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Abstract

Chronic lymphocytic leukemia (CLL) is the most common form of adult leukemia. CLL

develops through the unregulated proliferation of lymphocytes in the blood and bone marrow.

Currently, CLL is treated with chemotherapy and targeted therapies. Over the course of treat-

ment, patients may develop therapeutic resistance due to the accumulation of drug-resistant

mutations. Previous research has studied the evolutionary dynamics of ibrutinib-resistant muta-

tions in the absence and presence of ibrutinib, a targeted therapy. Expanding upon a previously

proposed model, we analyze the mechanism behind resistance dynamics by incorporating density

dependence. We use a discrete time birth-death process to model the growth of the CLL cells as

well as the probability of developing resistance mutations. We explore how density dependence

of tumor growth impacts the evolution of drug resistance in relation to the population size of

resistance mutations and the relative frequencies of resistant sub-clones. We model the growth

of the CLL cells logistically and compare our findings to models utilizing an exponential growth.

Additionally, we analyze how variation in different parameters effect treatment duration such

as the impact of susceptibility to treatment, time of treatment initiation, and mutation rate.
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1 Introduction

Chronic Lymphocytic Leukemia (CLL) is the most common form of adult leukemia [6]. Cur-

rently, there is an estimated incidence of 4.7 new cases per 100,000 individuals. The median age

at diagnosis is 70 years, with a male predominance (1.3:1) in all ethnic groups [6]. CLL develops

due to unregulated proliferation of B cells in the bone marrow, lymph nodes, and the blood [6].

Currently, CLL is treated with chemotherapy and targeted therapies; however, there is no cure.

In the absence of a cure, patients receive treatment for many years and over time can develop

therapeutic resistance due to the accumulation of drug-resistant mutations.

CLL patients can be divided into two subgroups based on the presence or absence of mutations

in the Immunoglobulin heavy chain variable region (IGHV) genes. The first subgroup is IGHV-

mutated (IGHV-M) CLLs that are derived from antigen-experienced B cells that have transited

through the germinal centre (GC) of secondary lymphoid organs. The second subgroup is the

IGHV-ummutated (IGHV-UM) CLLs which are derived from pre-GC B cells. The field of CLL

has been improved recently by the stereotypy of B cell receptor (BCR) and whole exome sequenc-

ing (WES) based discovery of specific mutations like NOTCH1, TP53, SF3B1, BIRC3, ATM, and

RPS15 which has helped to develop systems for prognosis in CLL. The International Working

Group of CLL (iwCLL) has established that the criteria for the diagnosis of CLL are monoclonal

B lymphocytes ≥ 5000 lymphocytes/ml in the peripheral blood for a duration of at least three

months and ≤ 55 prolymphocytes and flow cytometry showing co-expression of CD5 and B-cell

surface antigens CD19, CD20, and CD23, low levels of sIg, CD20, CD79b and kappa or lambda

light chain restriction [5].

The recent advances in anticancer agents have contributed significantly to the improvement of

both the disease-free survival and quality of life in cancer patients. However, in many instances, a

favorable initial response to treatment changes afterwards, thereby leading to cancer relapse and

recurrence. In other cases, the initial optimism after a good treatment response is often followed

by poor results and a devastating outcome, as tumors initially sensitive to therapy later become

unresponsive due to the development of acquired drug resistance. This includes resistance to typ-

ical chemotherapeutic drugs such as purine analogs, alkylating agents, and corticosteroids. These

drugs target rapidly proliferating cells but have many side effects include targeting other healthy,

highly mitotic cell types [1].

There are two kinds of drug resistance when some of the cells that are not killed by chemother-

apy mutate and become resistant to the drug: intrinsic and acquired drug resistance [1]. Intrinsic

Resistance can be attributed to drug breakdown, altered expression and/or function of the drug
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target, altered drug transport across the cellular membrane or reduced interaction efficiency be-

tween the drug and its molecular target. Additionally, cellular metabolic processes that inhibit

chemotherapeutic agents, cell cycle regulators and DNA damage repair factors also enhance cross-

drug resistance by inhibiting drug accumulation, reducing influx, increasing efflux through cell

membrane transporters, or inactivating drugs [1]. Acquired Drug Resistance is influenced by ge-

netic or environmental factors that facilitate the development of drug-resistant cancer cell clones

or induce mutations of enzymes involved in relevant metabolic pathways [1].

Ibrutinib, Idelalisib and Venetoclax are the most common targeted chemo therapy drugs admin-

istered during the progression of Chronic Lymphocytic Leukemia. These drugs specifically target

the B-cell receptor signaling pathway or the B-cell lymphoma two family of proteins. These group

of proteins are encoded by the BCL2 gene and regulate cell death via transcriptional regulation,

inducing or inhibiting apoptosis. The family is structurally divided into three distinct groups based

on the presence of Bcl-2 homology (BH) domains (BH1-4). Chemo drugs suppress the alternative

pathways these proteins can take since overexpression of the antiapoptotic BCL2 proteins lead to

cell proliferation and various immunotherapies will attack the prosurvival BCL2 family proteins.

[7].

1.1 Prior Models

In a 2014 study, Komarova and colleagues used stochastic models to study the evolution of

ibrutinib resistance in CLL. The overall aim of the study was to model the evolutionary dynamics

of ibrutinib-resistant mutations in the absence and presence of ibrutinib therapy [2]. Ibrutinib is

a type of targeted therapy for CLL; however, some patients become resistant to the therapy [2].

This paper seeks to improve the understanding of the mechanism behind the formation of ibrutinib

resistant mutations that lead to therapeutic resistance. A stochastic continuous time birth-death

process is used to model the growth of the CLL cells as well as the probability of developing resistant

mutations [2]. The authors assume the CLL cells grows exponentially; however, other studies have

found that the CLL cells grow logistically for some patients [2][3]. Additionally, the model assumes

that from a single cell a colony of cancer cells grows stochastically and with each cell division there

is a small probability of developing a resistant mutation [2]. Furthermore, it assumes the mutation

rate of each mutation is 10−8 [2]. To model the mutant growth, a stochastic model was used until

the resistant cells reached a size of 1000 cells and then the model switched to a deterministic model

to reduce computational time [2]. Both clinical data and realistic parameter combinations were

used [2].
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One of their most prominent discoveries is that drug-resistant CLL are present before treat-

ment begins. In addition, these authors suggest that resistance mutations may have a selective

advantage as large as 1.5% in the absence of treatment, although they are unable to exclude the

possibility of no selective advantage. Additionally, at the time of treatment and even 300 days

after treatment is initiated, the number of resistant mutations is very small and resistance is not

immediately detectable. There is great variation in the development of resistance between patients

after treatment begins. The average time of developing resistance after treatment initiation is 9

years if it is assumed a neutral selective advantage of the resistant mutations [2]. Given that 1.5%

selective advantage is accounted, then the average time of developing resistance is 5 years [2]. The

heterogeneity of the dynamics of resistance growth is more strongly correlated with the differences

in the net growth rates of CLL cells rather than the tumor size at the beginning of therapy. Despite

the great variation in the cellular growth dynamics across patients, the expected time until relapse

is a reliable indicator of how long ibrutinib is effective at controlling the disease. The authors pro-

posed that combining different kinase inhibitors with ibrutinib could prevent disease progression

due to resistant mutations [2].

