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Abstract

Lung cancer yields the greatest mortality rate of all cancers in the United States. Among
the types of lung cancer, non-small cell adenocarcinoma occurs most commonly in non-smokers.
The immune system is the body’s first response to abnormal cell behavior. However, tumor
progression often evades the immune system’s response and grows uncontrollably. This is a
result of both tumor self-defense mechanisms inhibiting the maturation of myeloid cells in the
environment, and/or natural spatial barriers of clumped tumor mass. We use a stochastic
Cellular Automaton (CA) model to study the spatial dynamics of the immune cells (myeloid
cells and T-cells) in response to tumor progression. This research explores how local effects of
tumor defense mechanisms affect the spatial dynamics of tumor growth in terms of myeloid
cell maturation and tumor proliferation. The mathematical analysis includes a mean-field
approximation (MF) through a system of ordinary differential equations. The MF model
is a non-spatial approximation to the spatially explicit Cellular Automaton model. We use
numerical simulations to explore the control and growth of tumor progression. The results
suggest that it is insufficient for mature myeloid cell quantities to surpass tumor cell quantities
in order to eradicate tumor cells or vice versa.

1 Introduction
Cancer is a term referred to as a set of diseases that are capable of sustaining proliferative sig-
naling, resisting cell death, evading tumor suppressors, inducing angiogenesis, enabling replicative
immortality, initiating cellular invasion and metastasis [17]. A healthy cell can become cancerous
by mutations to its genes. Gene mutation of a healthy cell results in uncontrolled and malicious
behavior [17]. This may involve uncontrolled proliferation of the cell, disruption in its life cycle
and growth, which leads to a tumor. A tumor is a mass of cells with abnormal morphological and
molecular features [19, 35]. Malignant tumors spread to adjacent tissues and travel through the
bloodstream and the lymphatic system to reach distant organs. Cancers are classified according to
their tissue of origin [20, 26]. Cancers that arise in the epithelial tissue, one of the four basic tissues
of the human body, are known as carcinomas. For example, non-small adenocarcinoma arises in
the alveolar epithelium tissue [18, 26].

Lung cancer is the deadliest cancer according to the American Cancer Society [3]. Lung cancer
disrupts the healthy function of the human body by having the patient experience constant cough,
sputum streaked with blood, chest pain, breathing difficulty, and recurrent pneumonia or bronchitis
[3]. It can be diagnosed as two types: Non-Small Cell Lung Cancer (NSCLC) and Small Cell
Lung Cancer (SCLC). The NSCLC constitutes 80-85% of lung cancer patients and the remainder
corresponds to the SCLC. Approximately 45% of lung patients have 1-year relative survival rate
and only 16% of them are diagnosed at an early stage. Moreover, about 40% of patients diagnosed
with NSCLC are more likely to get a subtype of cancer known as adenocarcinoma. This type of
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cancer starts in the alveolar type-II cell, an epithelial cell with the function of secreting a protein
known as surfactant [18]. The lung surfactant directs the gas-exchange mechanism and reduces
the surface tension, which is essential for breathing [18].

The immune system detects and kills pathogens such as bacteria, viruses, parasites, and fungi.
It is also capable of detecting and killing the body’s own cells that contain abnormalities due to
an illness or mutation such as cancer cells [1, 2]. The interaction between the immune system and
cancer development has revealed that both the innate and adaptive immune system are involved in
tumor recognition [12]. The relationship between both cells can be described with the hypothesis
of cancer immunosurveillance which explains how tumor cells acquire mutations that allows them
to avoid being targeted by the immune system [13]. This process is known as cancer immunoedit-
ing, which consists of three phases: elimination of abnormal cells, the equilibrium phase where
the outgrowth of survivor tumor cells are controlled by the immune system and the escape phase
where tumor cells are capable of avoiding immune system surveillance [6].

Moreover, recruitment of immature myeloid cells (ImC) and secretion of versican, an extra-
cellular matrix component, by tumor cells trigger myeloid maturation [15, 22]. Upon maturation,
mature myeloid cells (MmC), such as macrophages and dendritic cells, can recognize specific ligands
on tumor cells and present tumor cell-derived molecules to T-cells (CD4+ and CD8+). Activation
of T-cells leads to the elimination of tumor cells by secretion of granzyme and perforin. However,
tumor cells that avoid the surveillance of immune system are able to release cytokines such as G-
CSF, M-CSF, VEGF and IL-3 in order to suppress myeloid cell maturation [5, 13, 14, 22, 28, 31].
Cancer cells use this as a defense mechanism to evade the immune system by decreasing the pro-
duction of mature myeloid cells in the body [5, 28].

