would be best

supported by a toxicity optimization; like all drugs, the treatments presented here can not be

given to a patient freely. What would be the best combination of treatment to reduce harm

done by the drugs while still affecting the prion population? Additionally, further research

of other possible treatments and treatment combinations is essential. Pharmacological chap-

erones and interferons are not the only two possible ways to treat prion diseases, and it is

important to take into account all possible therapies. In vivo experiments are necessary to

show if these treatments actually have any affect on prion diseases. Once more substantial

research has been done, a cost analysis of these treatments would also be useful to reduce

cost for the patient. Prion diseases are still fatal, still dangerous, still incurable. But research

is happening, and perhaps we are one step closer to solving the mystery of these strange

diseases.
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A Mathematical Proofs for the Equations

A.1 Derivation of the Infinite System of Differential Equations

In this section, the derivation of the system of differential equations from the infinite dimen-

sional system is explained. First, take the term ∑n−1
i=1

∑∞
j=i+1(bj,i+ bi,i−j)iPj, which describes

a polymer of length i splitting into two polymers, with one of them of length less than n.

When the shorter polymer is below the n threshold, it dissociates into infected monomers,

and so the monomers go from the Pi class to R. Thus, for a single length j we can represent

the monomers flowing into R by the following:

bj,1Pj + 2bj,2Pj + ...+ (n− 1)bj,n−1Pj + (n− 1)bj,j−n+1(n− 1)Pj + ...+ 2bj,j−2Pj + bj,j−1Pj,

The sum of this value over all lengths j can be written,

∞∑
j=1

(bj,1Pj + ...+ (n− 1)bj,n−1Pj + (n− 1)bj,j−n+1(n− 1)Pj + ...+ bj,j−1Pj)

=
∞∑
j=1

n−1∑
i=1

i(bj,iPj + bj,j−iPj). (A.1)

It is known that bj,i = 0 if i ≥ j; so Equation A.1 can be rewritten as:

n−1∑
i=1

∞∑
j=i+1

i(bj,iPj + bj,j−iPj).

Different assumptions about the dynamics of aggregate growth and fragmentation can
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be embodied in the matrix bi,j. In this, we assume that bi,j = b, which changes the sum as

follows:
i−1∑
j=1

bi,jPi = bPi
i−1∑
j=1

1 = b(i− 1)Pi, (A.2)

∞∑
j=i+1

(bj,i + bi,i−j)Pj = 2b
∞∑

j=i+1
Pj, and (A.3)

n−1∑
i=1

∞∑
j=i+1

(bj,i + bi,i−j)iPj = 2b
n−1∑
i=1

∞∑
j=i+1

iPj. (A.4)

Therefore, the construction of the infinite dimensional system can be written as:

dS

dt
=Λ− µSS − αAS + µAT − βSS

∞∑
i=n

Pi,

dT

dt
=− µST + αAS − µAT,

dPi
dt

=− µPPi − µIPi + βSSPi−1 − βSSPi + βRRPi−1 − βRRPi − b(i− 1)Pi+

2b
∞∑

j=i+1
Pj,

dR

dt
=− µRR− µI(t)σR− βRR

∞∑
i=n

Pi + 2b
n−1∑
i=1

∞∑
j=i+1

iPj, and

dA

dt
=− µAA− αAS +D,

as it is expressed in System 2.1.

A.2 Closing the System of Differential Equations

Here we close the system with infinite equations by summing over Pi. Let

P =
∞∑
i=n

Pi, Z =
∞∑
i=n

iPi. (A.5)

Therefore, it is assumed that these sums are convergent since in any biological system, there

will only be a finite number of prions. Their derivatives can be written as Ṗ = ∑∞
i=n Ṗi and
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Ż = ∑∞
i=n iṖi. The derivative of P can then be reduced as follows:

Ṗ =
∞∑
i=n

βSPi−1 − βSPi + βRPi−1 − βRPi − (µp + µI)Pi − b(i− 1)Pi + 2b
∞∑

j=i+1
Pj



=
∞∑
i=n

βS(Pi−1 − Pi)︸ ︷︷ ︸
Telescopic sum

+
∞∑
i=n

βR(Pi−1 − Pi)︸ ︷︷ ︸
Telescopic sum

−
∞∑
i=n

(µp + µI)Pi −
∞∑
i=n

b(i− 1)Pi +
∞∑
i=n

2b
∞∑

j=i+1
Pj

= −(µp + µI)
∞∑
i=n

Pi︸ ︷︷ ︸
P

−b
∞∑
i=n

(i− 1)Pi + 2b
∞∑
i=n

∞∑
j=i+1

Pj

= −(µp + µI)P − b
∞∑
i=n

iPi︸ ︷︷ ︸
Z

+b
∞∑
i=n

Pi︸ ︷︷ ︸
P

+2b
∞∑
i=n

(i− n)Pi − 2b(n− n)Pn

= −(µp + µI)P − bZ + bP + 2b
∞∑
i=n

iPi︸ ︷︷ ︸
Z

−2bn
∞∑
i=n

Pi︸ ︷︷ ︸
P

.

Thus,

Ṗ = −(µp + µI)P − bZ + bP + 2bZ − 2bnP = −(µp + µI)P + bZ − (2n− 1)bP. (A.6)

The derivative of Z can also be rewritten:

Ż =
∞∑
i=n

i

βSPi−1 − βSPi + βRPi−1 − βRPi − (µp + µI)Pi − b(i− 1)Pi + 2b
∞∑

j=i+1
Pj



=
∞∑
i=n

iβS(Pi−1 − Pi) +
∞∑
i=n

iβR(Pi−1 − Pi)

−
∞∑
i=n

i(µp + µI)Pi −
∞∑
i=n

ib(i− 1)Pi +
∞∑
i=n

i2b
∞∑

j=i+1
Pj.

(A.7)

The sums in Equation A.7 can be reduced as follows:

βS
∞∑
i=n

i(Pi−1 − Pi) = βS(n(Pn−1 − Pn) + (n+ 1)(Pn − Pn+1) + (n+ 2)(Pn+1 − Pn+2) + ...)
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= βS(nPn−1 + Pn(n+ 1− n) + Pn+1(n+ 2− n− 1) + Pn+2(n+ 3− n− 2) + ...)

= βS(Pn + Pn+1 + Pn+2 + Pn+3 + Pn+4 + ...) = βS
∞∑
i=n

Pi = βSP,

βR
∞∑
i=n

i(Pi−1 − Pi) = βR(n(Pn−1 − Pn) + (n+ 1)(Pn − Pn+1) + (n+ 2)(Pn+1 − Pn+2) + ...)

= βR(nPn−1 + Pn(n+ 1− n) + Pn+1(n+ 2− n− 1) + Pn+2(n+ 3− n− 2) + ...)

= βR(Pn + Pn+1 + Pn+2 + Pn+3 + Pn+4 + ...) = βR
∞∑
i=n

Pi = βRP, and

2b
∞∑
i=n

i
∞∑

j=i+1
Pj = 2b

n ∞∑
j=n+1

Pj + (n+ 1)
∞∑

j=n+2
Pj + (n+ 2)

∞∑
j=n+3

Pj + ...


= 2b (nPn+1 + (n+ (n+ 1))Pn+2 + (n+ (n+ 1) + (n+ 2))Pn+3 + ...)

= 2b
 ∞∑
i=n+1

(i− 1− n)(i− 1 + n) + i− 1 + n

2 Pi



= 2b
 ∞∑
i=n+1

(i− 1 + n)((i− 1− n) + 1)
2 Pi

 = 2b
 ∞∑
i=n+1

(i− 1 + n)(i− n)
2 Pi



= 2b
( ∞∑
i=n

(i− 1 + n)(i− n)
2 Pi

)
− (n− 1 + n)(n− n)

2 Pn

= 2b
( ∞∑
i=n

(i− 1 + n)(i− n)
2 Pi

)
= 2b

( ∞∑
i=n

(i− 1)i− n(i− 1) + ni− n2

2 Pi

)

= 2b
( ∞∑
i=n

i2 − i− ni+ n+ ni− n2

2 Pi

)
= 2b

( ∞∑
i=n

i2 − i+ n− n2

2 Pi

)

= 2b
∞∑
i=n

i(i− 1)− n(n− 1)
2 Pi = b

∞∑
i=n

i(i− 1)Pi − b
∞∑
i=n

n(n− 1)Pi.

