
Topography and Behavior Based Movement Modeling for Missing

Hikers in Land-Wilderness Settings

J. Alanis1,a, M.M. Brown2,a, J. Kitchens3,a, J. Magaña4,a, C. Velastegui5,a, M. Thakura, L.

Arriola6,a, B. Espinozaa, A. Murilloa, M. Rodriguez-Messana, R. Koester7, and C.

Castillo-Garsow8,a

1San Joaquin Delta College, Stockton CA, United States

2Scripps College, Claremont CA, United States

3Warren Wilson College, Swannanoa NC, United States

4University of North Georgia, Dahlonega GA, United States

5Yachay Tech University, San Miguel de Urcuqúı Imbabura, Ecuador
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Abstract

Search and Rescue (SAR) operations are critical to the safety and well-being of individuals who visit

state and national parks. In a missing hiker case, time is crucial as survival rates decrease each hour. It

is estimated that approximately 4080 individuals become lost every year in the US. [21] The average cost

of a SAR operation is $1,375 per person, and the cost of each mission is increasing yearly. Most SAR
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operations are based on rings of probabilistic distances. There is a need to incorporate a mechanistic,

mathematical model that takes human behavior into consideration for determining SAR operations. Data

from resources such as the International Search and Rescue Incident Database are analyzed to identify

patterns in human behaviors and key geographic influences to develop a mechanistic model of missing

persons. We use a discrete-time Markov Decision Process, where the lost individual’s state is used to

determine a personal strategy for being found. The individual then interacts with the environment,

where a utility function for that strategy over the geographic environment determines direction of travel.

We take incident reports in various national parks as a case study to test our model. Implications are

discussed for SAR, hiker survival training, and other aspects. The proposed model may be extended

to the prediction of path-tracing of specific groups of people including experienced hikers or individuals

who suffer from mental illnesses.

Introduction

Background

Every year, it is approximated that 4080 individuals become lost in the U.S [21]. In Yosemite National

Park alone, 393 search incidents were reported from 2000 to 2010 [5]. There is a direct, negative correlation

between survival probability and the duration of the search. After the first 24 hours, the probability of

survival drops to 75 percent. By the third day, the probability of a hiker surviving decreases to 50 percent.

For lost children1, this probability is even lower, often below 25 percent [16]. Every hour lost reduces the

probability of being found [23].

Missing person cases are handled by various federal, state, and local authorities, which are grouped to-

gether under the general label of “Search and Rescue”, also known as SAR. Search missions are conducted

differently depending on the time, location, and condition of the lost individual. Most often, the search

begins by defining a probability of area (POA), which is a bullseye surrounding the hiker’s position last seen

(PLS). If the hiker is not found inside the POA, the search then extends to the rest of the world (ROW).

SAR leaders are responsible for deciding when a search mission needs to switch from the POA to the ROW.

This decision is often guided primarily by intuition2, and frequently either too much or too little time is

spent searching in POA versus ROW [11]. After determining the search area, SAR teams begin searching

1The lost children from the data are between the ages of 4-6 and 10-12 years [16].
2Hill describes this as subjective probability and explains the reasons why this is not a reliable method of decision-making

in detail [11]
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on foot. Commonly, teams will begin with interviewing those who last saw the person, determining if the

person’s estimated arrival time has passed, looking for traces of the missing individual, etc. [5].

Search missions, including relatively simple operations, are expensive to conduct. Moreover, some search

operations can require air support, which can cost upwards of $1600 per hour of operation [2]. The average

cost of a SAR operation is $1,375 per person [21]. In 2012, search missions cost local and federal governments

5.3 million dollars, and the cost continues to rise [21]. Additionally, a large amount of volunteer time and

risk is involved with nearly every rescue mission [9].

Lost Person Behavior

The path that a missing individual selects is heavily influenced by their mental state, making behavioral

analysis critical to the prediction of a missing person’s direction of travel [23]. The scope of our model is

limited to lost persons in a wilderness environment, so it is important to clearly understand the conditions

under which a person becomes lost. The state of being “lost” in a human context is formally defined by Hill

[10] as a condition in which an individual cannot determine their geospatial location and has no means to

orientate themselves relative to their surroundings. Jones-Christensen and Hammond add that “lostness”

is commonly understood as the disparity between where someone currently is and where they wish to be

[13]. Dudchenko describes two ways in which a person may become lost, namely misorientation and dis-

orientation. Misorientation happens when a person is placed in an entirely new environment or exposed to

new elements in a familiar environment. Weather phenomena, such as fog or rain, can block the visibility

of landmarks in the terrain, which are necessary for orientation. If recognizable landmarks cannot be seen,

the individual can become lost. Another form of misorientation occurs when the individual does not sense

slight changes in direction; they may believe they are following a straight route, when in reality they are

not. In misorientation, the individual maintains a spatial awareness of the landmarks beyond their field of

vision, however their direction is misperceived. Disorientation occurs wherever there is a disconnect between

direction and distance. This means that the location of an object is not well understood in the mind of

the traveler, and the person is unable to self-localize. In other words, disorientation is a breakdown in the

map itself; the individual loses both their sense of direction and spatial awareness of the landmarks beyond

their field of vision. This is different from misorientation, because the person cannot identify any landmarks

around them [7]. In disorientation, they are entirely lost.
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Jones-Christensen and Hammond [13] identify the psychology of being lost in 5 ordered stages, namely

Separation, Isolation, Deviation, Deprivation and Realization.

• Separation occurs when a person is physically and psychologically lost in their environment. The

missing person is physically lost because they do not know where they are. When a person becomes

psychologically separated, they feel locally lost, realizing that other people are not around. They feel

capable of saving themselves if need be, but still have hope in finding other people.

• Isolation occurs when the individual feels lost in a global sense. They lose hope in finding other people,

causing them to feel as though they have to save themselves.

• Deviation is when the person acts unrealistically, with an incomplete view of the situation. For example,

the lost individual may deny that they are lost in an attempt to rescue themselves.

• Deprivation happens when the person becomes very emotional, feeling hopeless or panicked. They feel

they have to save themselves because no one else cares.

• Realization occurs when the person gains acceptance and comes to terms with the situation, which can

result in either productive or counterproductive behavior [13]. In productive behavior, the individual

feels capable of being located. In counterproductive behavior, the individual loses hope.

In the fist two mental stages, the individual is actively trying to find their way, but in the last stage, they

are likely to wait for rescue. Therefore, the mental condition of a person determines their confidence 3 with

the landscape and, by extension, the strategies they are most likely to adopt.

There are different strategies an individual can adopt for the purpose of increasing their chances of be-

ing found, or reorienting themselves. Hill [10] defines 9 strategies, that are commonly observed, namely:

Random Traveling, Route Traveling, Direction Traveling, Route Sampling, Direction Sampling, View en-

hancing, Backtracking, Using Folk Wisdom and Staying Put. These strategies are described further under

the “Methods” section. Traveling cases are the most challenging for SAR teams. Understanding the mecha-

nisms that describe the movement patterns of lost persons, even outside of the highest-probability area, can

be effective in improving current SAR protocol.

3Confidence is defined as how likely the individual is to rescue themselves, or wait for rescue. The correlation between lost
person behavior and confidence is further defined in the subsection of “Methods” entitled, “Decision Tree”
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Effects of Topography

The location of a lost person impacts their decision making. For example, if the hiker is at the top of a

peak, both their vision and chance of rescue improves [22]. On the contrary, steep terrain can limit a hiker’s

field of vision, thereby affecting their decision-making process. Decisions are often driven by a desire to

increase the amount of available information. Studies show that a third of lost hikers travel uphill in hopes

of improving their field of view [16]; however, most individuals prefer to take a clear path rather than a steep

route [4, 5]. This preference for easier paths, coupled with a limited knowledge of their surroundings, limits

the number of destinations the person may consider. Hikers will attempt to avoid traveling across certain

terrains, including unlevel areas, sloping terrain, cliffs, and so forth. This is especially true if the hiker has

low energy.

Previous Models for SAR

While other models only look at the last known physical location to track a missing person, or only con-

sider behavior from a statistical point of view, our model takes both lost person behavior and geographical

characteristics into account. For example, Castle’s [3] model uses the steepness of terrain as a limiting

factor on the individual and a discrete-time Markov chain to create a probability map; however, this only

accounts for geography, and neglects human decision making entirely. As another example, Feo et al. [8]

and Johnson’s [12] independent models also only account for the difficulty of terrain. Their models use data

from digital elevation models (DEMs) to measure the difficulty of the surface, ranging from clear paths to

impassable rivers. While both models account for the average speed of the hiker, they provide no mechanism

for modeling the decision process. Some models attempt to be more accurate by using GIS data, coupled

with demographic data on human behavior, to assign general probabilities to areas on a map. This can be

seen in models independently proposed by Doherty et al. [4] Doke [5], and Sava [21] et al. , all of whom

use this information to delineate a probability of area (POA). While this is useful in certain aspects, it still

does not account for the way individuals make decisions. We axiomatically accept that individual behavior

will always deviate in some way from the population. Taking this as a modeling consideration affords us the

opportunity to provide a more accurate framework for a missing person’s travel patterns, since the missing

person is an individual, and not a population.

As previously stated, individual factors such as geographical elevation, energy, and mental state play a

fundamental role in the decision making process. Furthermore, since individuals do not act in a determinis-
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tic fashion, locations of tiles are treated as probabilities that change over time, which introduces an element

of stochasticity to our model. This is significantly different to current models, the majority of which are

statistical in nature and ill-suited at the individual scale. In short, our model improves upon prior ones by

using a mathematical decision-making framework, which considers the interaction between the individual

and the environment. This, in turn, provides both more focused information for SAR teams, removing many

presumptions and narrowing the scope to high-probability areas. Our model will help improve the search

for a missing person by better predicting where they are most likely to be.

Purpose of Study

How can the influence of terrain in combination with lost person behavior be modeled mechanistically to

predict a lost hiker’s movement in a land-wilderness context? To answer this question, we describe and

analyze a novel, mechanistic model using a Markov Decision Process (MDP), specifically a Decision Tree

Algorithm (DTA) coupled with a heuristic path finding algorithm, to predict the movements of a missing

hiker in a land-wilderness context. The DTA is constructed so as to mimic human decision making in a “lost”

cognitive state. The model then considers how the environment (elevation changes and notable landmarks)

influences the individual’s decision making process. By taking these geographic features into account, the

model outputs a probability distribution of the hiker’s location for each time step. The results are analyzed

and discussed for possible improvements and modifications to the model are considered for future work.

Methods

Overview

In order to model how the changing state of the individual drives decisions, we implement a Markov Decision

Process (MDP) using a Decision Tree Algorithm (DTA), and Dynamic Programming techniques. A visual

representation of the MDP is shown in Figure 1. The model tracks an individual’s general state over time by

maintaining four specific agent-states, namely location, energy, mental, and current strategy. The geographic

area is divided into tiles, and the missing hiker’s location is bound to one or more tiles. We define energy

as a state variable in terms of kilo-calories. As energy decreases, actions become limited, with the person

becoming incapacitated when energy equals 1. A quantity for mental state, denoted M, is also introduced

in the model, where mental state decreases at a pre-defined rate µ, which is defined as change in mental

state per time. Current strategy is defined as a method which the individual chooses to use in an attempt to
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reach their goal/destination. The mental, energy, location states, and current strategy are inputted into the

DTA, which then outputs a destination and strategy for the hiker at a given time-step. This information is

fed into the heuristic algorithm, which is driven by either a Bellman equation4 or a novel Elevation-Distance

Equation5. Most commonly, the Bellman equation is used to optimize the most energy-efficient path for a

given situation. We have modified this to return a ranked order of paths, with probabilities associated with

expected energy efficiency, explained in more detail later in this paper. In both equations, probabilities are

then determined for the next time-step t + 1 of each tile with non-zero probability at time t. In other words,

each of the neighboring tiles (relative to each tile with non-zero probability) is given a new probability of

being occupied in the next time-step. In this context, non-zero probability means there is a chance the hiker

is on the tile. Elevation data and other factors are maintained separately and are used to determine the

energy cost necessary to transition from one location state to another. In the Bellman equation, reward is

measured in terms of expected future energy cost, which drives the path ranking decision process shown in

Figure 1.

Markov Decision Process

For the Markov Decision Process, we begin with terrain generation, which generates a topographic map

based on the hiker’s place last seen (PLS). This determines the hiker’s location state, which dictates their

field of vision. This impacts the objects the hiker can view. This information is fed into the DTA along with

the mental state, which is based on the 5 stages of Lost Person Behavior. The energy and strategy states

are also fed into the DTA. At the initial time step, there is no strategy, but hereafter, a strategy is formed

and flows back into the strategy state. After each state is fed into the DTA, a destination is given, which

is then fed into the Heuristic Algorithm of either the Kitchens (Elevation-Distance) or Bellman equation.