Mathematical modeling of tumor growth has shown that the immune system has a vital role in
phenomena such as oscillations in tumor size, tumor inactivity, and spontaneous growth regression
[8]. While the modeling of the immune response against tumor started in 1986, a mechanistic
understanding from a spatial dynamics approach continues to lack [7]. The inhibition mechanism
that alters the balance between ImC and MmC has been studied to consider the interaction between
the tumor and the immune system. Kareva, Berezovkaya, and Castillo-Chavez [22] proposed a
system of ordinary differential equations (ODEs) to describe the growth rate changes of CD8+

T-cells, tumor cells, ImC, and MmC. Research suggests that when the number of tumor cells is
low and the immune system is strong enough, a patient can recover without treatment. Taking
Kareva, Berezovkaya, and Castillo-Chavez work as baseline, we incorporate a new element on the
study of tumor dynamics, empty space, which represents the impact of the available space left by
a cell after its death, which has not been theoretically studied [9].

The secretion of cytokines by tumor cells in the alveolar epithelium have spatial local effects
such as the inhibition of ImC maturation and the alteration of the immune cell’s role in killing
tumor cells from the tissue. Moreover, it is important to consider the spatial effects that cytokines
have on the interaction between tumor cells and the immune system and the empty space that a
cell can occupy.

Since the ODEs proposed in [22] do not describe local spatial interactions, we consider the
implementation of a stochastic Cellular Automaton model. Also, the CA model explores how local
effects of tumor defense mechanisms influence the spatial dynamics of tumor growth. These effects
are studied through the mean-field approximation approach of the stochastic Cellular Automaton
model through the local stability analysis of one tumor free equilibria (TFE). In order to simulate
the spatial dynamics of the immune response interaction, we consider the transition probabilities
from one state to another state occurring on a lattice with cardinal neighbors. In section 2, we
describe both models. In Section 3, we present the mathematical analysis of the mean-field ap-
proximation. In section 4, we present the results of the CA and MF simulations. In section 5, we
discuss the conclusion and implications of the project.

2 Methods
We use a Continuous-Time Markov Chain Cellular Automaton model with toroidal boundary
conditions in a two dimensional lattice to simulate the early stage of NSCLC adenocarcinoma based
on eight events governed by rules. In addition, we use a deterministic mean-field approximation
through ODEs, which grants us qualitative understandings of the system.
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2.1 Stochastic Cellular Automaton Model
Our approach is based on a Continous-Time Markov Chain (CTMC) stochastic Cellular Automa-
ton where the events are independent and the waiting time between each event is distributed
exponentially. Namely, we consider a continuous-time Poisson process for the transition events.
In order to model the spatial dynamics of the myeloid-tumor cells interactions, the cells interact
within a Von Neumann neighborhood.

The states E, T, M1 and M2 are the compartments that correspond to empty space, tumor cell,
immature myeloid cells and mature myeloid cells, respectively. The transition rate between each
state is shown in Figure 1. In Table 1, each parameter represents the rate in which an element of
each state can transition to a different state. Note that the transition events associated with the
parameters β, λ and θ depends on neighboring states of TC , T, and M2. Here, TC represents all
the non-tumor states (E, M1, M2).

We use a stochastic Cellular Automaton (CA) model with toroidal boundary conditions to
avoid boundary effects in simulations. Our CA model considers a two dimensional lattice since the
tissue we are modeling (i.e. the epithelial tissue in the alveolus) is one cell thick. In addition, for
early stages of NSCLC adenocarcinoma, there is only tumor cell growth in the specified tissue. The
simulation time is governed by the continuous time Poisson process in a markov chain. Waiting
times between events has an underlying exponential probability distribution with parameter TR
(sum of rates from all possible events) [27]. The simulation is limited to one event happening at
a time. In addition, every simulation begins with at least one tumor cell, and the placement of
tumor cells on the lattice is clumped in order to create the tumor’s "massed" nature. The relation
of each cell is compared with its four neighbors in the form of the von Neumann neighborhood
[27]. The CA is based on the transition events described in equations (1) - (8).

Table (1) Parameters associated to each transition event

Parameters Description Value Source
α Migration of ImC in response to tumor cells 100 day−1 Estimated
ψ1 Natural death of ImC 0.02 day−1 [22]
θ Maturation of ImC to MmC 0.02 day−1 Estimate
ψ2 Natural death of MmC 0.02 day−1 [22]
λ Proliferation of tumor cells 0.432 day−1 [10]
ψT Natural death of tumor cells 0.02 day−1 [22]
β Tumor death induced by MmC 0.0202 day−1 Estimate
κ1 Natural in-flow of ImC 10 day−1 Estimate
κ2 Natural out-flow of ImC 10 day−1 Estimate
g Inhibition of maturation of ImC by tumor cells 0.00125 day−1 Estimate
b Migration of ImC at half the maximum rate n2

5 Estimate

Let Rij→ii denote the rate at which an ij pair becomes an ii pair. Let Ri→j denote the rate at
which i cells become j cells in the lattice. Let Nij denote the number of j cells that are part of an
ij pair. We now give the following transition rates for the CA:

RTE→TT = λNTE (1)
RE→M1

= E(αT/(b+ T ) + κ1) (2)
RTM1→TM2

= (θ − g)NTM1
(3)