Plugging these reduced terms back into Ż yields

Ż =
∞∑
i=n

iβS(Pi−1−Pi)+
∞∑
i=n

iβR(Pi−1−Pi)−(µp+µI)
∞∑
i=n

iPi−b
∞∑
i=n

i(i−1)Pi+
∞∑
i=n

i2b
∞∑

j=i+1
Pj
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= βSP + βRP + (µp + µI)Z − b
∞∑
i=n

i(i− 1)Pi + b
∞∑
i=n

i(i− 1)Pi − b
∞∑
i=n

n(n− 1)Pi

= βSP + βRP + (µp + µI)Z − bn(n− 1)
∞∑
i=n

Pi.

Thus,

Ż = βSP + βRP + (µp + µI)Z − n(n− 1)bP. (A.8)

Now the infinite sums in Equation 2.2e (shown here in Equation A.9) can be reduced.

Ṙ = 2b
n−1∑
i=1

∞∑
j=i+1

iPj − βRR
∞∑
i=n

Pj − µ0R. (A.9)

These sums can be reduced as follows:

2b
n−1∑
i=1

∞∑
j=i+1

iPj = 2b
 ∞∑
j=2

Pj + 2
∞∑
j=3

Pj + 3
∞∑
j=4

Pj + ...+ (n− 1)
∞∑
j=n

Pj



= 2b
(
n−1∑
i=1

i(i+ 1)
2 Pi +

∞∑
i=n

n(n− 1)
2 Pi

)

= 2b
∞∑
i=n

n(n− 1)
2 Pi = bn(n− 1)

∞∑
i=n

Pi = bn(n− 1)P,

because Pi = 0 for i < n. Thus,

Ṙ = −µ0R− βRP + n(n− 1)bP.

A.3 Stability Condition of the Prion Free Equilibrium

The linearization matrix of System 2.2 around E∗ = (S∗, T ∗, 0, 0, 0, A∗) is

J(E∗) =
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

−µS − αA∗ µA −βSS∗ 0 0 −αS∗

αA∗ −µS − µA 0 0 0 αS∗

0 0 −µP − µI − (2n− 1)b b 0 0

0 0 βSS
∗ − n(n− 1)b −µP − µI 0 0

0 0 n(n− 1)b 0 −µR − µIσ 0

−αA∗ 0 0 0 0 −µA − αS∗


The eigenvalues of the matrix J(E∗) are:

λ1 = −µS < 0,

λ2 = −(µR + µIσ) < 0,

λ3 = −1
2b(2n− 1)− (µI + µP ) + 1

2

√
4S∗bβS + b2,

λ4 = −1
2b(2n− 1)− (µI + µP )− 1

2

√
4S∗bβS + b2 < 0,

λ5 = −α2 (A∗ + S∗)− µA −
1
2µS + 1

2
√
M,

and λ6 = −α2 (A∗ + S∗)− µA −
1
2µS −

1
2
√
M,

whereM = α2(A∗+S∗)2 +2αµS(A∗−S∗)+µ2
S > 0, if φ2 = (µA+µS)(Λα−µS

√
µ2
A + 4αD)+

√
∆− αµSD < 0.

(i)From the value of λ3, we have the λ3 < 0 when φ1 < 0, where φ1 =
√

∆ + (Λα −

µAµS)(µA + µS)− αµSD.

(ii)From the value of λ4, we have the λ4 < 0 if n > 1
2 .

(iii)From the value of λ5, because 4µA(µS + µA) + 4α(µSS∗ + µAS
∗ + µAA

∗) > 0, so

λ5 < 0. But, we want M is positive. Hence, we need φ2 < 0.

As a result, equilibrium E∗ is locally stable whenφ1 < 0(R0 < 1).

Proof:(i)if λ3 < 0,we can obtain S∗ < 1
βSb

(µI + µP + bn)(µI + µP + bn− b), yield

βSb[
√

∆+(Λα−µAµS)(µA+µS)−αµSD]+2αµS(µA+µS)(µI+µP +bn)(b−µI−µP−bn) < 0

we can let φ1 =
√

∆ + (Λα− µAµS)(µA + µS)−αµSD < 0 and b(n− 1) + µI + µP > 0, then
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λ3 have negative real part.