Because the hiker moves another tile, the entire model is updated at every time step. The cost of moving

from tile to tile decreases an individual’s energy, but allows an individual to increase their reward6. This

forces a balance between energy intensive movements, where the hiker may take less time steps to reach the

goal than low energy movements.

4Named after Richard Bellman (1920-1984), who laid the foundation for Dynamic Programming in classical AI
5Affectionately called the “Kitchens” equation, after James Kitchens, who developed it based on our understanding of the

path finding process while the Bellman equation was being defined.
6Reward is defined as a closer distance to the destination/goal.
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Figure 1: Figure 1: Complete MDP Flow Chart. (1) At the beginning of each time step, the hiker has a
certain energy, mental, and location state. If t 6= 0, the hiker also has a current strategy. (2) The location
state is used to determine what landmarks are within view of the hiker, and the available potential destinations
are listed (3). These are all fed into the DTA (4), which outputs a strategy and destination (5). The strategy
state is updated and the destination is fed into the heuristic algorithm (6). This results in a selected “next
step”. Once the hiker moves to this new tile, the location and energy states are updated (7). The mental
state decreases at a constant rate after a fixed number of time steps.

Assumptions

In the context of our model, certain assumptions are made about the hiker. These may not be true in all

cases, but are meant to serve as a baseline for a typical lost hiker. In order to model the probability of finding

a lost hiker, we must first assume the hiker is lost in a land-wilderness environment. An exact PLS is not

needed, but we assume that the hiker became lost somewhere on the map upon which the model is applied7

7For example, if the model is applied to a map of a national park, and the hiker wanders outside the bounds of that map at
a certain point, clearly the model is no longer valid after that point.
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For the hiker to be entirely lost, we assume they do not have any navigational aids such as a compass, map,

or GPS. We suppose that the lost hiker may have some prior experience, but is not a trained survival expert.

We also preclude any mental illness that would affect their decision making, and we assume that the hiker

has a will to live. We presume the hiker is able-bodied; not suffering from any debilitating injury, as injuries

may effect the types of decisions they make. We also assume that the terrain, specifically elevation and the

presence of notable features, are the only geographic features that influence decision-making8. Additionally,

for the time being, we exclude changes in weather and day/night cycles from consideration in the context of

our model. We shall revisit this limitation in the “Discussion” section of the present manuscript. Finally,

we assume that a hiker is not a forager. That is to say, energy is always decreasing, and that the hiker’s

decisions are not influenced by the availability of food or water.

Simulation

Code is implemented using Python (Version 3.5). Below we describe various sections of the code which drive

the simulation of a lost person moving across a terrain. The source code is available in its entirety in the

appendix.

Terrain Generation

As previously stated, terrain generation creates a topographic map based on the hiker’s last known location.

As a hiker’s decisions are influenced by elevation, it is a key factor in determining the path of a missing

person. First, a high resolution terrain map is randomly generated using the OpenSimplex noise module

9. Then, a topographic map is created by generating the contour lines from the elevation data. Lastly,

a low resolution version of the map is created by pixelating the original, high resolution version. For the

low-resolution map, each pixel represents one tile. A visual representation of the topographic map can

be observed in 2. The majority of the simulation utilizes the low resolution map as opposed to the high

resolution map to increase the speed of analysis. Hereafter, it can be assumed that the phrase “terrain map”

refers to the low resolution map unless stated otherwise. The elevation changes between pixels are calculated

and used to identify landmarks, such as peaks and saddles. For a pixel to be identified as a peak, all other

pixels in its von Neumann neighborhood must have a negative elevation change 10. For a saddle, an opposite

pair of pixels in its von Neumann neighborhood must have the same sign, but opposite from the other pair.

8This kind of terrain is very common in northern Arizona/southern Utah. Capitol Reef National Park provides a ready
example

9Python Library to generate random numbers with smooth noise
10von Neumann neighborhood includes all pixels directly adjacent to a pixel in a single direction (up, down, left, and right
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For simplicity, it is assumed that the lost individual can locate the nearest peaks and saddles (landmarks)

that appear on the map. This information is then passed as input into the DTA, which determines the

hiker’s strategy.

Figure 2: Visual Representation of square-grid rasterization over a topographic map. Each tile is reduced to
one pixel during calculations. The purple diamond represents the position of the hiker and the blue arrows
refer to the possible movements. Credit (Topo. Map): (Lesniewski, 2018)

A high resolution map (700 pixels x 700 pixels) containing peaks and saddles (SEED: 44259 (Windows))

is used as a setup for all simulations. For the simulations themselves, a low resolution version of the map

(70 pixels x 70 pixels) is created from the high resolution map.

Decision Tree

We have generated a decision tree that combines the inputs of an individual’s mental state, energy, and

objects in view to determine the individual’s next strategy. We use the 5 stages of being lost (previously

stated in the background section) to define confidence. Confidence refers to the likelihood the hiker will

rescue themselves or wait for rescue. Using the 5 stages of lost person behavior, we divide confidence into 3

stages, consisting of high, medium, and low. During high confidence, the hiker has hope of realizing where

they are. This stage would refer to separation and isolation. Medium confidence is a bridge state, where

the hiker tends to move unpredictably. This state takes place during the deviation stage. Low confidence

represents the state when the hiker has lost their decision making ability and, overwhelmed by the situation,

tends to inaction. This occurs during deprivation and realization.

The energy of the individual is reduced to 3 categorical states: high, medium, and low. These energy
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states are used to limit the decisions available to the individuals as their energy decreases. For example,

a hiker who is low in energy should not attempt to seek higher elevation goals, as this would deplete their

energy entirely.

The path-finding algorithm outputs integers for the confidence category and energy state. These integers

are divided into high, medium, and low and inputted into the decision tree.

After the initial time step, the individual has a strategy which is updated in the current strategy state.

This is then fed into the DTA. Field of vision is defined as what the individual is able to see from their

current location. This includes any notable landmarks (peaks and saddles, specifically) that may be used as

directional goals by the hiker. Lastly, the decision tree considers the current strategy employed by the hiker

when deciding on the next strategy. We found 9 strategies in literature [10], stated as follows:

1. Random Traveling : The individual impulsively chooses a path, instead of choosing a direction or goal

to move towards.

2. Route Traveling : The person decides to follow a path, road, watershed, or other kind of guide.

3. Direction traveling : The lost person selects one direction and attempts to maintain that trajectory.

4. Route sampling : The person chooses an intersection on a clear path, for example, a forked trail, and

travels some distance before backtracking and trying the other intersections.

5. Direction sampling : This is very similar to route sampling, however, the person does not have access

to clear paths. To account for this, they choose a direction relative to a landmark and sample it.

6. View enhancing : The person searches for a position of height to view landmarks in the distance.

7. Backtracking : The person reverses their direction of travel, in an attempt to find something familiar.

8. Using Folk Wisdom: The person will apply strategies based on common knowledge they were previously

told, for example, “Following a river leads to civilization”. [16]

9. Staying Put : Mental state and energy level influence the decision to stay in place and wait for rescue

(either from SAR or family) [10]. Oftentimes, staying in place is more beneficial, as traveling causes

the hiker to lose energy and can complicate the search itself [10].

In our model, we simplify this list to four strategies: Directional Traveling, View Enhancing (Landmark),

Backtracking and Staying Put. Currently, rivers and paths are not included in the terrain maps. Because of
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this, strategies pertaining to the these features are not included. Other strategies have been enclosed within

these four selected strategies. Random Traveling and Using Folk Wisdom are included within Directional

Traveling. Directional traveling and backtracking are included in directional sampling, where the individual

samples a path and then goes back to their starting point. The process of decision making was based on

literature that discussed how lost hikers evaluate their surroundings and decide on a strategy [17]. Figure

3 shows the decision tree, the flowchart of the algorithm on deciding the next strategy. The potential

combinations of inputs and their output strategies can be found in Appendix [A.1]. The decision tree

includes a table with all possible outcomes based in conditionals of mental, energy, location, and current

strategy states. The conditional, confidence depends on the hiker’s mental state. We denote the quantitative

value of “confidence” as M , which ranges from zero to one hundred. For example, if M is high (above 66)

the hikers can decide to orientate themselves, so that they will continue traveling. Another condition is

energy, which ranges from 0 to 3000 Cal. Low energy limits the possibility of the hiker traveling to a high

point. The condition of field of vision allows the hiker to travel forward, backward, and stay put The last

condition is the current strategy which determines if the hiker will change strategies. The output of all these

conditions are the 5 strategies previously defined.
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Mental State (Confidence)

High LowMedium

Energy

None
Land
Mark

High LowMedium

High LowMedium

Objects in View

Current Strategies

Direction
Nav.

Back
Track

Landmark
Nav.

Stay
Put

Next Strategies

Decision Tree Algorithm Flowchart

Figure 3: Decision Tree Diagram: The DTA is used to determine the destination, based on a selected strategy.
Influencing factors are: Confidence (mental state), Energy state, Objects in View, and Current Strategy. The
DTA uses these conditions to determine the next strategy at each time step. If confidence, energy, and objects
in view remain the same, then the list of strategies also remains the same.

Goal Selection

Once a strategy is selected in the DTA, all of the potential goals that correspond to that strategy are

evaluated. For example, an individual employing the landmark strategy will identify the closest peak or

saddle as their goal destination. Unique to the landmark strategy is that if the individual has a high

or medium level of confidence, they will continue to move after arriving at a selected landmark. This

is implemented in the program by removing the landmark as a potential goal after fifty percent of the

probability cloud reaches the landmark, forcing the hiker to select the next closest strategy. In terms of

the hiker’s psychology, this represents different behavior of a hiker who stays in place and a hiker who

chooses to keep moving. During backtracking, the hiker will attempt to walk to the location where their last

strategy changed. When utilizing the Stay Put strategy, the individual does not move. Lastly, in employing

directional traveling, the hiker selects a direction to walk (with goal set at the horizon line). Determining
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the goal for hikers using directional traveling is difficult, as we do not know which direction the hiker may

select. Unlike other strategies, which attempt to move towards a location or goal, the goal of directional

traveling is to move away from the start location.

Heuristic Path Finding Algorithm #1: Elevation-Distance Equation

Path finding is performed using a forward, heuristic algorithm that mimics the decision making process of

a lost individual with minimum view and knowledge of their environment. In the present framework, two

factors affect the individual’s path to their goal destination: elevation change and distance to their goal.

Distance to the hiker’s goal was measured using Manhattan distance11. It is assumed that a lost individ-

ual will prefer to take the path with smallest elevation change over the shortest distance. Varying energy

required to traverse different terrain is taken into account. These two factors are combined to describe the

probability of moving from one pixel to another (Figure 4).

The Elevation-Distance (Kitchens) equation is a heuristic path finding algorithm that takes into consid-

eration the changes in elevation and the distance to the goal. For each transition (adjacent tile with respect

to one neighbour) we define:

g = e
−|∆h|
ke (1)

where ke is a scalar value that describes the influence elevation on the hiker’s decision-making. Then we

normalize each elevation weight.

f(g) =
g∑
g

(2)

We do the same here, but with Manhattan distances to the goal. So for each transition we have

q = e
−|D|
kd (3)

where kd is a scalar that describes the influence of the new pixels distance to the goal on the hiker’s decision-

making. Normalization is given as follows:

f(q) =
q∑5
i=1 qi

(4)

11The Manhattan distance is a metric of distance that assumes that an agent navigating a square grid can only move in four
directions: forward, backward, left, or right. The name is derived from grid-block structure of New York City

14



Where each i represents one of the four possible directions, plus the option of staying put. With the changes

are in normalized elevation weights and normalized distance weights, we define the following expression:

c = f(g) ∗ f(q) (5)

f(c) =
c∑
c

(6)

where f(c) is the probability that a hiker moves to the tile in question. This information is saved in a matrix

that, which contains the probability of the hiker inhabiting each tile at each time step, which yields the

probability cloud.