In recent years, it has been shown that CLL exhibits different growth profiles in different

patients. In a 2019 study, Gruber et al. found that CLL can undergo exponential growth in

some patients, but logistic growth in others [3]. In order to demonstrate this they used serial

samples collected from 21 patients before therapy and then they corroborated their results in 86

independent patients with CLL [3]. Then they undertook an integrative analysis of genetic data,

clinical information, and growth dynamics, including quantification of the effect of cancer mutation

on growth rates measured in serial samples. The cohort was balanced for the strong prognostic

marker of the mutational status of the IGH variable region (IGHV), they then evaluated the overall

growth of the leukemia in each patient by examining between 4 and 83 pre-treatment measurements

of peripheral white blood cell (WBC) counts per patient. It was found that a subset of patients

exhibited bounded growth, with WBC counts plateauing overtime suggesting that leukemia can

display logistic-like behavior as well as an exponential-like growth pattern. In order to estimate the

posterior probabilities of the growth rate (r) and carrying capacity (K) they used a Markov Chain

Monte Carlo (MCMC) Gibbs sampler. They found that of 106 patients, 48 had logistic growth

profiles, 35 had indeterminate growth profiles and 22 had exponential growth profiles. Patients

with exponential growth profiles tended to harbor more driver mutations than those with logistic

or indeterminate profiles. Logistic tumors were more likely to have a mutated IGHV gene than

exponential tumors.
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2 Research Objectives

We will explore two main questions as well as a variety of sub-questions. First, We will analyze

the impact of density dependence on the accumulation of resistance mutations in our model. The

paper by Komarova et al. assumes that CLL cells grow exponentially [2]. We will analyze the im-

pact of implementing density dependence in the per capita birth rate of the CLL cells and compare

our model to the Komarova model. Additionally, we will explore how restricting the birth rate

to model density dependence affects the overall growth of the number of resistant mutations that

emerge. Since many of the previous models did not account for density dependence, incorporating

such a factor could resemble a more robust model since tumors in cancer are largely dependent on

the extracellular environment and have real life limitations. Also, we are interested in analyzing

the role of density dependence on how often resistant sub-clones develop since the sub-clones help

drive the formation of the mutations. Sub-clones are varying cell populations of the heterogenic

tumor which encompass a reservoir of mutant cells that can expand, repopulate the tumor, and

result in the rapid emergence of resistance. Due to the profound effect of these sub-clones, the

density dependence is a necessary factor to investigate in our model.

Additionally, we will explore the impact of variation in our input parameters effect treatment

duration. Previous research has assumed the the mutant cells were completely resistant to treatment

[2]. Furthermore, we will examine the impact of partial resistance on the treatment duration. If

mutant cells are partially sensitive to treatment, then treatment may be effective for a longer

duration of time. In addition, we will study how the timing of the onset of treatment impact the

duration of effective treatment. Furthermore, we will investigate the impact of the mutation rate

to analyze the extent of the impact of a higher mutation rate on effective treatment duration. In

summary, our questions are as follows:

1. How does density-dependence of tumor growth impact the evolution of drug resistance in

CLL?

(a) What impact does density-dependence have on the total size of the population of resistant

mutations?

(b) What impact does density-dependence have on the relative frequencies of resistant sub-

clones?

2. How does variation in different parameters effect treatment duration?

(a) What is the impact of variation in susceptibility to chemotherapy?

(b) What is the impact of variation in time of treatment initiation?

(c) What is the impact of variation in mutation rate?
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3 Methods

In order to explore the questions raised above, we formulated a discrete time stochastic model

for the growth of a tumor with mutation from drug-sensitive to drug resistant phenotypes. The

original continuous-time model studied by Komarova et al. is a birth-death process, meaning that

only one cell can divide or die at a time [2]. However, in our model, many events can happen in

a single time step and so we are not working with a birth-death process. The model incorporates

density dependence as well as treatment. The following subsections will discuss the model in more

depth. The code for the model is located in the Appendix.

3.1 Model Description

3.1.1 Discrete Time

To reduce the time required for simulations, we opted to work with a discrete-time stochastic

process rather than a continuous-time process. We are using discrete time which means we need

to specify a time step (tstep). Our time step is 1
4 which corresponds to 6 hours. Discussion about

validating the time step can be found in a later section.

3.1.2 Density Dependence

Density dependence is incorporated in the model by assuming the per-capita birth rate b of

the sensitive (sen) and mutant (mut) cells is density-dependent. In the absence of treatment, we

assume the per-capita birth rate of the sensitive and mutant cells is the same. Therefore, we assume

the following:

b(N) =
b

1 + CN

where C controls the strength of the density dependence and N is the total number of sensitive and

resistant (mutant) cells at that time. Our per-capita death rate d is held constant. The population

of cancer cells tends towards a stable equilibrium size K, where the per-capita birth and death

rates are equal. Setting b(K) = d(K), we can then solve for K, which is:

b(K) =d(K)

b

1 + CK
=d

K =
b− d
dC
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We allow the user to input the carrying capacity K; therefore, we calculate the corresponding

C value which is as follows:

C =
b− d
dK

3.1.3 Parameter Estimates

Our model contains various input parameters. A brief description of the input parameters are

displayed in Table 1. In the table “SC” refers to sensitive cells and “MC” refers to the mutant

cells. Also, the units of the parameters ndetect, ntreat , and nfail refer to the total number of cells

(mutant and sensitive cells). It is to be noted that many of these parameters were based on the

values used in the Komarova et al. (2014) paper.