RT cM1→T cM2
= θNT cM1

(4)
RM1→E =M1(ψ1 + κ2) (5)
RM2→E =M2ψ2 (6)

RM2T→M2E = βNM2T (7)
RT→E = ψTT (8)

where,

TR = RE→M1 +RTE→TT +RT cM1→T cM2 +RTM1→TM2 +RM1→E+RM2→E+RM2T→M2E+RT→E
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Note that,
T c = {E,M1,M2}

and
NT cM1

= 4M1 −NTM1

We take the probability of an event occurring by the rate of the event divided by the total rate.
Rate (1) represents the tumor growth event that depends on the number of TE pairs times tumor
cell proliferation, λ. Rate (2) represents the tumor-dependent migration and natural inflow of ImC.
Note that for the tumor dependent migration rate given by E[α T

b+T ], as T → ∞, T
b+T → 1. This

means that α also represents the maximum rate of immature myeloid migration and b is the number
of tumor cells at which the immune system sends immature myeloid cells at half the maximum
rate. The natural inflow of ImC only considers the number of E cells in the lattice because it is not
dependent on neighboring states. Rate (3) represents the tumor-dependent maturation, which is
dependent on the number of TM1 pairs multiplied by (θ− g). We only consider θ ≥ g because we
want to make sure that the natural maturation of ImC is greater than the inhibition of maturation
of ImC by the presence of tumor cells. Rate (4) represents the natural maturation of ImC, which
is dependent on the number of TCM1 pairs. This event takes the number of TCM1 pairs times the
transition rate θ. Rate (5) represents the natural death of an ImC. Rate (6) represents the natural
death of an MmC. Rate (8) represents the natural death of a tumor cell. Notice how rates (5,6,8)
only depend on the quantity of the specified state multiplied by the parameter of the event (See
Table 1). Finally, rate (7) represents the death of a tumor cell by an MmC, which is dependent on
the number of M2T pairs. This rate is evaluated by the number of M2T pairs times the transition
rate θ.

M1 M2

E T

(4) (3)
θNTcM1 + (θ − g)NTM1

ψ2M2

(6)

(5)
M1(ψ1 + κ2)

(2)
E(α T

b+T
+ κ1)

(7) (8)
βNM2T + ψTT

λNTE

(1)

Figure (1) Flowchart of the State Variables

Parameter g represents the difference between the tumor’s influence on immature myeloid cells
and the stimulation of the immune system on the maturation rate of immature myeloid cells
[22]. Let g1 denote tumor influence delaying maturation of immature myeloid cells and g2 denote
immune system influence on maturation of immature myeloid cells. We have that g is given by
g = g1 − g2. If g is negative, that means that the immune system has a stronger influence on
myeloid cells’ maturation. Otherwise, tumor cells have a much greater inhibition influence on the
maturation of myeloid cells. Here, g1 takes the form of activation suppression of ImC caused by
the production of VEGF and other maturation-suppressing cytokines by the tumor[22]. The g2 is
a natural immune response to the presence of the tumor in the body that increases the stimulation
of ImC maturation. Moreover, we consider just the case when 0 < g ≤ θ in order to increase the
probability of the tumor dependent maturation event. This event is described by the rate (3).
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Figure (2) A visualization of the non-constant probability intervals that the Cellular Automaton
algorithm chooses from to determine which event to execute next.

ImC flow into and out of the lungs as blood continues to circulate throughout the body. Also,
inflow of ImC occurs when ImC identifies tumor cells [30]. If there are tumor cells and available
space, then a random E is chosen and changed to an M1. Our model simulates tumor proliferation
but not cancerous cell growth [25]. The tumor proliferation event randomly selects a TE pair and
updates the state E by T. Immature myeloid cells can mature to a mature myeloid cell as mentioned
before. The natural maturation event randomly select a T cM1 pair and the M1 changes to the
M2 state. On the other hand, ImC with a tumor neighbor have a lower probability of maturation
because of the tumor defense mechanism [22]. The tumor-dependent maturation event randomly
selects a TM1 pair and the M1 changes to the M2 state.

Moreover, ImC naturally die due to programmed cell death [21]. The ImC natural death event
randomly selects a M1 and replaces it with an E state. Analogously, MmC are removed from a
tissue due to programmed cell death [21]. The MmC natural death event randomly selects an M2

and replacessM2 with E. The MmC is able to identify tumor cells and secrete perforin \ granzyme
to kill tumor cells[16]. The tumor death event by MmC randomly selects a M2T pair and changes
it by an empty space. The programmed cell death of tumor cells generate empty spaces that can
become occupied [24]. The tumor natural death event randomly selects T and replaces it with E.
The simulation rules for the CTMC Cellular Automaton are given as follows:

(A) The simulation begins with selection of a random event based on rates and total rate.
Selection of random value between 0 and 1 satisfies that r ∼ U(0, 1). The value r translates
to the selection of an event represented in Figure 2.