Heuristic Path Finding Algorithm #2: Bellman Equation

Path selection is the result of a decision-process driven by a heuristic algorithm of some description. The

alternate method used in this paper is the Bellman Equation for a finite time-horizon problem [1]. Normally,

dynamic programming is applied in the context of path optimization. However, we apply the bellman

equation here in a different way. Specifically, we use the equation as a means to rank the probability of a

hiker transitioning to a specific tile i based on the energy cost of each route. This idea was inspired by the

forager model presented by Mangel and Clark [20]. Table 1 contains the definitions of the terms used in this

section. The expected energy cost of the hiker at time t who takes path i when they are at an energy state

Symbol Definition Units
φt The energy state of the agent at time t. Cal
J Basic energy requirement per tile, with no change in elevation. Cal

τl
ξ Index of fatigue. Mathematically, a function of state and time. No Units

∆h Change in elevation. τl
b Weighted energy cost for inclines versus declines. No Units

z(∆h) Distance conversion to account for elevation. Cal
τj,k Tile located at coordinate (j, k) No Units
τl Tile length. Mi
di Distance to destination from tile i without elevation change. τl
C Energy cost to move in the direction of i Cal
C ′ Energy cost of existing, even when standing still. Cal
Dt Selected destination at time t. (x, y)

Lφ,0 Initial location of agent in state φ. (x, y)
φF (φ, di,0,Dt) Maximum remaining energy after travel from di,0 to Dt. Cal

Table 1: Index of variables and parameters for the Bellman Equation
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φ is quantified as E(φ, i), given as follows:

E(φ, i) = φ− (Jdi + ξCi + C ′) (7)

Where Jdi represents the total expected future cost of the journey from i without regard to elevation, ξ

represents an index of fatigue, and C ′ represents the energy cost to exist. The term Ci represents the energy

cost to move from one tile to another, dependent on elevation and distance, and is given by:

Ci = z(∆h) (8)

The index of fatigue ξ in general, is a function of energy state and time, but is here left as a constant, i.e.:

ξ(t, φ) = 1 (9)

The cost due to elevation, z(∆h), is a function of the change in elevation that has units of kilo-calories. We

define the function as follows:

z(∆h) =


J + 0.3845(mg)(τl)(∆h); ∆h > 0

J − 0.3845(mgb)(τl)(∆h); ∆h ≤ 0

(10)

Where m is mass (in kilograms), g is the gravity constant (in meters per seconds squared), τl is the tile

length, and J is the energy per tile ratio. The constant 0.3845 is a ratio of kilo-calories per newton-mile. ∆h

is measured in tile lengths. The parameter b is the “downhill discount”, which represents a lost individuals

willingness to speed up when traveling downhill.

Define φF (φ,Lφ,0,D) as the maximum amount of energy remaining after reaching the destination Dt,

starting at dLφ,0 . Define the standard Bellman Equation for the Missing Person Model, as follows:

φF (φ,Lφ,0,D) = max
i
{φF (φi, dφi,0,D)} (11)

Normally, the Bellman Equation is used to find the optimal strategy [1]. In our case, however, we use the

equations to determine the energy remaining for each possible path taken. This information is then used to

assign a probability that the individual any one path, i. Stated differently, the expected energy remaining
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is the set of each remaining energy quantities for each possible path i. We express this mathematically as

follows:

φF (φ,Lφ,0,D) = {φF,i(φi, dφi,0,D); }i∈{1,...,4} (12)

Since our metric (Manhattan Distance) limits us to 4 different directions, we restrict i so that i ∈ {1, 2, 3, 4}.

Using the coupled DTA and Bellman decision-making processes, we can generate a “probability cloud” based

on the individual probabilities of agent-occupancy for each tile. We now define the term fomally, as follows:

Let X be the set of all tiles that make up the terrain map, and let τ denote an arbitrary tile. Then, ∀τ ∈ X

and ∀t ∈ (t0, T ), there is a probability Pt(τ) of the hiker occupying that tile at time t. The probability

cloud is defined as follows: Let Pt(τj,k) be the probability of a hiker occupying tile (j, k) at time t. Then the

probability cloud Pt(X) at time t is defined as the set of all tiles and their associated probabilities, such

that Pt(τj,k) > 0. Expressed mathematically:

Pt(X) = {(τj,k, Pt(τj,k))}(j,k)∈I×I ;Pt(τj,k) > 0 (13)

Graphics

The simulation produces a time series of probability clouds images that are then combined with the topo-

graphic map to produce an animation of possible lost individual’s location at each time. Example images

can be found in Figure 4 and Figure 5. One observation is that, at any given time t > 0, there are five

possible tiles for the hiker to go. The Bellman equation or Kitchens equation governs movement at every

time step in accordance with the current strategy. Furthermore, specific probabilities for each time step can

be inferred from this equation. We relate a more optimal (that is, lower expected cost) path with a higher

probability, and rank the possible paths in this way.

Analysis

Parameter Estimates

Parameter estimates were made based off of the available literature from various sources. The cost of living

C ′ and unit energy per tile J were calculated using established formulas from the health sciences [14, 15].
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Specifically, we used the following formula to determine the energy cost of living, as follows:

C ′ =
B

24
∗ 0.85 (14)

Furthermore, the formula for determining the basic energy cost per tile is as follows:

J =
Bqt

24
(15)

Both of these equations contain a parameter called the Basic Metabolic Rate (BMR), denoted here as B,

which depends on the individual’s weight, height, age, and sex. To calculate BMR, we took the average

of a male hiker and a female hiker. We assumed the male hiker to be 35 years old, 6 feet tall, and 150

pounds without load. The female hiker was assumed to be the same age, 140 pounds without load, and 5

feet, 4 inches tall. Their independent BMR was calculated to be 1680.29 and 1433.2 respectively. Using the

formula, the average cost of living between the male and female archetypes was calculated to be 55.1347

Cal. per hour, which was rounded down to 55 Cal. per hour for convenience. Another parameter required

to calculate J was the Metabolic Equivalents (MET’s), denoted here as q. This depends on time and the

amount of work done. For a hiker moving at a rate of 2 miles an hour, the MET was calculated to be 1.625

Cal, which was used for both sexes [23]. Finally, we set t = 0.1 hours, to match our time-step. From this

calculation, we derived the approximate basic rate J = 11.5 kcals.

Parameter Description Point estimate

J Basic Energy Transfer Rate Per Tile 11.50 C
τi

τl Tile length 0.200 mi
t Length of time-step 0.100 hr
ξ Fatigue Index 1.000
m Mass 80.00 kg
g Gravity Acceleration 9.810 m

s2

b Downhill Discount 0.950
C ′ Energy Cost of Living 55.00 Cal
µ Confidence Rate of Change -0.340 M

t
ke Scaling constant (Kitchens Eqn.) 100.0
kd Scaling constant (Kitchens Eqn.) 1.000

Boundary Condition Description Initial Value
φ0 Energy 3000 Cal
L0 Location x ∈ [0, 1000], y ∈ [0, 1000]
M Mental state 100.0

Table 2: Table of Parameter Estimates and Initial Conditions
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Numerical Analysis

In this section, we performed a scenario analysis which consists of varying conditions that might occur in a

real-world situation based on reported case studies and available data [16, 18]. We also compared the two

heuristic path finding algorithms. Ultimately, we identify certain areas as bottlenecks where a lost hiker is

likely to be.

Output of Algorithm

The model is designed to output a probability cloud for each time step by utilizing either the Kitchens Equa-

tion the Bellman Equation. As time approaches the finite horizon T , which has been set to 100 time steps,

the behavior of the probability depends on the location of landmarks, and the strategy chosen. If a landmark

exists within the map, and the strategy selected accommodates landmark navigation, the probability cloud

will converge around the landmark as time increases, until the occupancy threshold is met (if confidence

category is high or medium). Figure 4 offers an example of how the probability cloud may be superimposed

on a terrain map, and how the availability of landmarks results in convergence around a known point. Fig-

ure 5 shows a simulation in which you can see the probability cloud split between two different possible paths.

Moreover, we calculated the probabilities of occupying each tile, and noted the tiles with relatively high

probabilities. We used this information to identify “bottlenecks” on the map. These tiles will the greatest

likelihood of a wandering hiker passing through at time some time t. All of this information may have

relevance to SAR operations, including prioritizing these regions of search as well as setting up barricades

to prevent the hiker’s travel through these regions.
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Probability Cloud Time Series

t = 0 t = 1 t = 3 t = 6

t = 9 t = 12 t =16 t = 19

Figure 4: Probability cloud of an individual reaching their destination point in time t using the Kitchens
equation model. The two yellow squares represent possible goals of a peak and a saddle. The purple square at
t = 0 represents where the hiker was last seen. As time progresses, the number of purple squares increase, as
there are many possible locations for the hiker to be. More opaque squares demonstrate a higher probability
that the hiker is located there, whereas more transparent squares represent a lower probability of the hiker
being located there. As time increases, the highest probability path becomes clearer. There is a chance that
the hiker will begin heading toward one goal (as seen at t = 6 and t = 9), but then heads to the closer goal,
(as seen at the start of t = 12).
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Split Probability Cloud Time Series

t = 0 t = 1 t = 3 t = 6

t = 9 t = 12 t =16 t = 19

Figure 5: Probability cloud splits destination point at time t = 3 under the Kitchens equation model. The
three yellow squares represent possible goals, i.e. a peak or a saddle. The purple square at t = 0 represents
the probability cloud of the hiker. A darker shade of purple corresponds to a higher probable location of the
hiker. As time progresses, the number of purple squares split into two probabilistic paths for two different
goals. This is because the hiker is equidistant to both goals.

Scenario Analysis

We test our model using three trial simulation. These cases have been selected because the human response

to the initial conditions and geographic context is well understood. This provides us a way to validate our

model.

1. An individual who is unfamiliar (low confidence) with their surroundings and low in energy becomes

lost in a valley between mountain peaks. We expect that this individual will remain at their current

position waiting for rescue.

2. A physically fit and highly confident individual becomes lost. We expect that the individual will move
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from landmark to landmark until they either run out of energy or exhaust all available landmarks.

3. An individual with high energy and confidence in an environment with low visibility (no landmarks),

will most likely use the strategy ”directional traveling”. We expect the probability cloud to generally

expand in all directions, slightly favoring constant elevation.

We discuss these in the results section of this paper.

Parameter Variation

The following parameters and initial conditions were given special attention, as these were expected to have

the strongest impact on the resulting probability cloud. For example, the initial location directly impacts the

destination that the DTA will select, and thus our model could have vastly different outcomes depending on

the initial location. Likewise, the degree of roughness of the terrain will change the amount of energy needed

to move between tiles, and is thus also expected to change the outcome of our simulation (see Scenario 3 in

Results section). It is important to understand the effects that these parameters and initial conditions have

on the overall output of the model in order to analyze the influence of initial position on the resulting path

that the hiker takes.

There are many other factors including initial energy, initial confidence, and terrain roughness which may

also have a large influence on the paths produce. Due to time constraints, these parameters were not tested

in this study. Brief insight into how these parameters might affect the paths can be seen in the scenario

analysis, though more formal testing is needed. Excluded from this list are the cost of movement, and energy

cost per tile. Neither of these are parameters, because they are based on physical values, and do not change

once the map scale is set. Since energy cost per tile is not included, the fatigue index can also be excluded.

Even though changes to the fatigue index, ξ would indicate a higher or lower energy cost per tile, (since it

is a factor of energy cost), ξ is left as a constant, so it is also omitted.

The energy state φ can range between 0 and 3000 Cal. For the purpose of our model, once a lost hiker’s

energy amount reaches zero they are unable to move. Higher energy correlates to a greater potential travel

distance, and a lower energy correlates to a more limited range of travel. Elevation ∆h is a simple linear

distance that must be non-negative. all else being equal. Both outcomes are discussed in detail under the

results section.
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Comparing Heuristics

In this section, we simulate model with Kitchens and Bellman equations independently, in which both

simulations start from the same initial value ans use the same map. Kitchens equation is based in altitude and

distance that change the probability cloud while the hiker is walking. Bellman equation takes in consideration

other parameters that affect the energy and try to select the best path based in less cost for the individual.

Bottleneck Analysis

We performed a bottleneck analysis, overlaying many possible paths, to generate the most likely locations

that an individual may be at a given time step. After running the simulation for many initial states other,

we identified the bottlenecks, or regions that many paths share. These regions represent areas that may be

of particular importance to SAR operations, as they may provide locations for more efficient search.

Results

Scenario-Specific Simulation

We described three test-cases in the analysis section of our present work. These scenarios were chosen as

they represent an isolated time period in a larger lost person case. This allowed us to predict the hikers

movements to confirm that the model was acting in the expected way. The results of those are laid out in

detail below.