Parameter Description Units Value Reference

ndetect Detection level cells 1010 [2]

ntreat Treatment level cells [1010 − 1012] [2]

nfail Treatment failure level cells 1.01× ntreat [2]

bsen Sensitive cell birth rate days−1 [0.0022, 0.004, 0.01777] [2]

dsen Sensitive cell death rate days−1 [0.0013, 0.0024, 0.01056] [2]

Ksen SC carrying capacity (before treatment) cells [105 − 1014] [2] [3]

Kplateau SC carrying capacity (after treatment) cells 109 [2]

bmut Mutant cell birth rate days−1 [0.0022, 0.004, 0.01777] [2]

dmut Mutant cell death rate days−1 [0.0013, 0.0024, 0.01056] [2]

Kmut MC carrying capacity (before treatment) cells [105 − 1014] [2] [3]

µ Mutation rate
mutations

cell division
[10−6 − 10−8] [2]

res Level of resistance of mutant cells NA [0-1]

Table 1: Input Parameters

3.2 Model

We begin our model starting from one sensitive cell and zero mutant cells. For each time step

in the model, we calculate the number of births and deaths of sensitive and mutant cells as well

as mutations. We assume that the number of events of each type (births, deaths and mutations)

is Poisson-distributed. This assumption is justified by the law of rare events provided that the (1)

number of cells is large (e.g., greater than 25), (2) that the per-capita probability of each event

is small (e.g., less than 0.1), and (3) that each cell divides, dies or mutates independently of the

others. We represent the number of sensitive cells as s and the number of mutant cells as m. In
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the absence of treatment, we calculate the following variables to determine the population size of

the sensitive and mutant cells. We incorporate density dependence for the sensitive and mutant

cells as follows:

bratesen =
bsen

1 + Csen(s+m)

bratemut =
bmut

1 + Cmut(s+m)

Then we compute the number of births and deaths for the sensitive and mutant cells, as well as

the number of mutations using a Poisson distribution. We assume that mutations occur only during

cell division and that each dividing sensitive cell mutates to a resistant phenotype with probability

µ.

birthssen ∼Poisson(s× bratesen)

deathssen ∼Poisson(s× dsen)

mutations ∼Poisson(birthssen × µ)

birthsmut ∼Poisson(m× bratemut)

deathsmut ∼Poisson(m× dmut)

After each time step, we update the sizes of the sensitive and mutant cell populations using the

following recursive equations:

s′ =s+ birthssen − deathssen −mutations

m′ =m+ birthsmut − deathsmut +mutations

Treatment is initiated once the total population of sensitive and mutant cells exceeds the thresh-

old ntreat. Treatment causes a reduction in the maximal sensitive cell division rate which drives the

population of resistance cells towards a lower stable equilibrium denoted as Kplateau. Therefore,

we must account for the new carrying capacity in the birth rate of the sensitive cells which we will

denote as bsen|treat. We know that K = (b− d)/dC, so we substitute in our new variables and solve

for bsen|treat which gives us:

bsen|treat =dsen × Csen ×Kplateau + dsen

Previous research has assumed that mutant cells are completely resistant to treatment. However,

we want to explore varying levels of resistance of the mutant cells so during treatment we define

the birthrate of mutant cells as:
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bmut|treat =res× bmut

Where res can vary from 0 to 1 and res = 1 corresponds to complete resistance. Therefore, our

new birth rates during treatment are as follows:

bsen|treat =dsen × Csen ×Kplateau + dsen

bmut|treat =res× bmut

Now we incorporate density dependence as follows:

bratesen|treat =
bsen|treat

1 + Csen(s+m)

bratemut|treat =
bmut|treat

1 + Cmut(s+m)

Then the number of births, deaths, and mutations occurring during treatment are:

birthssen ∼Poisson(s× bratesen|treat)

deathssen ∼Poisson(s× dsen|treat)

mutations ∼Poisson(birthssen|treat × µ)

birthsmut ∼Poisson(m× bratemut|treat)

deathsmut ∼Poisson(m× dmut|treat)

Similarly, as before we update our sensitive and mutant population sizes. The total population

of cells initially decreases due to treatment and then increases due to an accumulation of mutant

cells which are resistant to treatment. We continue treatment until the total cell population exceeds

a threshold nfail. In general, nfail was set equal to 1.01 × ntreat, so that treatment is deemed to

have failed when the population of tumor cells slightly exceeds the threshold at which treatment is

initiated.

3.3 Summary Statistics

We report different summary statistics relating to time and the number of mutant cells to

conduct our analysis. We calculate the median, mean, and standard deviation of detection time

which occurs until the total cell population exceeds a threshold ndetect. We report the same statistics

for the time of treatment failure which occurs when the total population of cells exceeds 1.01×ntreat
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after treatment begins. We calculate the duration of effective treatment by taking the difference

of the time elapsed from treatment initiation to treatment failure, and likewise we report the

same statistics as above. For the mutant cell population we report the same statistics as above;

however, because the distribution of the number of mutant cells is highly skewed we also reported

the following quantiles: 10%, 25%, 75%, 90%. We determine the mutant population at the time of

detection and treatment initiation.

3.4 Approximations

To reduce the time required to simulate this model, we approximated the Poisson distribution

by its mean whenever the mean exceeded a specific threshold. For each time step we generate

the number of birth and death events for sensitive and mutant cells as well as mutation events.

We define a function called mpoiss which is a hybrid Poisson random number generator and our

threshold value is 1000. For each type of event, we input the mean number of events. In the case

that the mean is less than 1000 (our threshold), we simulate a random number from a Poisson

distribution with our specified mean to determine the number of events that occur. Given the case

that the mean is greater than or equal to 1000 then we use a deterministic approximation where

the number of events is equal to the mean.

4 Results

4.1 Illustration of our Model

We are starting with a discrete time model that uses a hybrid deterministic Poisson generator.

In Figure 1, we plot the sample paths for 20 independent simulations of the model. Figure 1a shows

the sensitive cell population over time, while Figure 1b shows the mutant cell population over time.

The parameter values used for these simulations are as follows: bsen = .004, dsen = .0024, Ksen =

106, bmut = 0.0029, dmut = 0.0026, Kmut = 106, µ = 0.000001.

Figure 2 shows a visual illustration of our model that includes treatment. The solid blue line

represents the total population of sensitive and mutant cells. We can see that once the total cell

population reaches the treatment level threshold that the total cell population initially decreases due

to treatment and then increase due to an accumulation of mutant cells. The parameters combination

for this graph is as follows: ndetect = 1010, ntreat = 8× 1012, nfail = 8.08× 1012, bsen = 0.004, dsen =

0.0024,Ksen = 1014,Kplateau = 109, µ = 10−8, bmut = 0.004, dmut = 0.0024,Kmut = 1014, res = 1.
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(a) (b)

Figure 1

Figure 2

4.2 Numerical Approximations

4.2.1 Impact of Discretization of Time on Model Dynamics

We wanted to investigate the impact of the size of the time-step on the dynamics of our sensitive

and mutant populations. To achieve this, we varied the size of the time step from 1 hour to 19

hours. For each such value, we ran 50 simulations, starting with an initial population containing
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10 sensitive cells and 0 mutant cells and lasting 10,000 days. The values of the remaining model

parameters were birth rate of sensitive type (bsen) = 4 × 10−3, death-rate of sensitive type (dsen)

= 0.6 × 4 × 10−3, birth rate of mutant type (bmut) = 10−4, death rate of mutant type (dmut) =

10−5, carrying capacity of mutant type (Kmut) = 1010, carrying capacity of sensitive type (Ksen) =

1012 and mutation rate (µ) = 10−7. We then plotted the mean sensitive cell population and mean

mutant cell population at the final step (See Figure 3).The plots suggest that the behavior of the

model is not strongly impacted by the size of the time step, at least within the range considered

as the error bars overlap. A time-step of about 6 hours is chosen for our model input as it is

appropriate to give us accurate results and because it is computationally faster.