(B) The simulation generates a random waiting time from an exponential distribution with pa-
rameter equal to the total rate. The time for the next event is given by ti+1 = ti+Exp(TR(ti)).

(C) For the execution of the event, the i-th event is chosen if

r ∈



i−1∑

j=0

Pj ,
i∑

j=0

Pj


 ,

where event number 1 is associated with transition E → M1, event number 2 is associated
with TE → TM1, and so on.
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Figure (3) Tumor Proliferation Event. A portion of the lattice with the color coded of each state.

Furthermore, Figure 3 shows an example of a step in the simulation of the CA. In this example,
the event that has been selected is tumor proliferation in which case, we consider the lattice screen-
shot to the left and the selection of a random TE pair (i.e. coordinates (3, 1) = E and (3, 2) = T ),
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then the E in the TE pair is replaced with a T which is represented by the lattice screen-shot to
the right.

2.2 Mean Field Approximation
A deterministic approach can be approximated through non-spatial interactions of the ImC, MmC,
tumor cells, and empty space from the Markov chain states. The mean field (MF) approximation
is given through the ODEs defined by the in-flows and out-flows of each state. Although the MF
allows for mathematical analysis in order to gain qualitative understanding of the system, it does
not consider local interaction such as spatial effects on the lattice. Instead, the MF approximation
considers global interactions of the state variables and assumes a well mixing. Here, well mixing
refers to different neighboring states of the center cell. Since the stochastic CA model considers
the number of pairs, we need a different approach to incorporate the number of pairs into the MF
model. For instance, we estimate the value of the number of TM1 pairs by taking the proportion
of tumor cells times the number of M1 cells, this gives the final result, (4θ − g TN )M1. We used a
similar approach for the other pairs described in the stochastic CA model (see Section 2.1).

dE

dt
= (ψ1 + κ2)M1 + ψ2M2 + βT

M2

N
+ ψTT − λT

E

N
− E(α

T

b+ T
+ κ1)

dM1

dt
= E(α

T

b+ T
+ κ1)− (ψ1 + κ2)M1 − (4θ − g T

N
)M1

dM2

dt
= (4θ − g T

N
)M1 − ψ2M2

dT

dt
= λT

E

N
− ψTT − βT

M2

N

(9)

Due to the interactions between the MmC and tumor cells, this model agrees with biological
assumptions such as the tumor-dependent migration of ImC, tumor death induced by MmC and
the natural exchange flow of ImC. The main interactions between the myeloid and tumor cells
are described in the flow chart below (See Figure 1). In addition, this model also represents the
tumor defense mechanism that inhibits the maturation of the ImC. This is represented by the rate
4θ−g TN . The approximation of tumor dependent maturation rate with TM1 pairs is represented by
the expression g TM1

N . We conclude this result because of two possible ImC maturation events that
can occur, the natural maturation rate and the tumor influenced maturation rate. The natural
maturation rate is expressed as θNTCM1

where the rate θ represents natural maturation which
is dependent on the number of TCM1 pairs. Equivalently, the natural maturation rate can be
expressed as θ(4M1−NTM1

). The tumor influenced maturation rate is expressed by (θ− g)NTM1
,

where we take the difference between the rate of natural maturation and maturation in response
to a tumor cell by the number of TM1 pairs. Combining both of these equations results in the
following expression: 4θM1 − gNTM1

.

3 Mathematical Analysis

3.1 Mean Field Approximation: Equilibria and Stability
The total population is constant because we consider a fixed lattice size, we can take N = E +
M1 +M2 +T and solve for E (i.e. E = N −M1−M2−T ) then substitute E = N −M1−M2−T
into our equations. Notice that the last three equations no longer have dependence on E, so we
can reduce our 4D system to a 3D system by eliminating dE

dt . We then obtain:

dM1

dt
= (N −M1 −M2 − T )(α

T

b+ T
+ κ1)− (ψ1 + κ2)M1 − (4θ − g T

N
)M1

dM2

dt
= (4θ − g T

N
)M1 − ψ2M2

dT

dt
= λT

(N −M1 −M2 − T )
N

− ψTT − βT
M2

N

(10)

Next, we consider the Jacobian associated with the reduced system:
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gT
N − αT

b+T − 4θ − κ1 − κ2 − ψ1 − Tα
b+T − κ1

gM1
N + (−M1 −M2 +N − T )

(
α
b+T − Tα

(b+T )2

)
− κ1 − Tα

b+T

4θ − gT
N −ψ2 − gM1

N
−TλN −TβN − Tλ

N −M2β
N +

(−M1−M2+N−T )λ
N − ψT − Tλ

N




Our Tumor Free Equilibrium is given by:

{
M1 →

κ1Nψ2

4θκ1 + 4θψ2 + κ1ψ2 + κ2ψ2 + ψ1ψ2
,M2 →

4θκ1N
4θκ1 + 4θψ2 + κ1ψ2 + κ2ψ2 + ψ1ψ2

, T → 0

}

Evaluating at the Tumor Free Equilibrium, we obtain the following matrix:


−4θ − κ1 − κ2 − ψ1 −κ1 Nα(4θ+κ2+ψ1)ψ2+bκ1(gψ2−(κ1+κ2+ψ1)ψ2−4θ(κ1+ψ2))

4bθκ1+b(4θ+κ1+κ2+ψ1)ψ2

4θ −ψ2 − gκ1ψ2

(κ1+κ2+ψ1)ψ2+4θ(κ1+ψ2)

0 0 −4βθκ1+λ(4θ+κ2+ψ1)ψ2−((κ1+κ2+ψ1)ψ2+4θ(κ1+ψ2))ψT
(κ1+κ2+ψ1)ψ2+4θ(κ1+ψ2)




with associated eigenvalues:

a1 =
1

2

(
−
√

16θ2 + 8θ(−κ1 + κ2 + ψ1 − ψ2) + (κ1 + κ2 + ψ1 − ψ2)2 − 4θ − κ1 − κ2 − ψ1 − ψ2

)
,

a2 =
1

2

(√
16θ2 + 8θ(−κ1 + κ2 + ψ1 − ψ2) + (κ1 + κ2 + ψ1 − ψ2)2 − 4θ − κ1 − κ2 − ψ1 − ψ2

)
,

a3 =
−4βθκ1 − ψT (4θ(κ1 + ψ2) + ψ2(κ1 + κ2 + ψ1)) + λψ2(4θ + κ2 + ψ1)

4θ(κ1 + ψ2) + ψ2(κ1 + κ2 + ψ1)
.

(11)

According to the Routh-Hurwitz stability criterion, the tumor free equilibrium is stable if and only
if all real parts of the eigenvalues are negative. In other words, the TFE is stable if and only if
a2 < 0 and a3 < 0, i.e.

0 < λ ≤ 4βθκ1
ψ2(4θ + κ2 + ψ1)

and | 4θ + κ1 + κ2 + ψ1 − ψ2 | ≥ 4
√
θκ1.

We calculated the basic reproductive number (R0) using the next generation operator [34].
When using the next generation method, we denote x = {x1, x2, ..., xn} to represent n tumorous
host compartments and y = {y1, y2, ..., ym} to represent m other host compartments. In addition,
we take the rate at which new tumor cells enter the compartment i as Fi and the transfer of cells
out of and into the ith compartment as −Vi. This is expressed as: d~x

dt = Fi − Vi.

Then F =
d

d~x
F
∣∣∣
TFE

and V =
d

d~x
V
∣∣∣
TFE

.

We then express the rate at which individuals in compartment j generate new tumor cells in com-
partment i by the average length of time a cell spends in a single visit to compartment j as FV −1.
The R0 is then given by the dominant eigenvalue for FV −1 (i.e. ρ(FV −1)). In our case, we obtain
a single value for FV −1, which is the resulting R0 value.
Now, in our 3D system, x = {T} and y = {E,M1,M2} so F = λT E

N and V = ψTT + βT M2

N .
We then obtain F by evaluating the partial derivative of the x by the desired compartment
∂(λT E

N )

∂T = λE
∗

N . Similarly, we obtain V −1 by evaluating the partial derivative of the y by the

desired compartment: ∂(βT
M2
N +ψTT )

∂T = β
M∗

2

N +ψT . Then, by taking FV −1 we obtain the following:

R0 =
λE∗

NψT + βM∗2
(12)

Now, we substitute values from the tumor free equilibrium:

R0 =
λψ2(4θ + κ2 + ψ1)

4βθκ1 + 4θψT (κ1 + ψ2) + ψ2ψT (κ1 + κ2 + ψ1)
. (13)

We perform some simplification of the R0 to best interpret the biological meaning. Please refer to
Appendix for the step by step simplification. The simplified R0 result yields:

R0 =
λ

ψT (RM1 +RM2RM1 + 1) + βRM2RM1

; where RM1
=

κ1
4θ + κ2 + ψ1

, RM2
=

4θ

ψ2
(14)
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Hence, we can notice that the terms RM2
and RM1

are related with the quotients between the
inflows and outflows of the statesM2 andM1, respectively. These quotients represent the influence
of the ImC and MmC on tumor growth. In other words, the increment of MmC and ImC results
in the decrement of R0 for tumor growth.
The quantity RM2

is expressed as the quotient of natural maturation of myeloid cells (θ), and
natural death of MmC, (ψ2). For MmC to increase in quantity, their maturation rate must be 4
times faster than their death rate. On the other hand, the quantity RM1

is expressed as the quotient
of natural inflow of ImC into the system, (κ1), to the sum of the rates of natural maturation rate
of ImC, (θ), the outflow of ImC rate from the system, (κ2), and the natural death rate of ImC, ψT .
For ImC to increase in quantity, their inflow rate must be faster than 4 times the sum of natural
maturation rate, outflow, and natural death rate.