First Scenario

A simulation was conducted for the scenario in which an individual who has low confidence (as a result of

unfamiliarity with their surroundings) and low energy. Figure 6 summarize the model output with confidence

at 30 units (confidence category: low) and energy at 900 Cals (energy category: low). As expected, the

individual did not move, and the resulting probability cloud was focused around the initial position for

the entire time horizon. Though a predictably uninteresting scenario, this shows that as an hiker’s energy

decreases, the number of possible strategies that can be utilized by the hiker also decreases. Eventually, the

only available strategy is to stay in place, as shown in the figures below.
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t = 0 t = 10 t = 30 t = 60

Figure 6: An individual with low energy and low confidence will adopt Stay Put strategy. Their probability
cloud remain constant in the same position

Second Scenario

A simulation scenario was conducted for a person with high energy and high confidence from an arbitrary

location. Figure 7 summarizes the model output with confidence at 100 and energy at 3000 Cals. The

individual is moving from landmark to landmark in the different time steps.

t = 0 t = 12 t = 39 t = 60

Figure 7: An individual with high energy and high confidence will go from landmark to landmark

Third Scenario

A simulation was conducted for the scenario in which a hiker has high energy, high confidence, and no

variation in terrain. As a result, there are also no landmarks. Figure 8 summarize the model output with

confidence at 1000 and energy at 3000 Cals. Being that the terrain bears no influence on the individual,

there was no destination for the DTA to select. Since the hiker is in a high-energy and high-confidence state,

they adopted directional traveling, and the probability cloud spreads out in all directions evenly, as a result.

We noticed also that the direction of the cloud tended to favor the diagonal axis. This is a result of using the

Manhattan distance. Individuals that adopt the directional traveling are trying to maximize their distance
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from the current location, and a slight advantage is afforded to diagonal travel, compared to linear travel.

This should be corrected in future iterations.

t = 0 t = 9

Figure 8: An individual with high energy and high confidence will adopt directional travel when there are
no visible landmarks

Comparing Heuristic Algorithms

We ran the same simulation with the same initial values and terrain map, changing only the heuristic applied.

The results are summarized below. Figure 9 show a side-by-side comparison of a single path. The single hiker

path shows how the algorithms begin to diverge after the hikers reach their initial destination. The Bellman

equation simulation reached its destination several time steps faster than the Kitchens equation simulation.

This is most likely due to the Bellman equation punishing inactivity more severely, forcing movement of the

hiker. Figures 11 and 12 shows the Kitchens and Bellman path overlays for comparison.

25



(a) Kitchens

t = 0 t = 10 t = 30 t = 60 t = 99

(b) Bellman

t = 0 t = 10 t = 30 t = 60 t = 99

Figure 9: Comparison Heuristic Algorithms in different times with the same initial position

Hiker Movement From Unknown Initial Location

In many SAR operations, the exact location where an individual becomes lost. Many simulations were run

across the map row-by-row. Each simulation in the “sweep” was given an identical set of initial conditions,

with the exception of the start location. To determine the location of any high-probability paths or tiles

common across different starting locations, we overlaid the outputs of these simulations generating a single

map of all the paths, with darker pixels representing areas with the most number of path crossovers. These

crossovers, or bottlenecks, may be regions of high importance to SAR personnel, as they represent places

of travel that are consistent across many different starting locations, and so can be search more effectively

than searching each path individually. At these locations, personnel may look for clues of recent disturbance

and/or set up watch to prevent further movement through this region (similarly to methods use to block

movement at bridges).

To reduce artificial effects that occur around the edges of the map, we selected start positions within a

35 pixel x 35 pixel region surrounding the center of the map, with buffer of at least 17 pixels on either side.

Start locations were separated by five pixels along both axes. Figure 10 provides a visualization of the initial

setup.
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Figure 10: Start locations of simulated hikers. Purple pixels represent the hikers at time step 0. Gold pixels
represent landmarks (peaks and saddles). Contour lines occur every 100ft.

The simulations progressed over 100 time steps. We recorded the distribution of hiker location prob-

ability clouds for each time step. The opacity of each pixel corresponds to the probability of hiker being

located at that pixel at that time. Darker pixels correspond with higher sums of probabilities. All hikers

exhibit view-enhancing behavior (landmark), increasing elevation while seeking both peaks and/or saddles.

Though hikers all start with the the same energy levels, simulated hikers whose path takes them over more

energy intensive land will lose energy faster than their counterparts. This can lead to selected strategies dif-

fering between simulated hikers. After the simulation completed, we overlaid all of the simulated movements.

We found that under the Kitchens Equation hikers were more willing to spend energy than under the

Bellman. Further analysis showed that the energy difference resulted in a change in strategies chosen after a

certain time. The end result was that, under the Kitchens equation, hikers tended to move from landmark to

landmark, eventually congregating around one of the peaks or saddle points. In contrast, under the Bellman

equation, hikers tended to the nearest landmark in a similar fashion to the Kitchens heuristic, but thereafter

switched to directional traveling and spread out in all directions.
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Figure 11: Overlay with Kitchens Algorithm: Pur-
ple pixels represent the location probability cloud of
the hiker. Contour lines occur every 100ft.

Figure 12: Overlay with Bellman Algorithm: Hiker’s
movements. Purple pixels represent the location
probability cloud of the hiker. Contour lines occur
every 100ft.

From Figures 11 and 12, we can see that simulated paths did not cover the terrain evenly. Areas with

the greatest number of crossovers represent bottleneck locations where SAR individuals should be sent to

look for any signs of recent disturbance and block future lost hiker travel. Bottlenecks are areas with a

high probability of finding the hiker. Areas surrounding landmarks, such as peaks and saddles received

the greatest number of path crossovers. As these landmarks are topographically unique locations, it is

unsurprising that many individuals congregated in these regions. Without knowing the start position of the

lost hiker, there are also regions of the map that can be ruled out as potential search locations based on

having little to no probability of hiker presence at any time step throughout the simulation. These regions

correspond with low elevation areas that are not located between landmarks of interest.

Discussion

In order to predict the movement of a missing hiker as determined by human behavior and the geography

in the wilderness, we have analyzed our model, considered several test cases, validated our test results,

compared heuristic algorithms, and tested various initial conditions to determine the viability of our model.

Herein, we discuss the results, outline the limitations of our framework, and discuss future improvements.

Doherty, et al. described the need for behavioral analysis to be included in future missing persons models [4].
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This was achieved herein through the inclusion of a DTA that mimics human decision-making. We found

our test scenarios along with the bellman’s matched our expectations within reason. Figure 6 demonstrate a

hiker with low confidence and low energy will stay put. Figure 7 showcases clear landmark navigation for a

hiker with high energy and high confidence. Comparable models analyzed in [6] demonstrated that between

three dissimilar models, all four identified peaks and high-points as high-probability areas for locating a

missing hiker. This closely matches our results. Finally, Figure 8 display directional traveling for a high

energy/high confidence hiker with no landmarks in sight. This confirms the basic functionality of our model

matches documented behavioral patterns for well understood scenarios, which implies that our model can

be applied to learn more about how movement patterns change in less obvious scenarios.

The travel patterns are elucidated in Figures 11 and 12. While the complete set of paths covers a wide

area of the map, peaks and saddle points did indeed attract the most traffic. We expected little variability

between starting locations, which was confirmed by the simulation. This information provides the highest

probability locations of where a hiker may be at a given time. After comparing heuristic algorithms, we

found that both the Bellman and the Kitchens path finding equations took similar paths early on, and began

to diverge after reaching the first destination. As noted previously, under the Kitchen’s equation, hikers

maintain their landmark-navigation strategy, which results in the probability clouds centering around one

of the peaks. For a certain class of hiker, this is not an unreasonable outcome, and can be rather favorable

for SAR teams. The Kitchens equation does not conserve energy to the degree that the Bellman equation

does, which might represent how a young hiker with a lot of energy and physical conditioning might wander.

On the other hand, the Bellman equation predicted a much worse scenario for the missing individual, in

which, after reaching the first peak, the hiker adopted a directional traveling strategy, and the probability

cloud spread out to the edges of the map. The Bellman equation is likely the more realistic process of the two.

From this comparison, we conclude that SAR teams have the best chance of finding the missing hiker if

they intercept them before they reach their first destination or before they travel to their first view loca-

tion, when the probability cloud is most densely centered. After that point, the probability cloud is evenly

distributed over a large part of the map, and the POA begins to mirror the bullseye shapes that are well

represented in literature. The results from [12] corroborated our results, in that less mobile hikers were more

accurately described by both models, and that both worked best within a short time horizon. However, we

found additionally that this divergence occurs after the hiker reaches a first destination. At that point, they
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continue along a linear path away from the original destination, which suggests a possible search trajectory

can be predicted if additional information about the hiker’s previous locations can be obtained.

Limitations of the Model

We take the opportunity here to outline the limitations and future work of the study. Many of these

limitations are the result of time constraints, and offer opportunities for improvement in the future. The

following are limitations with regard to terrain factors:

• Currently, the terrain generation does not account for bodies of water, such as lakes, rivers, or streams.

In reality, this plays an important role in both path finding and decision making for the individual.

Castle and Sava, et al. both illuminated the need for additional geographic features to be taken into

consideration, most notably water features [3,21]. Many individuals are found at or near water sources

[16].

• As it stands, we are only considering “ideal wilderness,” such as national wilderness reserves. In the

future, the terrain generation should also include paths/trails that are likely to occur in national parks

and hunting land.

• As of now, the only geographic information stored with each tile is elevation. In reality, other factors

play an important role, such as forest density, canopy cover, and directional markings (including signs

or blazes12). Future iterations should encode this information within the tile to be considered by the

decision-making process.

• We assume that weather is constant throughout out model. Clearly, this is not the case in many SAR

missions. Eventually, the model should be able to factor in dynamic environmental factors, such as

weather or natural disasters.

• Our model does not take land cover or restricted vision into consideration, which is known to effect

navigation skills.

Regarding the individual, we list the following limitations and future work:

• During the simulation, energy decreases relative to the sum of the movement cost and the living cost.

Living costs are consistent across all regions of the map. Future studies may attempt to quantify how

exposure to weather may effect energy costs for being at various locations.

12A strike of paint on trees that detail trails in national parks.
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• Two improvements can be made to the movement costs of the simulated hikers decisions: 1) Movement

speeds are constant, irrespective of terrain and 2) Movement costs are currently based solely on the

work put in to change elevation. Land cover has been shown to have an effect on movement speeds

and energy required to travel through a region [4].

• Lost individuals may prefer sheltered terrain, such as valleys, rather than peaks and high elevation

areas to avoid deadly exposure [24]. Currently, our model does not consider this preference. Going

forward, each tile should have an attribute that describes land coverage, and the DTA should seek to

minimize exposure. Alternatively, the heuristic path finding algorithm could be weighted in favor of

land cover.

• Our current model assumes a typical hiker. Future iterations should divide hikers into classes with

different attributes and initial conditions, and analysis on the different classes should be conducted.

Finally, a we list possible avenues of future investigation, as follows:

• Compare model output to existing GIS maps and missing persons data [19].

• Consider different heuristic algorithms that more accurately reflect lost human behavior.

• Analyze our framework as applied to other contexts, such as in urban environments, or after natural

disasters.

Conclusions

Our research evaluates the influence of terrain in combination with lost person behavior. This is used to

create a mechanistic model that predicts a lost hiker’s movement in a land-wilderness context. Our model

is unique from others because it incorporates both geographic information and behavioral analysis. We

constructed a finite time horizon Markov Decision Process with two decision algorithms, one for selecting

a destination on the map, and the other for selecting a path to that destination. The framework was de-

signed so that different decision engines could be interchanged. Thereafter, two different heuristics were

constructed, and simulations were run with both algorithms.

We found that the hikers require more time as compared with the Bellman equation to reach the goal

when the initial energy is high. The heuristic chosen did change the outcome of the model significantly,

because the disparity between energy states causes a shift in strategy. We found that conservative heuristics
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such as the Bellman equation resulted in a wider probability cloud than the less energy efficient Kitchens

algorithm. We found that after reaching an initial destination, usually a nearby peak or saddle, the proba-

bility cloud begins to increase drastically in area. However, there was some artifacting inherent to our model

as a result of using the von Neumman neighborhood and Manhattan distance metric. If additional signs that

the hiker can be found in a particular direction are available, it may be possible to predict their trajectory

based off of their initial location and first destination.

We encourage interested researchers to investigate better heuristics that can be incorporated to the present

framework, compatibility with additional terrain features, most importantly bodies of water and existing

trails, as well as adding terrain factors that inhibit the field of vision of the hiker into the model.