(a) (b)

Figure 3

4.2.2 Impact of Deterministic Approximation

One of the technical things that have to be tested is the effect of the deterministic approxi-

mation. To do this, we ran several sets of approximations using different values for the threshold

above which the Poisson distribution was replaced by its mean. Setting this threshold equal to

0 gives a fully deterministic model, whereas setting this threshold equal to infinity gives a fully

stochastic model. The function looks at the argument and if the argument is less than the thresh-

old that it simulates a Poisson distributed random variable with that mean. If the mean value its

greater than the threshold then it just assumes the random variable to mean. The way we have

been approximating it is by keeping all the values in the simulation fixed and changing the value

of the threshold to see the behavior of the simulation by comparing the mean and the standard

deviation of the population of sensitive cells and mutant cells. We ran two independent sets of
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simulations with each threshold value and then we plotted the mean with the standard deviation

of the numbers of sensitive and mutant cells at time t = Tmax. The threshold was varied be-

tween 102 to 1010 and this process was repeated twice. In figure 4 the distributions of sensitive

and mutant cells did not appear to be strongly affected by the threshold used so we will use a

value of 103 for our future simulations. The parameters we used are: S0 = 10, M0 = 0, bsen =

4x10−3, dsen = 2.4×10−3, Ksen = 105, bmut = 2.9×10−3, dmut = 2.6×10−3, Kmut = 105, µ = 10−6.

(a) (b)

Figure 4

4.3 Dynamics of Sensitive and Resistant Cells under Treatment

4.3.1 Density-Dependent Cell Division

In this experiment we aim to investigate the impact carrying capacity (Ksen) has on the mean

duration of effective treatment as well as on the number of resistant cells at the onset of treatment.

To achieve this, we varied Ksen between 1013 and 1016 while the other model parameters were kept

fixed. When Ksen is very large (e.g.1016), the cell growth dynamics are approximately exponential.

We ran a 100 simulations were run for each Ksen and two sets of fixed parameters corresponding to

slow and fast growing tumors. The initial number of sensitive cells (S0) was set to be 1 while the

initial number of mutant cells (M0) was set to be 0, and the simulations were allowed to run for a

maximum time (Tmax) of 50,000 days. Further on, to investigate an additional impact of mutation

rate (µ), two different values of µ were used which were 10−8 and 10−7. The summary statistics

were then plotted for both fast and slow growing tumors (See Figures 5,6).
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The parameter values used for slow growing tumors are ndetect = 1010, ntreat = 8 × 1012,

nfail = 1.01 × ntreat, bsen = 0.004, dsen = 0.0024, Kplateau = 109, µ = 10−8/10−7, bmut = 0.004,

dmut = 0.0024, res = 1 Kmut = Ksen. And, the parameter values used for fast growing tumors are

ndetect = 1010, ntreat = 8×1012, nfail = 1.01×ntreat, bsen = 0.01777, dsen = 0.01056, Kplateau = 109,

µ = 10−8/10−7, bmut = 0.01777, dmut = 0.01056, res = 1, Kmut = Ksen. It is to be noted that

bsen = bmut, dsen = dmut and Ksen = Kmut before the treatment is started.

It is observed that as Ksen increases, the mean duration of effective treatment decreases in both

slow and fast growing tumors. This is because, as we increase Ksen, we are allowing for higher

densities of mutant hence resistant cells to divide more rapidly, thus the treatment fails faster or

the mean duration for effective treatment decreases. A higher mean duration of effective treatment

is also noticed in slow growing tumors as compared to fast growing tumors for each value of Ksen.

This is because, the demographic parameter (r = b − d) which determines the rate at which the

resistant cells grow is equal to 1.6 × 10−3 and 7.2 × 10−3 for slow and fast growing tumors re-

spectively. Since the value of r is higher in fast growing tumors as compared to the slow growing

tumors, the mutant cells grow faster. As a result, the mean duration of effective treatment is smaller.

(a) (b)

Figure 5

Additionally, a lower mean duration of effective treatment is observed for a higher mutation

rate (10−7) as compared to the lower (10−8) for both fast and slow growing tumors as a higher

mutation rate implies a faster growth of mutant cells thus causing a decrease in the mean duration

of effective treatment. It is also observed that the number of mutant cells at the time of the onset
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of treatment is not significantly impacted by the carrying capacity for both mutation rates and in

both fast and slow growing tumors as the number of mutant cells at the onset of treatment depends

on the number of cell divisions that have occurred by that time. However, in the current model,

treatment begins once the total population size exceeds a set threshold, ntreat = 8 × 1012, and so

the number of cell divisions by this time will not be strongly influenced by the carrying capacity.

(a) (b)

(c) (d)

Figure 6
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4.3.2 Partial Resistance

In the model studied by Komarova et al. (2014), it is assumed that mutant cells are completely

resistant to treatment [2]. We explore the impact of partial resistance of the mutant cells on the

duration of effective treatment. Without treatment, the birth rate of the mutant cells is bmut. We

incorporate partial resistance during treatment by setting bmut|treat equal to res× bmut where res

is between zero and one inclusively. If res = 1, then the mutant cells are completely resistant

as bmut|treat = bmut. We vary res between 0.70 to 1 in increments of 0.05 for different carrying

capacities, Ksen and Kmut, where Ksen = Kmut since we have no justification for the carrying ca-

pacities to differ in size. We examined varying resistance levels for the following carrying capacities:

5× 1013, 1014, 5× 1014, and 1015. We chose this range of carrying capacities to analyze the impact

of varying resistance levels on tumor growth that behaves logistically and exponentially. We ran

100 simulations for each level of resistance and carrying capacity. All of the other parameters were

held fixed. For each of the parameter combinations the mean effective treatment duration as well

as its standard deviation were reported. Figure 7 illustrates our findings. The fixed parameters in

the model are as follows: ndetect = 1010, ntreat = 8× 1012, nfail = 8.08× 1012, bsen = 0.1777, dsen =

0.01056,Kplateau = 109, µ = 10−8, bmut = 0.1777, dmut = 0.01056. The specific birth and death

rates for the sensitive and mutant cells were chosen because they correspond to a fast growing

tumor which is more likely to result in treatment failure.