In addition, the term RM1
RM2

(β +ψT ) represents the influence of the ImC and MmC rates to
the tumor death outflows (natural andM2 dependent death). Enough increment of the parameter θ
results in the critical maturation of most myeloid cells, which can be interpreted as the effect of the
immune system on the total outflow rate of tumor cells. In other words, this increment contributes
decreasing the R0 for a stable tumor free equilibria. Under the assumption that RM1

= RM2
= 1

we get R0 = λ
3ψT+β

, which means that under a uniform flow interchange ofM1 andM2 the natural
tumor death has more influence in the stability of the tumor free equilibria.
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Figure (4) 10 x 10 Lattice. Initial Conditions: (1) T0 = 1,M1,0 = 20,M2,0 = 10 (2) T0 =
30,M1,0 = 20,M2,0 = 10 (3) T0 = 60,M1,0 = 20,M2,0 = 10.
R0 < 1. Parameter Values Used: α = 4, ψ1 = 0.005, θ = 0.2, ψ2 = 0.02, λ = 0.4, ψT = 0.025, β =
0.015, κ1 = 0.5, κ2 = 0.5, g = 0.3, b = 5.
R0 > 1. Parameter Values Used: α = 4, ψ1 = 0.01, θ = 0.2, ψ2 = 0.02, λ = 0.8, ψT = 0.005, β =
0.01, κ1 = 0.2, κ2 = 0.2, g = 0.2, b = 50.

Figure 4 shows two simulations of the mean field approximation when R0 < 1 and R0 >
1, respectively. Notice that for all three realizations of R0 > 1 for tumor growth, a steady-
state endemic is achieved which is in agreement with the value of the R0. In addition, all three
realizations show that the ImC go to zero and that the MmC reach a steady-state by day 500 of
the simulation. As for all three realizations of R0 < 1 for the tumor, tumor death is achieved by
day 100 which is in agreement with the value of the R0. Also, we notice that the MmC reach a
steady-state while ImC goes to zero.

4 Results
In this section, we present the results and a brief interpretation of the simulations for the CA
model. We manipulated the default parameters of Table 1 to observe stochastic tumor endemic,
tumor extinction, and tumor-myeloid coexistence scenarios through parameter sweep simulations.

4.1 CA Simulation: The Influence of lattice size on tumor size
In this project, we accounted for space as a major piece in the behavior of our system. A question
we were concerned about included the effect of the lattice size (n) on the tumor cells’ success rate
at reaching steady-state. In other words, we wanted to address under what dimension of the lattice
tumor is most likely to persist. We ran simulations using the Cellular Automaton in which the
initial conditions of tumor cell quantity is one tenth of the lattice size. Figure 5 shows that the
proportion of tumor cells at steady state, T

n2 , decreases as the lattice size increases. We can notice
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that the behavior is similar to the function f(x) = 1
x2 which means that the steady states of the

tumor cells do not present a significant change through an increment of the lattice size.

Figure (5) Proportion of tumor cells at steady-state with respect to n by n lattice size.
Parameters used: α = 0.6, ψ1 = 0.1, θ = 0.9, ψ2 = 0.1, λ = 0.9, ψT = 0.05, β = 0.05, κ1 = 0.05, κ2 =
0.05, g = 0.1, b = 3

4.2 CA Simulation: Endemic Tumor

Figure (6) Endemic tumor spread during 400 days. Parameter values used: b = 102

5 , g = 0.00125,
α = 100, ψ1 = 0.02, ψ2 = 0.02, ψT = 0.02, β = 0.0202, λ = 0.432, θ = 0.002, κ1 = 10, and κ2 = 10.
The initial conditions are: T0 = 20, M1,0 = 0, and M2,0 = 0. Size of of the lattice: 10 by 10. T
cells: red, MmC: blue, ImC: green.

If the value of the natural maturation rate of ImC (θ) decreases, we expect tumor cells to
proliferate without control because less MmC are available to kill tumor cells. This idea is confirmed
by the results shown in Figure 6, in which tumor cells (red) reach a steady-state behavior towards
the end of the 400 days. The MmC (blue) become extinct before the ImC because the number
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of tumor cells increases rapidly and inhibit the maturation of ImC. In this scenario, the immune
system is not sufficient to eradicate tumor cells. Also, note that the tumor cells reach a boundary
condition given by the size of the lattice. In other words, this simulation represents tumor spread
limited by the size of the tissue (lattice).

4.3 Tumor and Mature Myeloid Cells Coexistence
Coexistence between the myeloid cells and the tumor cells occurs when both persist in surviving
and fail at eradicating each other despite increase and decrease in quantity throughout time. If
the rate at which the tumor cells are killed by MmC (β) decreases, we expect to see an increase in
the survival of tumor cells. This idea is confirmed by Figure 7, where we can see tumor-myeloid
interactions for a small value of the parameter g, that is the inhibition of maturation of ImC by
tumor cells. Hence, we can simulate an earlier stage of tumor growth expansion for the case when
tumor cells evolve to avoid immunosurveillance. Moreover, in Figure 8, the tumor-myeloid cells
interactions are shown in many different stochastic simulations. The coexistence behavior shows
that the population size of ImC is almost eradicated which means that maturation is high when
most of these cells are maturing. This trend continues throughout 5000 days.