As GIS and computation methods become more available to SAR teams, further research into the inter-

actions between human behavior and the environmental context will be crucial to improving SAR operations

as a whole. We suggest a deeper investigation into applications of Artificial Intelligence as it can be applied

to predicting missing persons behavior, as a way to improve SAR protocols, and save the lives of future

hikers.
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A Appendix

A.1 Table of Decision Tree

Confidence Energy Landmark Current  strategy Next strategy
High High NA NA Directional
High High NA Directional Directional
High High Landmark Directional Directional
High High Landmark Landmark Landmark
High High Landmark NA Directional
High Medium NA NA Directional
High Medium NA Directional Directional
High Medium Landmark Directional Directional
High Medium Landmark Landmark Landmark
High Medium Landmark NA Directional
High Low NA NA Directional
High Low NA Directional Directional
High Low Landmark NA Directional
High Low Both NA Landmark
Medium High NA NA Backtracking
Medium High NA Backtracking Backtracking
Medium High NA Directional Directional
Medium High Landmark Directional Landmark
Medium High Landmark Landmark Landmark
Medium High Landmark NA Landmark
Medium Medium NA Backtracking Backtracking
Medium Medium NA Directional Directional
Medium Medium NA Stay Stay
Medium Medium NA NA Backtracking
Medium Medium Landmark Backtracking Backtracking
Medium Medium Landmark Directional Directional
Medium Medium Landmark Landmark Landmark
Medium Medium Landmark NA Landmark
Medium Low NA Stay Stay
Medium Low NA Directional Directional
Medium Low NA Backtracking Backtracking
Medium Low NA NA Stay

Figure 13: Decision tree table with the possible combination of states and outputs that a hiker could
experience.[Part 1]
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Medium Low Landmark Directional Directional
Medium Low Landmark Backtracking Backtracking
Medium Low Landmark Landmark Backtracking
Medium Low Landmark NA Backtracking
Low High NA Backtracking Backtracking
Low High NA Stay Backtracking
Low High NA Directional Backtracking
Low High NA NA Backtracking
Low High Landmark Backtracking Landmark
Low High Landmark Directional Landmark
Low High Landmark Landmark Landmark
Low High Landmark NA Landmark
Low Medium NA Backtracking Backtracking
Low Medium NA Directional Directional
Low Medium NA Stay Backtracking
Low Medium NA NA Backtracking
Low Medium Landmark Backtracking Landmark
Low Medium Landmark Directional Landmark
Low Medium Landmark Landmark Landmark
Low Medium Landmark NA Landmark
Low Low NA Backtracking Stay
Low Low NA Directional Stay
Low Low NA Stay Stay
Low Low NA NA Stay
Low Low Landmark Backtracking Backtracking
Low Low Landmark Directional Directional
Low Low Landmark Landmark Backtracking
Low Low Landmark NA Stay

Figure 14: Continuation of Decision tree table with the possible combination of states and outputs that a
hiker could experience [Part 2]

A.2 Python Code

import opensimplex , random

from PIL import Image

import math

from datet ime import datet ime

import imageio

from co l ou r import Color

import pandas as pd
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import os , s h u t i l

def rescaleValuesToNewRange (n , s ta r t1 , stop1 , s ta r t2 , stop2 ) :

# This l i n e d e f i n e s a f u n c t i o n ”p5map” ( r e p l i c a t i n g the map f u n c t i o n from p5 . j s )

return ( ( n−s t a r t 1 )/ ( stop1−s t a r t 1 ) )∗ ( stop2−s t a r t 2 )+ s t a r t 2

# v a l u e s t h a t range from va lue x1−>x2 now range from x3−>x4

def printMapToPNG(map, colorRange , valueRange , path , s i z e S c a l e =1):

# This f u n c t i o n d i s p l a y s the a Matrix Object as a . png

i f colorRange [ 0 ] == ” c l e a r ” :

# Creates a transparency g r a d i e n t from c l e a r to c o l o r

c o l o r s = [ Color ( colorRange [ 1 ] ) for i in range ( 2 5 6 ) ]

alpha = [ i ∗10 for i in range ( 2 5 6 ) ]

e l i f colorRange [ 1 ] == ” c l e a r ” :

# Creates a transparency g r a d i e n t from c o l o r to c l e a r

c o l o r s = [ Color ( colorRange [ 0 ] ) for i in range ( 2 5 6 ) ]

alpha = [ i ∗10 for i in range ( 2 5 6 ) ]

else :

s t a r t C o l o r = Color ( colorRange [ 0 ] )

endColor = Color ( colorRange [ 1 ] )

c o l o r s = l i s t ( s t a r t C o l o r . range to ( endColor , 2 5 6 ) )

# Creates a c o l o r g r a d i e n t between two c o l o r s

alpha = [255 for i in range ( 2 5 6 ) ]

s i z e = len (map)

out = Image . new(mode= 'RGBA ' , s i z e =( s i z e ∗ s i z e S c a l e , s i z e ∗ s i z e S c a l e ) )

# Opens a new image ( us ing PIL module )

for row in range ( s i z e ) :

for column in range ( s i z e ) :

for rowBuffer in range ( s i z e S c a l e ) :

for columnBuffer in range ( s i z e S c a l e ) :

index = int ( rescaleValuesToNewRange (map[ row ] [ column ] , valueRange [ 0 ] ,

valueRange [ 1 ] , 0 , 255))

c o l o r = [ ]

for value in c o l o r s [ index ] . rgb :

c o l o r . append ( int ( va lue ∗255))

out . pu tp ixe l ( xy=(column∗ s i z e S c a l e+rowBuffer , row∗ s i z e S c a l e+columnBuffer ) ,

va lue=( c o l o r [ 0 ] , c o l o r [ 1 ] , c o l o r [ 2 ] , alpha [ index ] ) )

out . save ( path )
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def d i s t a n c e C a l c u l a t o r ( s t a r t , stop ) : # Function which c a l l s a g en e r a l d i s t a n c e c a l c u l a t o r

return manhattanDistanceCalculator ( s t a r t=s ta r t , stop=stop )

# C a l l s manhattanDistanceCalculator

def manhattanDistanceCalculator ( s ta r t , stop ) : # General manhattan d i s t a n c e c a l c u l a t o r f u n c t i o n

dx = abs ( s t a r t [ 0 ] − stop [ 0 ] )

# Somewhat w e i r d l y d e f i n e d because o f the way l o c a t i o n s in the matrix are def ined ,

dx i s how f a r l e f t or r i g h t the goa l i s

dy = abs ( s t a r t [ 1 ] − stop [ 1 ] )

# Somewhat w e i r d l y d e f i n e d because o f the way l o c a t i o n s in the matrix are def ined ,

dy i s how f a r up or down the goa l i s

return dx+dy # Returns the sum

def mean( numbers ) : # Takes the mean of a l i s t o f v a l u e s

return f loat (sum( numbers ) ) / len ( numbers )

def ac t iva t i onFunct i on (x , s c a l e ) : # Function to re turn the importance o f t h i s f e a t u r e

return math . exp(−abs ( x ) / s c a l e )

def normalizeBySum ( dict ) : # Normalizes v a l u e s in a d i c t i o n a r y to be between 0 and 1

denominator = sum( dict . va lue s ( ) ) # Sum a l l v a l u e s

normal izedValues = {} # Empty d i c t i o n a r y t h a t w i l l be contained the normalized v a l u e s

i f denominator == 0 : # I f a l l o f the v a l u e s are 0 , then a l l have equa l p r o b a b i l i t y

for t in dict . keys ( ) :

normal izedValues [ t ] = 1 / len ( dict . keys ( ) )

else : # Else normal ize

for t in dict . keys ( ) :

normal izedValues [ t ] = dict [ t ] / denominator

return normal izedValues # Return the normalized v a l u e s d i c t i o n a r y

class Region :

def i n i t ( s e l f , f u l l S i z e , workingSize , e l e v a t i o n s =[ ] , ter ra inSmoothness =10, t e r r a i nSeed =−1):

# I n i t i a l i z e the Region Object

i f f u l l S i z e <= 1 or workingSize <= 1 : # Doesn ' t l e t i t run i f s i z e s won ' t work

print ( ”ERROR: Map Matrix s i z e s must be g r e a t e r than 1 . ” )

e x i t ( )
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s e l f . f u l l S i z e = f u l l S i z e

# A l l maps w i l l be square , s i z e r e f e r s to the number o f p i x e l s in a row of

high r e s o l u t i o n map s i z e

s e l f . work ingSize = workingSize # Low r e s o l u t i o n map s i z e

s e l f . t e r r a i nSe ed = te r r a inSeed

i f len ( e l e v a t i o n s ) == 0 : # I f p r e v i o u s l y d e f i n e d e l e v a t i o n s are not presen t

i f s e l f . t e r r a i nSeed == 'NA ' :

s e l f . t e r r a i nSeed = random . rand int (0 ,100000)

# Generates a random number which w i l l be used as the seed o f

the OpenSimplex random t e r r a i n gene ra t i on

s e l f . highResElevationMap = s e l f . generateElevationMap ( terra inSmoothness=

terra inSmoothness , seed=s e l f . t e r r a i nSeed )

# Generate the e l e v a t i o n s us ing Simplex Noise

else :

s e l f . highResElevationMap = e l e v a t i o n s

# E l e v a t i o n s are s t o r e d as a sympy . Matrix o b j e c t to a l l o w f o r matrix math

s e l f . lowResElevationMap = s e l f . pixelateMap ( highResMap=

s e l f . highResElevationMap , newSize=s e l f . work ingSize )

# Takes high res map and c r e a t e s low res v e r s i o n

s e l f . topoMap = s e l f . generateTopoMap ( highResMap=s e l f . highResElevationMap )

# Takes high res map and c r e a t e s a topograph ic map

i f s e l f . t e r r a i nSeed != −1:

print ( ' Generated Random Terra in Map (SEED ' + str ( s e l f . t e r r a i nSe ed ) + ' ) :

' + str ( datet ime . now ( ) − startTime ) )

else :

print ( ' Generated Terra in Map: ' + str ( datet ime . now ( ) − startTime ) )

s e l f . h ighResS lopeL i s t= s e l f . g e n e r a t e S l o p e L i s t (map=s e l f . highResElevationMap )

s e l f . l owResSlopeLis t = s e l f . g e n e r a t e S l o p e L i s t (map=s e l f . lowResElevationMap )

print ( ' Generated S lopes Map: ' + str ( datet ime . now ( ) − startTime ) )

s e l f . highResLandmarks = s e l f . ident i fyLandmarks ( s l o p e L i s t=s e l f . h ighResSlopeList ,

s i z e=s e l f . f u l l S i z e )

s e l f . highResLandmarkMap = s e l f . generateLandmarkMap ( landmarks=s e l f . highResLandmarks ,

s i z e=len ( s e l f . highResElevationMap ) )

s e l f . lowResLandmarks , s e l f . lowResLandmarkMap =

s e l f . generateLowResLandmarkMap ( highResMap=s e l f . highResLandmarkMap , newSize=s e l f . work ingSize )

i f len ( s e l f . lowResLandmarks ) > 0 :

print ( ' Generated Landmarks Map: ' + str ( datet ime . now ( ) − startTime ) )

else :

print ( 'No Landmarks : ' + str ( datet ime . now ( ) − startTime ) )
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def generateElevationMap ( s e l f , terra inSmoothness , seed ) :

# I f e l e v a t i o n s not present , generate the e l e v a t i o n s ( smoothness : how q u i c k l y

the e l e v a t i o n s change , l a r g e r numbers are smoother )

blackBox = opensimplex . OpenSimplex ( seed=seed ) # Determines the s implex seed

noiseMap = [ ] # Stores e l e v a t i o n data , which i s the turned i n t o the sympy . Matrix

for y in range ( s e l f . f u l l S i z e ) : # Loops over the rows

l i n e = [ ] # Stores the data f o r a s i n g l e row

for x in range ( s e l f . f u l l S i z e ) : # Loops over each s t a t e in a row

l i n e . append ( rescaleValuesToNewRange ( blackBox . no i se2d ( x=(x/ terra inSmoothness )+50 ,

y=(y/ terra inSmoothness )+100) , −1, 1 , 0 , 2000)) # Generates the v a l u e s and adds them to l i n e

noiseMap . append ( l i n e ) # Adds the l i n e to the map

return noiseMap # Stores noiseMap as a sympy . Matrix

def pixelateMap ( s e l f , highResMap , newSize ) : # Function which c r e a t e s a low res v e r s io n o f an image

o l d S i z e = len ( highResMap )

a l lP ix e lData = [ [ [ ] for i in range ( newSize ) ] for j in range ( newSize ) ] # Wil l ho ld a l l p i x e l i n f o

heightData = [ [ ] for i in range ( newSize ) ] # Wil l ho ld the v a l u e s f o r the p i x e l a t e d map

for workingRow in range ( newSize ) : # Loops over each row in low res map

for workingColumn in range ( newSize ) : # Loops over each column in low res map

for highResRow in range ( workingRow ∗ ( o l d S i z e // newSize ) , ( workingRow+1) ∗ ( o l d S i z e // newSize ) ) :

# Loops over each row in high res map

for highResColumn in range ( workingColumn ∗ ( o l d S i z e // newSize ) , ( workingColumn+1)