In Figure 7, we can see that an increase in the level of resistance results in a decrease in the

mean of the duration of effective treatment, as would be expected as the mutant cells are able to

grow more rapidly. Also, an increase in resistance level causes a decrease in variation of effective

treatment duration for the different carrying capacities. If we assume complete resistance, then the

mean duration of effect treatment is roughly between 4 to 6 years. However, if the mutant resistance

level is lower than approximately 0.85, then the treatment is essentially effective. The median age

of diagnosis is roughly 70 years [6]. If the effective treatment duration is greater than 10 years,

then the treatment is essentially effective as the patient is more likely to die from other natural

causes associated with their age. Furthermore, an increase in carrying capacity is associated with a

shorter effective duration as the cell population is growing more rapidly. In conclusion, the carrying

capacity of the sensitive and mutant cells has a greater impact at lower resistance levels. Also, a

higher carrying capacity corresponds to a shorter duration of effective treatment. If a drug could

be engineered to reduce the birth rate of the mutant cells during treatment by roughly 15%, then

treatment could be deemed completely effective regardless of the carrying capacity of the tumor.
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Figure 7

4.3.3 Treatment Initiation

In this experiment, we varied the size of the population of tumor cells (ntreat) at which treat-

ment was initiated from 1010 (the limit of detectability) to 1012. 100 simulations were conducted

for each set of parameter values, either with K = 1013 (logistic growth) or K = 1015 (exponential

growth). When the threshold for treatment initiation was increased, we saw an increase in the num-

ber of mutants at onset of treatment, duration of effective treatment, and treatment failure time

when the number of tumor cells increased from 1010 to 1012. When we changed the carrying ca-

pacity to account for an exponential growth model, we observed similar increases in these quantities.

After increasing the carrying capacity, there were some important trends to be noted. The

detection time remained constant no matter the carrying capacity after increasing the population

of tumor cells. However, treatment failure time increased when mutant population size increased

only at carrying capacities K = 1013 and K = 3 × 1013. With carrying capacities above this

range, the treatment failure time decreased as the mutant population increased. In all simulations

no matter the carrying capacity, the duration of effective treatment decreased as the tumor cell

population increased which is as expected. The number of mutants at tumor detection decreased

as tumor population increased for carrying capacities K = 1013 and K = 3× 1013. However, with

greater carrying capacities, as the tumor cell population increased, the mutants at tumor detection

increased.
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Figure 8

Throughout all carrying capacities, as the tumor cell population increased, the number of mu-

tants at onset of treatment also increased. Therefore, the treatment failure time and the number

of mutants at tumor detection differed in relationship with tumor cell population as the carrying

capacity increased. We detail treatment failure time with Figure 8 and the duration of effective

treatment time with Figure 9, as the tumor cell population increases for varying carrying ca-

pacities. The parameter values used were ndetect = 1010, nfail = 5 × 1012, bsen = 0.1777, dsen =

0.01056,Kplateau = 109, bmut = 0.1777, dmut = 0.01056.

At smaller carrying capacities such as K = 1013 and K = 3× 1013, delayed onset of treatment

(achieved by taking larger values of ntreat) leads to a modest increase in the treatment failure time.

In contrast, at higher carrying capacities, the effect of the treatment threshold on the treatment

failure time is limited. This difference likely arises from the fact that when the carrying capacity is

similar in magnitude to the treatment threshold (K ∼ ntreat), density-dependence slows the growth

of the population of resistant cells in the period just prior to the onset of treatment.

In contrast, the mean duration of effective treatment appears to decrease as the treatment onset

threshold increases. At low carrying capacities, this decrease reaches a plateau as ntreat approaches

the carrying capacity. However, at higher carrying capacities, no such plateau was observed over

the range of values of ntreat used in these simulations.
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Figure 9

4.3.4 The Rate of Mutation to Resistant Phenotypes

We tested the impact of the mutation rate to resistant phenotypes. To do this we varied the

mutation rate (to drug resistance) between 10−6 and 10−8 mutations/cell division. Biological differ-

ences in this rate can be due to variation in the intrinsic mutation rate as well as differences in the

size of the mutational target for drug resistance. We conducted 100 simulations with the following

set of parameter values: ndetect = 1010, ntreat = 8 × 1012, nfail = 8.08 × 1012, bsen = 0.1777, dsen =

0.01056,Kplateau = 109, bmut = 0.1777, dmut = 0.01056.

After varying the mutation rate the mean and standard deviation of the effective treatment du-

ration was plotted against the mutation rate in a log-log plot in Figure 10. From the graph we could

notice that this gives us a linear relationship where as we increased the mutation rate the number of

years where the treatment is effective decreases. This relationship was expected because when we

increase the mutation rate that increases the number of mutant cells at each change in the time step.
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Figure 10

Figure 11
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In Figure 11 we have five boxplots that represent the five different values of mutation rates

that we used to run the simulations. We plotted the number of mutant cells at the detection time

against the mutation rate and we used boxplot to represent this data. The reason we used boxplots

is because this data is not normally distributed but instead is skewed so the median is a more

robust parameter than the mean. From Figure 11 we can see that the median number of mutant

cells at the detection time increases as the mutation rate increases.

5 Discussion

Individuals with CLL are currently facing issues with developing therapeutic resistance due to

the accumulation of drug resistant mutations. Previous research has studied the the evolutionary

dynamics of drug resistant mutations [2]. Additionally, prior research has investigated varying

tumor growth dynamics in patients with CLL ranging from logistic to exponential growth [2] [3].

We developed a discrete time stochastic model to further analyze the dynamics of sensitive and

resistant cells during treatment.

We have expanded upon the Komarova et al. (2014) proposed model by including density de-

pendence in the growth of both sensitive and resistant cells instead of assuming exponential growth

[2]. The impact of the carrying capacity on the dynamics of both sensitive and resistant tumor

cells is investigated by simulation of the modified model using different values of Ksen for slow

and rapidly dividing cancer cells and for different mutation rates.There have been some insightful

observations. An increase in Ksen results in a decrease in the mean duration of effective treatment

as this allows for higher densities of resistant cells to divide more rapidly, thus the treatment fails

more rapidly. Additionally, it is observed that a higher mean duration of effective treatment is

associated with slow growing tumors as compared to fast growing tumors for each value of Ksen as

the value of r = b − d is higher in fast growing tumors as compared to the slow growing tumors

hence the resistant cells grow faster. Also, a lower mean duration of effective treatment is noted for

a higher mutation rate as compared to the lower for both fast and slow growing tumors as a higher

mutation rate implies a faster growth of mutant cells thus causing a decrease in the mean duration

of effective treatment. Hence, density dependence does play an important role in the effectiveness

of treatment thus should be included in treatment models.

Additionally, we expanded on Komarova et al. (2014) proposed model, to account for partial

resistance of the mutant cells to treatment, instead of assuming complete resistance [2]. Through

analyzing the impact of partial resistance of the mutant cells we discovered some interesting key

findings. Higher resistance levels correspond to shorter mean duration of effective treatment, as the

mutant cells are able to grow more rapidly. Also, larger carrying capacities are associated with a
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shorter mean duration of effective treatment. Furthermore, the size of the carrying capacity has a

larger impact at lower resistance levels. If we assume complete resistance, then the mean duration

of effect treatment is roughly between 4 to 6 years. Whereas, if the mutant resistance level is

below approximately 0.85, then treatment is essentially effective. Hence, partial resistance plays

a significant role in the effectiveness of treatment regardless of the growth dynamics of the tumor

cells. Future treatment methods should explore different methods of reducing the birth rate of the

mutant cells so they are not completely resistant to treatment.