Note that in Figure 7 the population of ImC does not undergo extinction compared to the ImC
population of Figure 8. Indeed, in Figure 7 there is an interaction between tumor, MmC, and
ImC, whereas in Figure 8 the only interaction that occurs is between tumor and MmC. Moreover,
in Figure 8 the only events that occur are the natural death of MmC, the natural death rate of
tumor cells, and tumor death by MmC. This explains why the interaction between tumor and
MmC appear as mirror images of each other (See Figure 8).

Figure (7) Tumor and myeloid Coexistence simulation. Size of lattice is 10 by 10, and parameter
values are: b = 102

5 , g = 0.00125, α = 100, ψ1 = 0.02, ψ2 = 0.02, ψT = 0.02, β = 0.00202,
λ = 0.432, θ = 0.02, κ1 = 10, and κ2 = 10. The initial conditions are: T=20, M1 = 0, and
M2 = 0. With b = n2

5 we obtain tumor extinction. T cells: red, MmC: blue, Imc: green.

4.4 CA Simulation: Tumor extinction
We run a simulation with the values of Table 2 and we obtained a scenario in which we expect to
observe tumor extinction driven by MmC. As seen in Figure 9, tumor cells reach a peak approxi-
mately between the first to the fiftieth days interval and then undergoes extinction. Whereas the
MmC increase, and the ImC population remains low but do not undergo extinction.
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Cellular Automaton: Survival of Immune System and Tumor

Figure (8) Five stochastic simulations for the tumor-myeloid cells interaction, using a 10 by 10
lattice and the following parameter values: b = 10, g = 0.15, α = 1, ψ1 = 0.02, ψ2 = 0.02,
ψT = 0.015, β = 0.01, λ = 0.6, θ = 0.2, κ1 = 0.2, and κ2 = 0.2. The initial conditions are: T0 = 1,
M1,0 = 0, and M2,0 = 0. T cells: red, MmC: blue, ImC: green.
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Cellular Automata: Tumor Extinction by MmC

Figure (9) Tumor extinction by the immune system with a lattice size 10 by 10. Tumor = Red,
ImC = Green, MmC = Blue. The parameter values used are the same as in Table 1. The initial
conditions are: T0 = 20, M1,0 = 0, and M2,0 = 0. T cells: red, MmC: blue, Imc: green.

4.5 Parameter Sweep
We identified the maturation rate of proliferation of tumor cells rate (λ), tumor induced death
by MmC rate (β), ImC natural maturation (θ), and the natural in-flow of ImC (κ1), as the most
important parameters that affect the spatial dynamics of tumor progression. To observe the effects
of each parameter on the tumor’s behavior, we conducted simulations of parameter sweeps through
the Cellular Automaton for each parameter mentioned above, and look at the relationship they
have with the equilibrium states of T, M1 and M2.

Let’s consider the parameter sweep of λ:
For the parameter sweep of λ in figure 10, the equilibrium values of each state were calculated

by taking the end values of each realization. Three realizations were ran in this simulation. Recall
that λ represents tumor growth. In addition, notice that the first two values selected to simulate,
along with the other parameter values, create an R0 value less than one. For these first two values,
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Figure (10) Parameter sweep on λ with values of 0.0932, 0.105, 0.432 and 0.6, using a 10 by 10
lattice size. End time = 500 days.
Parameter Values: α = 100, ψ1 = 0.02, ψ2 = 0.02, λ = 0.432, ψT = 0.02, β = 0.00202, κ1 = 10,
κ2 = 10, b = n2

5 , θ = 0.02, g = 0.00125. Initial conditions: T0 = 20, M1,0 = 0,M2,0 = 0. End Time
= 500 days.

we notice a tumor free equilibrium. This is due to a lower tumor growth rate compared to the rate
at which the states influence decay of tumor growth. The last two λ values along with the other
parameter values indicate an R0 greater than one. The resulting simulations indicate that the
tumor equilibrium reaches an endemic. Here, the parameter sweep of λ results in the conclusion
that the mean-field approximation is able to captivate the relation between tumor growth and the
tumor equilibria; results also expressed via the Cellular Automaton (CA).

Let’s now consider the parameter sweep of β:
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Figure (11) Parameter sweep on β with values between 0 and 0.16, using a 10 by 10 lattice size.
End time = 500 days.
Parameter Values: α = 100, ψ1 = 0.02, ψ2 = 0.02, λ = 0.432, ψT = 0.02, κ1 = 10, κ2 = 10, b = n2

5 ,
θ = 0.02, g = 0.00125. Initial conditions: T0 = 20, M1,0 = 0,M2,0 = 0. End Time = 500 days.