∗ ( o l d S i z e // newSize ) ) :

# Loops over each column in high res map

a l lP ix e lData [ workingRow ] [ workingColumn ] . append ( highResMap [ highResRow ] [ highResColumn ] )

# Groups p i x e l s

heightData [ workingRow ] . append (mean( a l lP ix e lData [ workingRow ] [ workingColumn ] ) )

# Takes mean of the p i x e l s from high res correspond to a s i n g l e low res p i x e l

return heightData # returns heighData to be s t o r e d as sympy . Matrix

def generateTopoMap ( s e l f , highResMap ) :

# Function which genera te s a topograph ic map based on high r e s o l u t i o n map

s i z e = len ( highResMap )

contourData = [ [ 1 for i in range ( s i z e ) ] for j in range ( s i z e ) ] # Stores 1 f o r a l l p i x e l s

r i gh tNe i ghbo r i ngP ixe l s = [ ( 0 , 1 ) , (1 , 0 ) ] # Checkes the ne ighbors to the r i g h t and down

for row in range ( s i z e ) : # Loops through every row

for column in range ( s i z e ) : # Loops through every column

for contour in range (100 , 2000 ,100 ) : # Contour l i n e s w i l l occur at 100 un i t i n t e r v a l s
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i f contourData [ row ] [ column ] == 1 : # Skips t h i s loop i f the p i x e l has a l ready been co l o r ed

for neighbor in r i gh tNe i ghbo r i ngP ixe l s : # Loops over r i g h t ne ighbors

i f row+neighbor [ 1 ] >= 0 and row+neighbor [ 1 ] < s i z e and column+neighbor [ 0 ] >=

0 and column+neighbor [ 0 ] < s i z e : # Checks to see i f ne ighbor a c t u a l l y e x i s t s

i f highResMap [ row ] [ column ] >=

contour and highResMap [ row+neighbor [ 1 ] ] [ column+neighbor [ 0 ] ] < contour :

# Checks whether the neighbor occurs on the o ther s i d e o f a contour l i n e

contourData [ row ] [ column ] = 0 # I f so then c o l o r the contour l i n e

break

e l i f highResMap [ row ] [ column ] <=

contour and highResMap [ row+neighbor [ 1 ] ] [ column+neighbor [ 0 ] ] > contour :

# Checks whether the neighbor occurs on the o ther s i d e o f a contour l i n e

contourData [ row ] [ column ] = 0 # I f so then c o l o r the contour l i n e

break

return contourData # returns contourData to be s t o r e d as sympy . Matrix

def g e n e r a t e S l o p e L i s t ( s e l f ,map) :

# Generates a d i c t i o n a r y conta in ing the e l e v a t i o n change between p i x e l and a l l i t s ne ighbors

s i z e = len (map)

n e i ghbo r i ngP ixe l s = [ ( 0 , 0 ) , ( 0 , 1 ) , ( 1 , 0 ) , ( 0 , −1 ) , ( −1 , 0 ) ]

a l l T r a n s i t i o n s = [ ]

for row in range ( s i z e ) :

rowTrans i t ions = [ ]

for column in range ( s i z e ) :

t r a n s i t i o n s D i c t = {}

for neighbor in ne i ghbo r i ngP ixe l s :

i f row + neighbor [ 1 ] >= 0 and row + neighbor [ 1 ] <

s i z e and column + neighbor [ 0 ] >= 0 and column + neighbor [ 0 ] < s i z e :

t r a n s i t i o n s D i c t [ ( column + neighbor [ 0 ] , row + neighbor [ 1 ] ) ] =

map[ row + neighbor [ 1 ] ] [ column + neighbor [ 0 ] ] − map[ row ] [ column ]

rowTrans i t ions . append ( t r a n s i t i o n s D i c t )

a l l T r a n s i t i o n s . append ( rowTrans i t ions )

return a l l T r a n s i t i o n s

def ident i fyLandmarks ( s e l f , s l o p e L i s t , s i z e ) :

# Function which i d e n t i f i e s peaks and s a d d l e s on the map

peaks = s e l f . i d en t i f yPeak s ( s l o p e L i s t=s l o p e L i s t , s i z e=s i z e )

sadd l e s = s e l f . i d e n t i f y S a d d l e s ( s l o p e L i s t=s l o p e L i s t , s i z e=s i z e )

return peaks + sadd l e s

40



def i d en t i f yPeak s ( s e l f , s l o p e L i s t , s i z e ) : # I d e n t i f i e s peaks on the map

l i s t P e a k s = [ ]

for row in range ( s i z e ) :

for column in range ( s i z e ) :

e l evat ionChanges = l i s t ( s l o p e L i s t [ row ] [ column ] . va lue s ( ) )

#make the d i c t i o n a r y a l i s t so t h a t the 0 s at the beg inning can be removed

i f len ( e levat ionChanges ) >= 5 :

e levat ionChanges . remove (0 )

i f a l l ( coo rd inate < 0 for coord inate in e levat ionChanges ) :

#check f o r i f a l l c oo rd in a t e s in l i s t are n e g a t i v e (means surrounding ne ighbors

are lower e l eva t i on , so i t i s a peak )

l i s t P e a k s . append ( ( column , row ) ) #add to l i s t o f o v e r a l l peaks

return l i s t P e a k s

def i d e n t i f y S a d d l e s ( s e l f , s l o p e L i s t , s i z e ) : # I d e n t i f i e s s a d d l e s on the map

l i s t S a d d l e s = [ ]

for row in range ( s i z e ) :

for column in range ( s i z e ) :

e l evat ionChanges = s l o p e L i s t [ row ] [ column ]

i f len ( e levat ionChanges ) >= 5 :

i f e levat ionChanges [ ( column+1,row ) ] < 0 and e levat ionChanges [ ( column−1,row ) ] < 0 :

# Saddles are i d e n t i f i e d as have o p p o s i t e ne ighbor ing p i x e l s having

both negat ive or both p o s i t i v e s l o p e s

i f e levat ionChanges [ ( column , row+1)] > 0

and e levat ionChanges [ ( column , row−1)] > 0 :

l i s t S a d d l e s . append ( ( column , row ) )

i f e levat ionChanges [ ( column+1,row ) ] > 0 and e levat ionChanges [ ( column−1,row ) ] > 0 :

i f e levat ionChanges [ ( column , row+1)] < 0 and e levat ionChanges [ ( column , row−1)] < 0 :

l i s t S a d d l e s . append ( ( column , row ) )

return l i s t S a d d l e s

def generateLandmarkMap ( s e l f , landmarks , s i z e ) :

# Function which genera te s Goals Matrix ( c u r r e n t l y g o a l s are peaks / s a d d l e s )

landmarkMap = [ [ 0 for j in range ( s i z e ) ] for i in range ( s i z e ) ]

for landmark in landmarks :

landmarkMap [ landmark [ 1 ] ] [ landmark [ 0 ] ] = 1

return landmarkMap
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def generateLowResLandmarkMap ( s e l f , highResMap , newSize ) :

# Low res g o a l s map i s made by p i x e l a t i n g high res map and s e t t i n g a l l non zeroes to 1

lowResLandmarkMap = s e l f . pixelateMap ( highResMap=highResMap , newSize=newSize )

landmarks = [ ] # L i s t s a l l landmarks in low res

for row in range ( len ( lowResLandmarkMap ) ) :

for column in range ( len ( lowResLandmarkMap [ row ] ) ) :

i f lowResLandmarkMap [ row ] [ column ] != 0 :

lowResLandmarkMap [ row ] [ column ] = 1

landmarks . append ( ( column , row ) )

return landmarks , lowResLandmarkMap

class Walker : # Walker ( h i k e r ) c l a s s which moves on a reg ion

def i n i t ( s e l f , reg ion , s t a r t P o s i t i o n , con f idence , energy ) :

# I n i t i a l i z e s the walker with a number o f a t t r i b u t e s , most o f which w i l l change as i t i s updated

s e l f . r eg i on = reg i on

positionMap = s e l f . generatePosit ionMap ( p o s i t i o n={ s t a r t P o s i t i o n : 1} , d e f a u l t =0)

confidenceMap = s e l f . generatePosit ionMap ( p o s i t i o n={ s t a r t P o s i t i o n : con f idence } , d e f a u l t= 'NA ' )

energyMap = s e l f . generatePosit ionMap ( p o s i t i o n={ s t a r t P o s i t i o n : energy } , d e f a u l t= 'NA ' )

confidenceCategoryMap = s e l f . c a t e g o r i z e T r a i t V a l u e s ( valueMap=confidenceMap , s c a l e =100)

energyCategoryMap = s e l f . c a t e g o r i z e T r a i t V a l u e s ( valueMap=energyMap , s c a l e =3000)

i f len ( s e l f . r eg i on . lowResLandmarks ) > 0 :

visionMap = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t= 'Landmark ' )

else :

visionMap = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t= 'NA ' )

s e l f . s t r a t e g y = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t= 'NA ' )

s e l f . goa l = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t= 'NA ' )

s e l f . p o s i t i o n = positionMap

s e l f . c on f idence = confidenceMap

s e l f . energy = energyMap

s e l f . con f idenceCategory = confidenceCategoryMap

s e l f . energyCategory = energyCategoryMap

s e l f . v i s i o n = visionMap

s e l f . avai lableLandmarks = s e l f . r eg i on . lowResLandmarks [ : ]

i f len ( s e l f . r eg i on . lowResLandmarks ) > 0 :

i f s e l f . conf idenceCheck ( ) :

s e l f . avai lableLandmarks = s e l f . removeOccupiedLandmarks ( landmarks=s e l f . avai lableLandmarks )

else :
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s e l f . avai lableLandmarks = s e l f . r eg i on . lowResLandmarks [ : ]

i f len ( s e l f . avai lableLandmarks ) > 0 :

s e l f . v i s i o n = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t= 'Landmark ' )

s e l f . c losestLandmarks = s e l f . determineClosestLandmarks ( landmarks=s e l f . avai lableLandmarks )

else :

s e l f . v i s i o n = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t= 'NA ' )

s e l f . previousStrategyAndGoal = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t = [ ] )

strategyMap = s e l f . updateStrategy ( )

goalMap = s e l f . updateGoal ( strategyMap=strategyMap )

s e l f . t i m e S e r i e s = [ [ positionMap , confidenceCategoryMap , energyCategoryMap , strategyMap , goalMap ] ]

s e l f . s t r a t e g y = strategyMap

s e l f . goa l = goalMap

def c a t e g o r i z e T r a i t V a l u e s ( s e l f , valueMap , s c a l e =100):

c a t e g o r i z e d = [ [ 0 for i in range ( s e l f . r eg i on . work ingSize ) ] for j in

range ( s e l f . r eg i on . work ingSize ) ]

for row in range ( len ( valueMap ) ) :

for column in range ( len ( valueMap [ row ] ) ) :

i f valueMap [ row ] [ column ] != 'NA ' :

normal izedValue = valueMap [ row ] [ column ] / s c a l e

i f normalizedValue >= 0 . 6 6 :

c a t e g o r i z e d [ row ] [ column ] = ' High '

e l i f normalizedValue < 0 . 3 3 :

c a t e g o r i z e d [ row ] [ column ] = 'Low '

else :

c a t e g o r i z e d [ row ] [ column ] = 'Medium '

else :

c a t e g o r i z e d [ row ] [ column ] = 'NA '

return c a t e g o r i z e d

def updateOneTimeStep ( s e l f ) : # Updates h i k e r as time goes on

s e l f . distanceMap = s e l f . generateDistanceMap ( goalMap=s e l f . goa l )

# Creates d i s t a n c e map from goa l

s e l f . possibleMovements = s e l f . bellman ( strategyMap=s e l f . s t ra tegy , goalMap=s e l f . goa l )

#s e l f . possib leMovements = s e l f . generatePoss ib leMovementsDict ionary

( strategyMap=s e l f . s t ra tegy , goalMap=s e l f . goa l )