(iii) Because M = α2(A∗ + S∗)2 + 2αµS(A∗ − S∗) + µ2
S > 0. We just need A∗ =

D
µA+αS∗ > S∗, then M is positive. So, S∗ satisfyαS2 + µAS −D < 0, because µ2

A + 4αD > 0

and −D < 0, hence, this quadratic equation must have positive root −µA+
√
µ2

A+4αD
2α . Let

S∗ = S2 <
−µA+

√
µ2

A+4αD
2α . We can obtain φ2 < 0.

A.4 R0 Using Next Generation Matrix

This section will show in detail how RNG
0 was calculated using a Next Generation Matrix.

System 2.2 is rewritten as F − V where the terms in F represent the creation of new

infectious prion chains. Therefore,

F =



0

0

bZ

0

0

0



, and V =



−Λ + µSS + αAS − µAT + βSSP

µST − αAS + µAT

(µP + µI)P + (2n− 1)bP

−βSSP − βRRP + (µP + µI)Z + n(n− 1)bP

µRR + µIσR + βRRP − n(n− 1)bP

µAA+ αAS −D



.

Next, take the jacobian of F and V evaluated at the prion-free disease equilibrium (S∗, T ∗, 0, 0, 0, A∗):

F1 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 b 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



, and
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V1 =



αA∗ + µS −µA βSS
∗ 0 0 αS∗

α− A∗ µA + µS 0 0 0 α− S∗

0 0 b(2n− 1) + µI + µP 0 0 0

0 0 b(n− 1)n− βSS∗ µI + µP 0 0

0 0 −b(n− 1)n 0 µR + µIσ 0

αA∗ 0 0 0 0 αS∗ + µA



.

Now, F and V can be redefined to reduce the system:

F2 =

0 b

0 0

 , and

V2 =

b(2n− 1) + µI + µP 0

b(n− 1)n− βSS∗ µI + µP

 .
The inverse of V2 can be written as:

V −1
2 =

 1
b(2n−1)+µI+µP

0
βSS

∗−b(n−1)n
(µI+µP )(b(2n−1)+µI+µP )

1
µI+µP


Now, find the value K = F2V

−1
2 :

K =


b(βSS

∗−b(n−1)n)
(µI+µP )(b(2n−1)+µI+µP )

b
µI+µP

0 0

 .
Therefore, RNG

0 =max(Eigenvalues(K ))=

fracb(βSS∗ − b(n− 1)n)(µI + µP )(b(2n− 1) + µI + µP ).

B Derivation of Interferons Formula

.
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Type I IFN-B inhibit prion propagation in infectious cells and an-

imal models

The values of the concentrations of interferon’s were taken from experimental data. [12] In

the experiments,the concentration is measured in kU/ml and 48h after interferon doses the

rate is considered dividing the total amount of prion over the control amount (which does

not include the interferon treatment).

Pairs of experimental values:

{concentration(uK/ml), ratio PI/P0} = {0, 1}, {0.1, 1.05}, {0.5, 0.93}, {1, 0.945},

{2, 0.90},{5, 0.65};

B.0.1 Unit Conversion

Since the experimental data is in kU/ml we need to do a conversion of units to obtain the

units nM/L.

kU
ml
∗ 1000U

kU
∗ mg

2.42 ∗ 107U
∗ g

1000mg
∗ µg

10−6g
∗ µM

20027µg ∗
103 nM
µM

∗ 1000ml
L

(B.1)

where, 20027g/mol is the molecular mass of an interferon. The value for the conversion was

obtained from the data sheet provided by Chemicon (2004) for Mouse Interferon Beta [?].

Then the new list of values are :

Pairs of experimental values {concentration(nM/L), ratioPI/P0}={0.00001,1.00},

{178970,1.05},{894849,0.93},{1.7897*106,0.945},{3.5794*106,0.90},{8.94849*106,0.65}

B.0.2 Interpolation

The interpolation of the data with a Hill Equation is described by the equation

Pratio = 1
1 + ( x

13989.5∗103 )1.44313 (B.2)

Then, assuming that the dosageD and the death rate caused by interferons µI is constant,
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then we rewrite the total dead rate of the polymer chain µP + µI as (1 + k)µP . We assume

that the behavior of prions with respect to time (including the treatment) is given by an

exponential decay:

P (t, I0) = c0e
−(1+k)µpt (B.3)

Then, the ratio between the amount of prions when there is treatment and when there is

not treatment is given by

Pratio(I) = c0e
−(1+k)µP t

c0e−µP t
= e−µpte−kµP t

e−µP t
= e−kµP t (B.4)

Then, if it is assumed a t = 2 days (48 hours) and it is solved for k, it is obtained:

k(I) = − log(Pratio(I))
2µP

(B.5)

Where Pratio(I) is equation 3.9 and it will be a ratio between 0 and 1.