The size of the cancer cell population at the onset of treatment also impacts the dynamics of

the resistant cell population. To investigate this relationship, the size of the population of tumor

cells (ntreat) at which treatment was initiated was varied from 1010 (the limit of detectability) to

1012. Furthermore, these simulations were carried out under different carrying capacities, ranging

from K = 1013 (logistic growth) to K = 1015 (exponential growth). The parameter measurements

showed interesting relationships which offers insight into the biological aspect of our model. We

noted that when the carrying capacity was similar in magnitude to the treatment threshold, the

resistant cells stalled in growth prior to the onset of treatment. It is unclear how often this situation

occurs in reality, but the diversity of growth profiles documented by Gruber et al. (2019) suggests

that this situation is at least plausible. However, density dependent inhibition is a very probable

case our model could apply to. This occurs when cells grow to a limited density and then growth

becomes inhibited, possibly by cell-cell contacts. Therefore, our model could be applied to include

the possibility of cell-cell contact as well as other spatial requirements.

To study resistant phenotypes, the mutation rate (to drug resistance) was varied between 10−6

and 10−8 mutations/cell division. In the Komarova et al. (2014) mutation rate model they used a

range of mutation rate from 10−7 and 10−9. They plotted in a log log scale the mutation rate against

the probability of resistance generation and got a linear relationships. Similarly to their results

we also get a linear relationship between the mutation rate and the effective treatment duration

when we plot on a log-log scale. In the Komarova et al. (2014) they use histogram to showcase the

mutant population size at the start of treatment and after 300 days of treatment, they use the mean

as their parameter. In our Figure 11 we chose to use the median of the mutant cells at detection

time because the distribution of this number is highly skewed due to the random time at which the

first resistance mutation occurs and the initially exponential growth of this sub-population (density

dependence only becomes important when the cell number is very large). Furthermore, we explore

the mutant population at the detection time and how the mutation rate affects the size of the

mutant cells. As expected our box plot showcases a almost exponential increased in the median

number of mutant cells at detection time. Lastly by investigating the impact of the mutation rate

on the effective treatment duration we know that a higher mutation rate has a big significant on
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the amount of years the treatment is effective.

5.1 Limitations of the Model

Our model is mostly limited in how biologically accurate it is for CLL patients in terms of

distinguishing between different types of mutations that are present in the CLL patients’ genome.

For example, in CLL patients, there could be various chromosomal alterations such as deletions

of certain loci [8]. Additionally, biological regulators, inflammatory receptors, transcriptional and

translational regulators, mRNA splicing, and cell cycle control all contribute to the genetic het-

erogeneity that our model does not encompass [8]. We ignore heterogeneity in both the sensitive

and resistant cell population. In particular, we assume that all cells carry the same number of

driver mutations and we assume that sensitive and resistant cells have identical phenotypes prior

to treatment.

Different loci of the genome are subject to different mutation rates and this therefore would

make our model more specific to what patients will encounter with the onset of CLL. One way to

express an important aspect of these biological markers would be to extend our model to account

for mutation classes within different loci of the genome. Point mutation classes such as silent,

nonsense, missense, and frameshift mutations would represent a more specific numbering model to

account for this. Epigenetics could also play a part in which transcriptional regulation has a large

influence on what genes are expressed or turned off. Our treatment model could also encompass

these biological changes to quantify a more rigorous and biologically relevant model for CLL treat-

ment.

Differences in cellular growth patterns across patients can lead to much variation not described

by our treatment model. Therefore, the detection time is limited and unlikely to contribute to

the diagnosis of many different patients. In addition, ibrutinib may be a poor option of therapy

when stronger chemotherapies could exist for the genome profile of the patient. Finally, our model

assumes that density dependence is only present with our cell division rate but is currently not

supported by the scientific literature to have a biological basis. Density dependence is an important

aspect of our model that gave us logical results, but this could be refined to include a more rigorous

and applicable model of testing.

6 Conclusion

We developed a discrete-time stochastic model to analyze the dynamics of therapeutic resistance

in CLL. To make our model more realistic, we incorporated density dependence and investigated

the effects of treatment for different tumor growth dynamics. We analyzed the impact of density-
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dependent cell division, partial resistance, time of treatment initiation, and mutation rate. It was

observed that these factors play a significant role in governing treatment. Hence, future work should

continue to explore these areas in more depth.
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8 Appendix

MATLAB Code

Simulations are run from the wrapper code and the main code performs the function.

8.1 Wrapper Code

25



1 % This code inc lude treatment f o r 1 mutant c l a s s

2 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

3

4

5 % User input

6

7 Num sims = input ( ’Number o f s imu la t i on s : ’ ) ;

8 % Tmax = input ( ’Maximum durat ion o f s imu la t i on ( days ) : ’ ) ;

9 % n dete c t= input ( ’ Detect ion l e v e l ( c e l l s ) : ’ ) ;

10 % n t r e a t=input ( ’ Treatment l e v e l ( c e l l s ) : ’ ) ;

11 % S0 = input ( ’ I n i t i a l number o f s e n s i t i v e c e l l s : ’ ) ;

12 % bsen = input ( ’ S e n s i t i v e c e l l b i r t h ra t e /day : ’ ) ;

13 % dsen = input ( ’ S e n s i t i v e c e l l death ra t e /day : ’ ) ;

14 % Ksen = input ( ’ S e n s i t i v e c e l l c a r ry ing capac i ty ( be f o r e treatment ) : ’ )

;

15 % K plateau=input ( ’ S e n s i t i v e c e l l c a r ry ing capac i ty ( a f t e r treatment ) :

’ ) ;

16 % M0 = input ( ’ I n i t i a l number o f mutant c e l l s : ’ ) ;

17 % mu = input ( ’ Mutation ra t e / d i v i s i o n : ’ ) ;

18 % bmut = input ( ’ Mutant c e l l b i r th ra t e /day : ’ ) ;

19 % dmut = input ( ’ Mutant c e l l death ra t e /day : ’ ) ;

20 % Kmut = input ( ’ Mutant c e l l c a r ry ing capac i ty ( be f o r e treatment ) : ’ ) ;

21 % r e s = input ( ’ Leve l o f r e s i s t a n c e o f mutant c e l l s to treatment : ’ ) ;

22

23

24

25 Tmax = 50000;

26 n de t e c t= 10ˆ(10) ;

27 n t r e a t= 8 ∗ 10ˆ(12) ;

28 n f a i l = 1 .01∗ n t r e a t ; % Set n f a i l s l i g h t l y above n t r e a t

29 S0 = 1 ;

30 bsen =.01777;

31 dsen =.01056;