# A l l p o s s i b l e movements and t h e i r l i k e l i h o o d s

positionMap , energyMap , confidenceMap , strategyMap , goalMap , previousMap =

s e l f . updateStates ( strategyMap=s e l f . s t ra tegy ,
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goalMap=s e l f . goal , previousMap=s e l f . previousStrategyAndGoal )

confidenceCategoryMap = s e l f . c a t e g o r i z e T r a i t V a l u e s ( valueMap=confidenceMap , s c a l e =100)

energyCategoryMap = s e l f . c a t e g o r i z e T r a i t V a l u e s ( valueMap=energyMap , s c a l e =3000)

s e l f . t i m e S e r i e s . append ( [ positionMap , confidenceCategoryMap , energyCategoryMap , strategyMap , goalMap ] )

s e l f . p o s i t i o n = positionMap

s e l f . c on f idence = confidenceMap

s e l f . energy = energyMap

s e l f . con f idenceCategory = confidenceCategoryMap

s e l f . energyCategory = energyCategoryMap

s e l f . previousStrategyAndGoal = s e l f . generatePreviousStratAndGoal ( strategyMap=strategyMap ,

goalMap=goalMap , prev ious=previousMap )

s e l f . s t r a t e g y = s e l f . updateStrategy ( )

s e l f . goa l = s e l f . updateGoal ( strategyMap=s e l f . s t ra tegy , prev ious=s e l f . previousStrategyAndGoal )

i f len ( s e l f . r eg i on . lowResLandmarks ) > 0 :

i f s e l f . conf idenceCheck ( ) :

s e l f . avai lableLandmarks = s e l f . removeOccupiedLandmarks ( landmarks=s e l f . avai lableLandmarks )

else :

s e l f . avai lableLandmarks = s e l f . r eg i on . lowResLandmarks [ : ]

i f len ( s e l f . avai lableLandmarks ) > 0 :

s e l f . v i s i o n = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t= 'Landmark ' )

s e l f . c losestLandmarks = s e l f . determineClosestLandmarks ( landmarks=s e l f . avai lableLandmarks )

else :

s e l f . v i s i o n = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t= 'NA ' )

def conf idenceCheck ( s e l f ) :

for row in range ( len ( s e l f . p o s i t i o n ) ) :

for column in range ( len ( s e l f . p o s i t i o n [ row ] ) ) :

i f s e l f . con f idenceCategory [ row ] [ column ] ==

' High ' or s e l f . con f idenceCategory [ row ] [ column ] == 'Medium ' :

return True

return False

def removeOccupiedLandmarks ( s e l f , landmarks ) :

al lLandmarks = landmarks

for landmark in landmarks :

i f s e l f . p o s i t i o n [ landmark [ 1 ] ] [ landmark [ 0 ] ] > 0 . 5 :

al lLandmarks . remove ( landmark )

return allLandmarks
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def determineClosestLandmarks ( s e l f , landmarks ) :

# Measures the manhattan d i s t a n c e to every landmark from each p i x e l , marks which i s the c l o s e s t

c losestLandmarks = {}

for row in range ( len ( s e l f . p o s i t i o n ) ) :

for column in range ( len ( s e l f . p o s i t i o n [ row ] ) ) :

landmarkDist = {}

for landmark in landmarks :

d i s t ance = d i s t a n c e C a l c u l a t o r ( s t a r t =(column , row ) , stop=landmark )

landmarkDist [ d i s t anc e ] = landmark

closestLandmarks [ ( column , row ) ] = landmarkDist . get (min( landmarkDist . keys ( ) ) )

return c losestLandmarks

def generatePosit ionMap ( s e l f , po s i t i on , d e f a u l t ) :

# Generates p o s i t i o n map based on s t a r t p o s i t i o n and movement matrix

positionMap = [ [ d e f a u l t for i in range ( s e l f . r eg i on . work ingSize ) ]

for j in range ( s e l f . r eg i on . work ingSize ) ]

for coord inate in p o s i t i o n . keys ( ) :

posit ionMap [ coord inate [ 1 ] ] [ c oo rd inate [ 0 ] ] = p o s i t i o n [ coo rd inate ]

# I f p r o b a b i l i t y C l o u d i s empty , t imeStep=0 so 100% at i n i t i a l p o s i t i o n

return posit ionMap

def updateStrategy ( s e l f ) : # Decis ion Tree

strategyData = pd . r e a d e x c e l ( r ' dec i s i onTree . x l sx ' , k e e p d e f a u l t n a=False )

## read the d e c i s i o n t r e e e x c e l f i l e

strategyDataFrame = pd . DataFrame ( strategyData ) ##conver t to data frame

combinations = strategyDataFrame . va lue s . t o l i s t ( ) ## transform to l i s t the e x c e l f i l e

strategyMap = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t= 'NA ' )

for row in range ( len ( s e l f . p o s i t i o n ) ) :

for column in range ( len ( s e l f . p o s i t i o n ) ) :

i f s e l f . p o s i t i o n [ row ] [ column ] != 0 :

check = True

for i in range (0 , len ( combinat ions ) ) :

i f combinations [ i ] [ 0 ] == s e l f . con f idenceCategory [ row ] [ column ] :

i f combinat ions [ i ] [ 1 ] == s e l f . energyCategory [ row ] [ column ] :

i f combinations [ i ] [ 2 ] == s e l f . v i s i o n [ row ] [ column ] :

i f combinations [ i ] [ 3 ] == s e l f . s t r a t e g y [ row ] [ column ] :

strategyMap [ row ] [ column ] = combinat ions [ i ] [ 4 ]

check = False

i f check :
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#p r i n t ( s e l f . conf idenceCategory [ row ] [ column ] ,

s e l f . energyCategory [ row ] [ column ] ,

s e l f . v i s i o n [ row ] [ column ] , s e l f . s t r a t e g y [ row ] [ column ] )

strategyMap [ row ] [ column ] = ' D i r e c t i o n a l '

return strategyMap

def generatePreviousStratAndGoal ( s e l f , strategyMap , goalMap , prev ious ) :

for row in range ( len ( strategyMap ) ) :

for column in range ( len ( strategyMap [ row ] ) ) :

i f s e l f . p o s i t i o n [ row ] [ column ] > 0 :

prev ious [ row ] [ column ] = prev ious [ row ] [ column ] + [ ( ( column , row ) ,

strategyMap [ row ] [ column ] , goalMap [ row ] [ column ] ) ]

return prev ious

def updateGoal ( s e l f , strategyMap , prev ious = [ ] ) : # S e l e c t s goa l based on s t r a t e g y

goalMap = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t= 'NA ' )

for row in range ( len ( strategyMap ) ) :

for column in range ( len ( strategyMap ) ) :

i f strategyMap [ row ] [ column ] != 'NA ' :

i f strategyMap [ row ] [ column ] == 'Landmark ' :

goalMap [ row ] [ column ] = s e l f . c losestLandmarks [ ( column , row ) ]

e l i f strategyMap [ row ] [ column ] == ' D i r e c t i o n a l ' :

i f len ( prev ious ) != 0 and prev ious [ row ] [ column ] [ − 1 ] [ 1 ] == ' D i r e c t i o n a l ' :

goalMap [ row ] [ column ] = prev ious [ row ] [ column ] [ − 1 ] [ 2 ]

else :

goalMap [ row ] [ column ] = ( column , row )

e l i f strategyMap [ row ] [ column ] == ' Backtracking ' :

i f len ( prev ious ) != 0 :

l a s t S t r a t = prev ious [ row ] [ column ] [ − 1 ] [ 1 ]

check = True

for t imeStep in range ( len ( prev ious [ row ] [ column ])−1 ,−1 ,−1):

i f prev ious [ row ] [ column ] [ t imeStep ] [ 1 ] != l a s t S t r a t :

check = False

goalMap [ row ] [ column ] = prev ious [ row ] [ column ] [ t imeStep ] [ 0 ]

i f check == True :

goalMap [ row ] [ column ] = prev ious [ row ] [ column ] [ 0 ] [ 0 ]

else :

goalMap [ row ] [ column ] = ( column , row )

e l i f strategyMap [ row ] [ column ] == ' Stay ' :
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goalMap [ row ] [ column ] = ( column , row )

else :

print ( 'ERROR: Fa i l ed to i d e n t i f y s t r a t e g y ' )

e x i t ( )

return goalMap

def generateDistanceMap ( s e l f , goalMap ) :

# Function t h a t c a l c u l a t e s manhattan d i s t a n c e from every p i x e l to goa l p i x e l

a l l G o a l s = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t= 'NA ' )

for row in range ( len ( goalMap ) ) :

for column in range ( len ( goalMap [ row ] ) ) :

i f goalMap [ row ] [ column ] != 'NA ' :

a l l D i s t a n c e s = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t =0)

for r in range ( len ( goalMap ) ) :

for c in range ( len ( goalMap [ r ] ) ) :

a l l D i s t a n c e s [ r ] [ c ] = d i s t a n c e C a l c u l a t o r ( s t a r t =(c , r ) ,

stop=goalMap [ row ] [ column ] )

a l l G o a l s [ row ] [ column ] = a l l D i s t a n c e s

return a l l G o a l s

def generatePoss ib leMovementsDict ionary ( s e l f , strategyMap , goalMap , s l o p e S c a l e =100 , d i s t a n c e S c a l e =1):

possibleMovements = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t= 'NA ' )

for row in range ( len ( s e l f . p o s i t i o n ) ) :

for column in range ( len ( s e l f . p o s i t i o n [ row ] ) ) :

i f s e l f . p o s i t i o n [ row ] [ column ] != 0 :

t rans i t i onS lopeFromPos i t i on = s e l f . r eg i on . lowResSlopeLis t [ row ] [ column ]

i f strategyMap [ row ] [ column ] != ' D i r e c t i o n a l ' :

i f ( column , row ) == goalMap [ row ] [ column ] :

normalizedCombined = {}

for ne i ghbor ingP ixe l in t rans i t i onS lopeFromPos i t i on . keys ( ) :

i f ne i ghbor ingP ixe l == goalMap [ row ] [ column ] :

normalizedCombined [ ne i ghbor ingP ixe l ] = 1

else :

normalizedCombined [ ne i ghbor ingP ixe l ] = 0

else :

s l o p e s = {}

d i s t a n c e s = {}

for ne i ghbor ingP ixe l in t rans i t i onS lopeFromPos i t i on . keys ( ) :

s l o p e s [ ne i ghbor ingP ixe l ] =
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ac t iva t i onFunct i on ( x=trans i t i onS lopeFromPos i t i on [ ne i ghbor ingP ixe l ] ,

s c a l e=s l o p e S c a l e )

d i s t a n c e s [ ne i ghbor ingP ixe l ] = ac t iva t i onFunct i on ( x=s e l f . distanceMap

[ row ] [ column ] [ ne i ghbor ingP ixe l [ 1 ] ] [ n e i ghbor ingP ixe l [ 0 ] ] ,

s c a l e=d i s t a n c e S c a l e )

normal i zedS lopes = normalizeBySum ( dict=s l o p e s )

normal i zedDis tances = normalizeBySum ( dict=d i s t a n c e s )

combined = {}

for t r a n s i t i o n in t rans i t i onS lopeFromPos i t i on . keys ( ) :

combined [ t r a n s i t i o n ] = normal i zedS lopes [ t r a n s i t i o n ]

∗ normal i zedDis tances [ t r a n s i t i o n ]

normalizedCombined = normalizeBySum ( combined )

else :

s l o p e s = {}

d i s t a n c e s = {}

for ne i ghbor ingP ixe l in t rans i t i onS lopeFromPos i t i on . keys ( ) :

s l o p e s [ ne i ghbor ingP ixe l ] =

ac t iva t i onFunct i on ( x=trans i t i onS lopeFromPos i t i on [ ne i ghbor ingP ixe l ] ,

s c a l e=s l o p e S c a l e )

d i s t a n c e s [ ne i ghbor ingP ixe l ] = 1/ ac t iva t i onFunct i on

( x=s e l f . distanceMap [ row ] [ column ]

[ ne i ghbor ingP ixe l [ 1 ] ] [ n e i ghbor ingP ixe l [ 0 ] ] , s c a l e=d i s t a n c e S c a l e )

normal i zedS lopes = normalizeBySum ( dict=s l o p e s )

normal i zedDis tances = normalizeBySum ( dict=d i s t a n c e s )

combined = {}

for t r a n s i t i o n in t rans i t i onS lopeFromPos i t i on . keys ( ) :

combined [ t r a n s i t i o n ] = normal i zedS lopes [ t r a n s i t i o n ]

∗ normal i zedDis tances [ t r a n s i t i o n ]

normalizedCombined = normalizeBySum ( combined )

f i n a l = {}

for coord inate in normalizedCombined . keys ( ) :

f i n a l [ coo rd ina te ] = [ normalizedCombined [ coo rd inate ] , s e l f . energy [ row ] [ column ]

− abs ( t rans i t i onS lopeFromPos i t i on [ coo rd inate ] )∗ ( 1 / 1 0 0 ) , s e l f . c on f id ence [ row ] [ column ] ]

possibleMovements [ row ] [ column ] = f i n a l

return possibleMovements

def c a l c u l a t e E l e v a t i o n C o s t ( s e l f , e l eva t i on , energyPerTi l e =11.5 , t i l e s P e r M i l e =5,

massOfHiker =80, dec l i n eD i s count =0.95) :