Code

The code for this calculations was created with Wolfram Mathematica.

(*Values taken from the experiment*)

rateI4={{0.001,1.00},{0.206333,1.05},{1.03167,.93},{2.06333,.945},

{4.12666,.90},{10.3167,.65}};

CvsI= ListPlot[rateI4]

hillmodelinter=(1/(1+(x/a)^n));

hillfit=FindFit[rateI4, {hillmodelinter,{n>0,a>0}} ,{a,n}, x]

Show[Plot[hillmodelinter/.hillfit, {x, 0, 9.5*10^6}],

ListPlot[rateI4, PlotRange -> Automatic]]
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(*Assumptions*)

p[t_,co_,k_,uo_]:= co E^(-(1+k)uo t)

po[t_,co_,k_,uo_]:= co E^(-uo t)

inter[Io_,r_,t_]:= Io E^(- r t)

(*k[Io];*)

(*Assume ut and dt ctes?*)

(*Assuming a t=2*)

ratio2= FullSimplify[(p[2,co,k,uo])/(po[2,co,k,uo])]

(*Assuming a t is a variable*)

ratio=FullSimplify[(p[t,co,k,uo])/(po[t,co,k,uo])]

k2=Assuming[

{ { k, uo,f2} \[Element] Reals, f2>0},

FullSimplify[Flatten[{

Solve[ratio2==f2,k,Reals]},2]

]

]

kt=Assuming[

{ { k, uo} \[Element] Reals, f2>0,f2<1 },

FullSimplify[

Solve[ratio2==f2,k,Reals]

]

]

kIt=Assuming[

{ { k, uo} \[Element] Reals, f>0,f<1, E^(r t)>0 , Io>0},

FullSimplify[
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Solve[ratio2==inter[Io,r,t],k,Reals]

]]

pratio=hillmodelinter/.hillfit

C Growth Rate

C.1 Getting r

In this section of the appendix we show how to get the growth rate. Asume that S, T , R

and A are initially in a steady state. The system if P and Z is now linear, and will either

accumulate or decay exponentially at exponentially at the rate according to the dominant

eigenvalue of the Jacobian matrix. After the average size reaches equilibrium, exponential

growth in the abundance of PrPSc over time t occurs according to

P (t) = P (0)ert and Z(t) = Z(0)ert. (C.1)

Taking the equations for P and Z,

dP

dt
= −(µP + µI)P + bZ − (2n− 1)bP,

dZ

dt
= βSP + βRP − (µP + µI)Z − n(n− 1)bP,

(C.2)

getting the Jacobian that is given by

J =

 −(µP + µI)− b(2n− 1) b

(S +R)β − b(n− 1)n −(µP + µI(t))


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The characteristic polynomials of J that is given by

P (λ) = b2(n− 1)n− b(−(2n− 1)(λ + µIµP ) + βR + βS) + (λ + µI + µP )2

and the solutions are given by

λ1 = 1
2

(
−2bn+

√
b
√
b+ 4βR + 4βS + b− 2(µI + µP )

)

λ2 = 1
2

(
−2bn−

√
b
√
b+ 4βR + 4βS + b− 2(µI + µP )

)

taking maximum eigenvalue

r = 1
2

(
−2bn+

√
b
√
b+ 4βR + 4βS + b− 2(µI + µP )

)

r = b(1− n)− b

2 +
√
b2

2 + βb(S +R)− (µI + µP ) (C.3)

Then, the values of the Prion Disease Equilibria for S∗ and R∗ are introduced from

equations 3.3. Then, the following expression is obtained:

r = b(1− n)− b

2 +
√
b2

2 + βb(S∗ +R∗)

r =b(1− n)− b

2 − (µI + µP )+√√√√√√b2

2 + βb

1
2

(
Λ
µS
− D

µA + µS
− µA

α

)
+

√√√√ΛµA
αµS

+ 1
4

(
D

µA + µS
+ µA

α
− Λ
µS

)2

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Figure 19: These plots shows the value of the prion growth rate against the concentrations
of Pharmacological Chaperon dosages.
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