32 Ksen=5∗10ˆ(14) ;

33 K plateau= 10ˆ(9) ;
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34 M0 = 0 ;

35 mu=10ˆ(−8) ;

36 bmut=.01777;

37 dmut=.01056;

38 Kmut=5∗10ˆ(14) ;

39 r e s = . 7 ;

40

41

42

43 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

44

45 % Convert time to s imu la t i on un i t s

46

47 t s t ep = 1/4 ; % each time step corresponds to 6 hours (1/4 day )

48 Tmax = f l o o r (Tmax/ t s t ep ) ; % conver t s the Tmax to be in terms o f the

t s t ep

49 bsen = bsen∗ t s t ep ;

50 dsen = dsen∗ t s t ep ;

51 bmut = bmut∗ t s t ep ;

52 dmut = dmut∗ t s t ep ;

53

54

55 % Convert ca r ry ing c a p a c i t i e s to dens i ty−dependence parameters

56

57

58 Csen = ( bsen − dsen ) /( dsen∗Ksen ) ;

59 Cmut = (bmut − dmut) /(dmut∗Kmut) ;

60

61 % Adjust b i r t h r a t e s during treatment

62

63 b s e n t r e a t= dsen∗Csen∗ K plateau + dsen ;

64 bmut treat = r e s ∗bmut ;

65

66

67
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68 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

69

70 % Make matr i ce s to p lace va lue s in

71

72 S pop = NaN( Num sims , Tmax+1) ;

73 M pop = NaN( Num sims , Tmax+1) ;

74 Total pop = NaN( Num sims , Tmax+1) ;

75 d e t e c t t = NaN(1 , Num sims ) ;

76 detect m = NaN(1 , Num sims ) ;

77 t r e a t t = NaN(1 , Num sims ) ;

78 treat m = NaN(1 , Num sims ) ;

79 f i n a l t = NaN(1 , Num sims ) ;

80 d e l t a t = NaN(1 , Num sims ) ;

81

82

83 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

84

85

86 % Run f o r Num sims S imulat ions

87

88

89

90 f o r i = 1 : Num sims

91 [ S , M, m det , t d e t , m treat , t t r e a t , t f i n a l , e x t i n c t f l a g ] =

DT treatment Final (Tmax , n de t e c t , n t r e a t , n f a i l , S0 , bsen

, dsen , Csen , b s e n t r e a t , M0 , mu , bmut , dmut , Cmut ,

bmut treat ) ;

92 whi le e x t i n c t f l a g==1 % I f the pop goes e x t i n c t rerun the

s imu la t i on

93 [ S , M, m det , t d e t , m treat , t t r e a t , t f i n a l , e x t i n c t f l a g ] =

DT treatment Final (Tmax , n de t e c t , n t r e a t , n f a i l , S0 ,

bsen , dsen , Csen , b s e n t r e a t , M0 , mu , bmut , dmut ,

Cmut , bmut treat ) ;
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94 f p r i n t f ( ’ S imulat ion Number : %d\n ’ , i ) ;

95 end

96 i f e x t i n c t f l a g==0

97 S pop ( i , : ) = S ;

98 M pop( i , : ) = M;

99 Total pop ( i , : ) = S + M;

100 d e t e c t t ( i ) = t s t ep ∗ t d e t ; % convert the time back in to days

101 detect m ( i )= m det ;

102 t r e a t t ( i )=t s t ep ∗ t t r e a t ; % convert the time back in to days

103 treat m ( i )=m treat ;

104 f i n a l t ( i ) = t s t ep ∗ t f i n a l ; % convert the time back in to days

105 f p r i n t f ( ’ S imulat ion Number : %d\n ’ , i ) ; % p r in t the cur rent

s imu la t i on number

106 end

107 end

108

109

110 time = 0 :Tmax; % t o t a l time length

111 time = t s t ep .∗ time ; % convert i n t e g e r time back in to days

112

113

114 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

115

116 % Find the durat ion o f e f f e c t i v e treatment

117 % Note : the ” i snan ” cond i t i on i s j u s t in case the n f a i l by the end o f

the

118 % run

119

120 f o r i= 1 : Num sims

121 i f ( i snan ( t r e a t t ( i ) )==0 && isnan ( f i n a l t ( i ) )==0)

122 d e l t a t ( i )= f i n a l t ( i )−t r e a t t ( i ) ;

123 end

124 end

125

126
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127 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

128

129 % Determine the number o f s imu la t i on s that reach l e v e l

130

131 S ims detec t = length ( d e t e c t t ) − sum( i snan ( d e t e c t t ) ) ;

132 S ims t r ea t = length ( t r e a t t ) − sum( i snan ( t r e a t t ) ) ;

133 S i m s f i n a l = length ( f i n a l t ) − sum( i snan ( f i n a l t ) ) ;

134

135 %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

136

137

138 f p r i n t f ( ’ \n\n ’ ) ;

139 f p r i n t f ( ’ S t a t i s t i c s \n\n ’ ) ;

140

141 % Number o f S imulat ions

142 f p r i n t f ( ’Number o f S imulat ions that reach 1 s t Detect ion : %d\n ’ ,

S ims detec t ) ;

143 f p r i n t f ( ’Number o f S imulat ions that reach treatment : %d\n ’ , S ims t r ea t )

;

144 f p r i n t f ( ’Number o f S imulat ions that reach treatment f a i l u r e : %d\n ’ ,

S i m s f i n a l ) ;

145 f p r i n t f ( ’ \n ’ ) ;

146

147 % Time S t a t i s t i c s

148

149 f p r i n t f ( ’Time S t a t i s t i c s \n\n ’ ) ;

150

151

152 % Detect ion Time

153

154 f p r i n t f ( ’ Detect ion time ( days ) \n ’ ) ;

155 f p r i n t f ( ’ Median d e t e c t i o n time : %d\n ’ , nanmedian ( d e t e c t t ) ) ;

156 f p r i n t f ( ’Mean d e t e c t i o n time : %d\n ’ , nanmean( d e t e c t t ) ) ;
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157 f p r i n t f ( ’SD d e t e c t i o n time : %d\n ’ , nanstd ( d e t e c t t ) ) ;

158 f p r i n t f ( ’ \n ’ ) ;

159

160 % Treatment Fa i l u r e Time

161

162 f p r i n t f ( ’ Treatment f a i l u r e time ( days ) \n ’ ) ;

163 f p r i n t f ( ’ Median treatment f a i l u r e time : %d\n ’ , nanmedian ( f i n a l t ) ) ;

164 f p r i n t f ( ’Mean treatment f a i l u r e time : %d\n ’ , nanmean( f i n a l t ) ) ;

165 f p r i n t f ( ’SD treatment f a i l u r e time : %d\n ’ , nanstd ( f i n a l t ) ) ;

166 f p r i n t f ( ’ \n ’ ) ;