””” C a l c u l a t e s the i n c l i n e or d e c l i n e between two points , us ing the p i e c e w i s e
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f u n c t i o n d e f i n e d in the Bellman Equations

”””

b = dec l ineD i s count

i f e l e v a t i o n >= 0 :

return energyPerTi l e + 0.3845∗ massOfHiker ∗9 .81∗ (1/ t i l e s P e r M i l e )∗ e l e v a t i o n

else :

return energyPerTi l e − 0.3845∗ massOfHiker ∗9 .81∗b∗(1/ t i l e s P e r M i l e )∗ e l e v a t i o n

def bellman ( s e l f , strategyMap , goalMap ) :

””” C a l c u l a t e s the next s t e p o f the h i k e r us ing the Bellman Equations

”””

energyPerTi l e = 11 .5

costToExist = 60

indexOfFatigue = 1

f e e tPerMi l e = 5280

t i l e s P e r M i l e = 5

possibleMovements = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t= 'NA ' )

for row in range ( len ( s e l f . p o s i t i o n ) ) :

for column in range ( len ( s e l f . p o s i t i o n [ row ] ) ) :

i f s e l f . p o s i t i o n [ row ] [ column ] != 0 :

s l opeD i c t = s e l f . r eg i on . lowResS lopeList [ row ] [ column ]

i f strategyMap [ row ] [ column ] != ' D i r e c t i o n a l '

and ( column , row ) == goalMap [ row ] [ column ] :

normalizedCombined = {}

for ne i ghbor ingP ixe l in s l opeD i c t . keys ( ) :

i f ne i ghbor ingP ixe l == goalMap [ row ] [ column ] :

normalizedCombined [ ne i ghbor ingP ixe l ] = 1

else :

normalizedCombined [ ne i ghbor ingP ixe l ] = 0

else :

s l o p e s = {}

d i s t a n c e s = {}

#p r i n t ( s l o p e D i c t )

for ne i ghbor ingP ixe l in s l opeD i c t . keys ( ) :

s l o p e s [ ne i ghbor ingP ixe l ] =

( s e l f . c a l c u l a t e E l e v a t i o n C o s t (

( s l opeD i c t [ n e i ghbor ingP ixe l ]∗ t i l e s P e r M i l e )/ f e e tPe rMi l e ) )
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#Feet to mi les then mi les to t i l e s

d i s t a n c e s [ ne i ghbor ingP ixe l ] = s e l f . distanceMap [ row ] [ column ]

[ ne i ghbor ingP ixe l [ 1 ] ] [ n e i ghbor ingP ixe l [ 0 ] ]

#p r i n t ( s l o p e s )

#p r i n t ( d i s t a n c e s )

costToMoveDict = {}

for t r a n s i t i o n in s l o p e s . keys ( ) :

costToMoveDict [ t r a n s i t i o n ] = s l o p e s [ t r a n s i t i o n ]

#p r i n t ( costToMoveDict )

expectedCostDict = {}

for t r a n s i t i o n in costToMoveDict . keys ( ) :

i f strategyMap [ row ] [ column ] != ' D i r e c t i o n a l ' :

expectedCostDict [ t r a n s i t i o n ] = s e l f . energy [ row ] [ column ]

− ( energyPerTi l e ∗( d i s t a n c e s [ t r a n s i t i o n ] ) )

− ( indexOfFatigue ∗costToMoveDict [ t r a n s i t i o n ] ) − costToExist

else :

expectedCostDict [ t r a n s i t i o n ] = s e l f . energy [ row ] [ column ]

+ ( energyPerTi l e ∗( d i s t a n c e s [ t r a n s i t i o n ] ) )

− ( indexOfFatigue ∗ costToMoveDict [ t r a n s i t i o n ] ) − costToExist

#p r i n t ( expectedCostDic t )

t r an s l a t i onVa lue = min( l i s t ( expectedCostDict . va lue s ( ) ) )

#denominator = max( l i s t ( expectedCostDic t . v a l u e s ( ) ) )

for t r a n s i t i o n in costToMoveDict . keys ( ) :

expectedCostDict [ t r a n s i t i o n ] = expectedCostDict [ t r a n s i t i o n ]

− t r an s l a t i onVa lue #expectedCostDic t [ t r a n s i t i o n ] =

math . exp ( expectedCostDict [ t r a n s i t i o n ] / denominator )

#p r i n t ( expectedCostDic t )

normalizedCombined = normalizeBySum ( dict=expectedCostDict )

#p r i n t ( normalizedCombined )

f i n a l = {}

for coord inate in normalizedCombined . keys ( ) :

f i n a l [ coo rd ina te ] = [ normalizedCombined [ coo rd inate ] , s e l f . energy [ row ] [ column ]

− s e l f . c a l c u l a t e E l e v a t i o n C o s t ( ( s l opeD i c t [ coo rd inate ]∗ t i l e s P e r M i l e )/ f e e tPe rMi l e )

+ energyPerTi l e

− costToExist , s e l f . c on f idence [ row ] [ column ] − 0 . 3 4 ]

possibleMovements [ row ] [ column ] = f i n a l

return possibleMovements
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def updateStates ( s e l f , strategyMap , goalMap , previousMap ) :

newPositionMap = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t =0)

newEnergyMap = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t= 'NA ' )

newConfidenceMap = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t= 'NA ' )

newStrategyMap = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t= 'NA ' )

newGoalMap = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t= 'NA ' )

newPreviousMap = s e l f . generatePosit ionMap ( p o s i t i o n ={} , d e f a u l t = [ ] )

for row in range ( len ( s e l f . possibleMovements ) ) :

for column in range ( len ( s e l f . possibleMovements [ row ] ) ) :

i f s e l f . possibleMovements [ row ] [ column ] != 'NA ' :

dict = s e l f . possibleMovements [ row ] [ column ]

for t r a n s i t i o n in dict . keys ( ) :

newPositionMap [ t r a n s i t i o n [ 1 ] ] [ t r a n s i t i o n [ 0 ] ] +=

s e l f . p o s i t i o n [ row ] [ column ]∗ dict [ t r a n s i t i o n ] [ 0 ]

i f newEnergyMap [ t r a n s i t i o n [ 1 ] ] [ t r a n s i t i o n [ 0 ] ] != 'NA ' :

i f newEnergyMap [ t r a n s i t i o n [ 1 ] ] [ t r a n s i t i o n [ 0 ] ] < dict [ t r a n s i t i o n ] [ 1 ] :

newEnergyMap [ t r a n s i t i o n [ 1 ] ] [ t r a n s i t i o n [ 0 ] ] = dict [ t r a n s i t i o n ] [ 1 ]

newStrategyMap [ t r a n s i t i o n [ 1 ] ] [ t r a n s i t i o n [ 0 ] ] = strategyMap [ row ] [ column ]

newGoalMap [ t r a n s i t i o n [ 1 ] ] [ t r a n s i t i o n [ 0 ] ] = goalMap [ row ] [ column ]

newPreviousMap [ t r a n s i t i o n [ 1 ] ] [ t r a n s i t i o n [ 0 ] ] = previousMap [ row ] [ column ]

else :

newEnergyMap [ t r a n s i t i o n [ 1 ] ] [ t r a n s i t i o n [ 0 ] ] = dict [ t r a n s i t i o n ] [ 1 ]

newStrategyMap [ t r a n s i t i o n [ 1 ] ] [ t r a n s i t i o n [ 0 ] ] = strategyMap [ row ] [ column ]

newGoalMap [ t r a n s i t i o n [ 1 ] ] [ t r a n s i t i o n [ 0 ] ] = goalMap [ row ] [ column ]

newPreviousMap [ t r a n s i t i o n [ 1 ] ] [ t r a n s i t i o n [ 0 ] ] = previousMap [ row ] [ column ]

i f newConfidenceMap [ t r a n s i t i o n [ 1 ] ] [ t r a n s i t i o n [ 0 ] ] != 'NA ' :

i f newConfidenceMap [ t r a n s i t i o n [ 1 ] ] [ t r a n s i t i o n [ 0 ] ] < dict [ t r a n s i t i o n ] [ 2 ] :

newConfidenceMap [ t r a n s i t i o n [ 1 ] ] [ t r a n s i t i o n [ 0 ] ] = dict [ t r a n s i t i o n ] [ 2 ]

else :

newConfidenceMap [ t r a n s i t i o n [ 1 ] ] [ t r a n s i t i o n [ 0 ] ] = dict [ t r a n s i t i o n ] [ 2 ]

return newPositionMap , newEnergyMap , newConfidenceMap , newStrategyMap , newGoalMap , newPreviousMap

def generateGIF ( f i l e s ) : # Generates g i f a t the end

topoMap = Image .open( d i r e c t o r y + ' / ' + ' topoMap . png ' )

goalMap = Image .open( d i r e c t o r y + ' / ' + ' goalsMap . png ' )

Image . a lpha compos i te ( topoMap , goalMap ) . save ( d i r e c t o r y + ' / ' + ' background . png ' )

background = Image .open( d i r e c t o r y + ' / ' + ' background . png ' )

images = [ ]
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for f i l ename in f i l e s :

p robab i l i tyC loud = Image .open( f i l ename )

minusPNG = f i l ename . s p l i t ( ' . ' ) [ 0 ]

Image . a lpha compos i te ( background , probab i l i tyCloud ) . save (minusPNG + ' withBackground . png ' )

images . append ( imageio . imread (minusPNG + ' withBackground . png ' ) )

imageio . mimsave ( d i r e c t o r y + ' / ' + ' heatmap . g i f ' , images , durat ion =1)

f u l l S i z e = 700

# Sets r e s o l u t i o n o f h igh r e s o l u t i o n map

workingSize = 70

# Sets r e s o l u t i o n o f low r e s o l u t i o n map, f o r s i m p l i c i t y , p l e a s e keep the va lue some

f a c t o r o f the f u l l S i z e

startTime = datet ime . now ( )

t e r r a i nSeed = 44259 #random . randint (0 ,100000)

r eg i on = Region ( f u l l S i z e=f u l l S i z e , work ingSize=workingSize ,

terra inSmoothness=f u l l S i z e ∗ (5/16) , t e r r a i nSeed=te r r a inSe ed )

#s t a r t = (random . randrange ( work ingSize ) , random . randrange ( work ingSize ))

# UNCOMMENT OUT YOUR LINE #

#yAxis = 20 ########## Camila

#yAxis = 25 ########## Jose

#yAxis = 30 ########## James 1

#yAxis = 35 ########## James 2

#yAxis = 40 ########## James 3

#yAxis = 45 ########## Madeline

#yAxis = 50 ########## Jerry

for s t a r t in range (20 , 55 , 5 ) :

d i r e c t o r y = ' LostHiker '+ str ( t e r r a inSe ed ) + ' ' + str ( s t a r t ) + ' ' + str ( yAxis )

i f os . path . i s d i r ( d i r e c t o r y ) :

s h u t i l . rmtree ( d i r e c t o r y )

os . mkdir ( d i r e c t o r y )

f i l enames = [ ]

t imeSteps = 100

h ike r = Walker ( r eg i on=reg ion , s t a r t P o s i t i o n =( s ta r t , yAxis ) , con f idence =50, energy =1500)

print ( ' \nPathf inding : ' )
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for t imeStep in range ( t imeSteps ) :

printMapToPNG(map=hike r . po s i t i on , colorRange=( ' c l e a r ' , ' purple ' ) , valueRange =(0 , 1 ) ,

path=d i r e c t o r y + ' / ' + str ( t imeStep ) + ' . png ' , s i z e S c a l e=int ( f u l l S i z e / work ingSize ) )

f i l enames . append ( d i r e c t o r y + ' / ' + str ( t imeStep)+ ' . png ' )

print ( '−−Time Step ' + str ( t imeStep ) + ' : ' + str ( datet ime . now ( ) − startTime ) )

h ike r . updateOneTimeStep ( )

print ( )

printMapToPNG( reg i on . topoMap , colorRange=( ' black ' , ' white ' ) , valueRange =(0 ,1) ,

path=d i r e c t o r y + ' / ' + ' topoMap . png ' )

printMapToPNG( reg i on . lowResLandmarkMap , colorRange=( ' c l e a r ' , ' gold ' ) , valueRange =(0 ,1) ,

path=d i r e c t o r y + ' / '

+ ' goalsMap . png ' , s i z e S c a l e=int ( f u l l S i z e / work ingSize ) )

print ( ' Printed Background Maps to PNG: ' + str ( datet ime . now ( ) − startTime ) )

generateGIF ( f i l e s=f i l enames )

print ( 'Combined Maps and Generated Pathf ind ing GIF : ' + str ( datet ime . now ( ) − startTime ) )
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