167

168 % Duration o f E f f e c t i v e Treatment

169

170 f p r i n t f ( ’ Duration o f e f f e c t i v e treatment ( days ) \n ’ ) ;

171 f p r i n t f ( ’ Median Duration : %d\n ’ , nanmedian ( d e l t a t ) ) ;

172 f p r i n t f ( ’Mean Duration : %d\n ’ , nanmean( d e l t a t ) ) ;

173 f p r i n t f ( ’SD Duration : %d\n ’ , nanstd ( d e l t a t ) ) ;

174 f p r i n t f ( ’ \n ’ ) ;

175

176

177 % Mutants S t a t i s t i c s

178

179

180 f p r i n t f ( ’ Mutant S t a t i s t i c s \n\n ’ ) ;

181

182

183 % Mutants at Time o f Detect ion

184

185 f p r i n t f ( ’Number o f mutants at tumor d e t e c t i o n : \n ’ ) ;

186 f p r i n t f ( ’ Median Mutants : %d\n ’ , nanmedian ( detect m ) ) ;

187 f p r i n t f ( ’Mean Mutants : %d\n ’ , nanmean( detect m ) ) ;

188 f p r i n t f ( ’SD Mutants : %d\n ’ , nanstd ( detect m ) ) ;

189 f p r i n t f ( ’ \n ’ ) ;

190

191

192 % Mutants at the Onset o f Treatment

193
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194 f p r i n t f ( ’Number o f mutants at onset o f treatment : \n ’ ) ;

195 f p r i n t f ( ’ Median Mutants : %d\n ’ , nanmedian ( treat m ) ) ;

196 f p r i n t f ( ’Mean Mutants : %d\n ’ , nanmean( treat m ) ) ;

197 f p r i n t f ( ’SD Mutants : %d\n ’ , nanstd ( treat m ) ) ;

198 f p r i n t f ( ’ \n ’ ) ;

199

200

201 f p r i n t f ( ’ Quant i l e s o f Mutants : \n ’ ) ;

202 f p r i n t f ( ’ Detect ion time \n ’ ) ;

203 f p r i n t f ( ’ Quant i l e s (10%%, 25%%, 75%%, 90%%) : %d %d %d %d\n ’ , q u a n t i l e (

detect m , 0 . 1 ) , q u a n t i l e ( detect m , 0 . 2 5 ) , q u a n t i l e ( detect m , 0 . 7 5 ) ,

q u a n t i l e ( detect m , 0 . 9 ) ) ;

204 f p r i n t f ( ’ Treatment \n ’ ) ;

205 f p r i n t f ( ’ Quant i l e s (10%%, 25%%, 75%%, 90%%) : %d %d %d %d\n ’ , q u a n t i l e (

treat m , 0 . 1 ) , q u a n t i l e ( treat m , 0 . 2 5 ) , q u a n t i l e ( treat m , 0 . 7 5 ) ,

q u a n t i l e ( treat m , 0 . 9 ) ) ;

8.2 Main Code

1

2 f unc t i on [ S , M, m det , t det , m treat , t t r e a t , t f i n a l , e x t i n c t f l a g ]

= DT treatment Final (Tmax , n de t e c t , n t r e a t , n f a i l , S0 , bsen ,

dsen , Csen , b s e n t r e a t , M0 , mu , bmut , dmut , Cmut ,

bmut treat )

3

4 % Set the l ength o f the S and M array

5 S = 0 :Tmax; M = 0 :Tmax;

6

7 % I n i t i a l i z e va lue s

8 S (1) = S0 ;

9 M(1) = M0;

10 s = S0 ;

11 m = M0;

12

13 m det=NaN;

14 t d e t=NaN;

15 count det =0;

16
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17 m treat=NaN;

18 t t r e a t=NaN;

19 c o u n t t r e a t =0;

20 t r e a t m e n t f l a g =0;

21

22 t f i n a l=NaN;

23

24 e x t i n c t f l a g =0;

25

26 f o r t =1:Tmax

27 % Populat ion goes e x t i n c t

28 i f s + m == 0

29 e x t i n c t f l a g =1;

30 break ;

31 e l s e

32 % Tumor s i z e r eaches d e t e c t i o n l e v e l

33 i f ( s + m >= n dete c t )

34 count det=count det + 1 ;

35 end

36 i f ( count det==1)

37 count det=count det + 1 ;

38 m det=m;

39 t d e t=t ;

40 end

41 % Treatment beg ins

42 i f ( s + m >= n t r e a t )

43 t r e a t m e n t f l a g =1;

44 c o u n t t r e a t=c o u n t t r e a t +1;

45 end

46 i f ( c o u n t t r e a t==1)

47 c o u n t t r e a t=c o u n t t r e a t +1;

48 m treat=m;

49 t t r e a t=t ;

50 end

51 % Treated populat ion exceeds n f a i l

52 i f ( ( t r e a t m e n t f l a g == 1) && ( s+m >= n f a i l ) )

53 t f i n a l=t ;
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54 break ; % end s imu la t i on

55 end

56

57 % Determine # of events

58

59 % During treatment

60 i f ( t r e a t m e n t f l a g==1)

61 bra t e s en = b s e n t r e a t /(1 + Csen ∗( s+m) ) ;

62 b i r t h s s e n = mpoiss ( s ∗ bra t e s en ) ;

63 deaths sen= mpoiss ( s ∗dsen ) ;

64 brate mut = bmut treat /(1 + Cmut∗( s+m) ) ;

65 births mut = mpoiss (m∗brate mut ) ;

66 deaths mut = mpoiss (m∗dmut) ;

67

68 % Before treatment

69 e l s e

70 bra t e s en = bsen /(1 + Csen ∗( s+m) ) ;

71 b i r t h s s e n = mpoiss ( s ∗ bra t e s en ) ;

72 deaths sen = mpoiss ( s ∗dsen ) ;

73 mutations = mpoiss ( b i r t h s s e n ∗mu) ;

74 brate mut = bmut/(1 + Cmut∗( s+m) ) ;

75 births mut = mpoiss (m∗brate mut ) ;

76 deaths mut = mpoiss (m∗dmut) ;

77 end

78

79 % Populat ion s i z e s

80 s = s − deaths sen + b i r t h s s e n − mutations ;

81 m = m − deaths mut + births mut + mutations ;

82

83 S( t +1) = s ;

84 M( t +1) = m;

85

86 end

87

88

89

90 end
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91

92

93 % Hybrid Poisson random number generator

94

95 f unc t i on X = mpoiss (mean)

96

97 th r e sho ld = 1000 ; % Threshold value f o r s t o c h a s t i c or d e t e r m i n i s t i c

98

99 % S t o c h a s t i c

100 i f (mean < th r e sho ld )

101 X = po i s s rnd (mean) ; % Simulate a po i s son rv

102

103 % Dete rm in i s t i c

104 e l s e

105 X = mean ; % Use the mean ( expected number o f events )

106

107 end
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