For the parameter sweep of β in figure 11, the equilibrium values of each state were calculated
by taking the end values of each realization. Three realizations were ran in this simulation. Recall
that the parameter β represents the death of a tumor by MmC. The first two values, along with
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the values of the other parameters, create an R0 value greater than one. The first value shows a
clear case that the tumor equilibrium is endemic due to a greater rate for tumor growth compared
to the rate at which tumor growth is inhibited. We notice here that the mean-field approximation
is able to represent the behavior of this parameter on the tumor equilibrium. While the second β
value indicates that the value of R0 is greater than one, the simulation shows that there is a tumor
free equilibrium. This contradicting information can be due to the mean-fields inability to capture
the spatial effects that the CA expresses. The last three simulated values of β, along with the
other parameter values, create an R0 less than zero, which implies a tumor free equilibrium. This
is due to a lower tumor growth rate compared to the rate at which other states influence decay of
tumor growth. Let’s now consider the parameter sweep of θ:
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Figure (12) Parameter sweep on θ with a range from 0.00125 to 0.1, using 10 by 10 lattice size.
Parameter Values: α = 100, ψ1 = 0.02, ψ2 = 0.02, λ = 0.432, ψT = 0.02, β = 0.0202, κ1 = 10,
κ2 = 10, g = 0.00125, b = n2

5 . Initial conditions: T0 = 20, M1,0 = 8,M2,0 = 4. End Time = 500
days.

For the parameter sweep of θ in figure 12, the equilibrium values of each state were calculated
by taking the end values of each realization. Two realizations were ran in this simulation. Recall
that θ represents the rate of maturation of ImC. Notice how the increase in rate of the MmC and
ImC makes the tumor equilibrium go to zero due to the increase in probability that a tumor dies by
the influence of an MmC. This is justified by the increase in the equilibrium of MmC as evidence
of increasing maturation rate. In addition, we notice that as the equilibrium of MmC increases
due to the parameter increase, there is a direct relationship with the decrease in equilibrium of the
ImC. This can be justified by the fact that the MmC cells directly reduces the number of ImC.

Let’s now consider the parameter sweep of κ1:
For the parameter sweep of κ1 in figure 13, the equilibrium values of each state were calculated

by taking the end values of each realization. Three realizations were ran in this simulation. Recall
that the parameter κ1 represents the rate of ImC in-flow. As our in-flow of ImC increases, the
tumor equilibrium steadily decreases. The M1 equilibrium seems to not fluctuate as we increase
the parameter. However, we do notice that there is an increase in M2 equilibrium. This can be
justified by an increase in the maturation of ImC as there is an increase in the in-flow of ImC.
The first two values of κ1, along with all other parameter values, indicate an R0 greater than one,
which represents a tumor endemic equilibrium. The results of tumor equilibrium for these first two
values of κ1, show a correct approximated portrayal of the mean-field in comparison with the CA
results. However, the last two values of κ1, along with the all other parameters, indicate an R0

value less than one, which represents a tumor free equilibrium. In this case, the R0 value of the
mean-field approximation does not correctly represent the results of the CA since we notice that
there is still an endemic tumor equlibria. This can be due to the mean-fields inability to model
the spatial effects of the system. It is worth noting that if we continue to continue to increase the
parameter value of κ1, the tumor will eventually die.
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Figure (13) Parameter sweep on κ1 with a range from 20 to 50, using 10 by 10 lattice size.
Parameter Values: α = 100, ψ1 = 0.02, ψ2 = 0.02, λ = 0.432, ψT = 0.02, β = 0.00202, κ2 = 10,
g = 0.00125, b = n2

5 , θ = 0.02. Initial conditions: T0 = 20, M1,0 = 0,M2,0 = 0. End Time = 500
days.

4.6 Stochastic Cellular Automaton vs Mean Field Approximation
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Figure (14) Mean-Field simulations considering parameters used in CA simulations of Figure 6,
and 9. Left: Endemic tumor growth. Right: Tumor extinction (right).

On one hand, we notice similar behavior in figures 14 and 6 for a tumor endemic behavior with
R0 = 7.17 which means that the tumor free equilibria is unstable. The main difference between
both models is given by the steady state of tumor cells where 80 stands for the CA model and 40
for the MF approximation. On the other hand, we can notice that both figures 14 and 9 represent
tumor extinction behavior for the tumor steady state of each simulation. Analogously, we have
that the steady state at t = 400 days is approximately T ∗ = 20 for the CA and T ∗ = 0 for the MF
approximation. From both scenarios we can conclude that the MF approximation underestimates
the R0 for the tumor survival threshold in the CA.

5 Discussion
In this project, we studied the spatial dynamics of non-small cell adenocarcinoma at the initial
stages in the epithelial tissue of an alveolus. A stochastic Cellular Automaton (CA) model was
developed in the form of a continuous-time Markov chain to capture the local effects of tumor cells’
defense mechanism (the secretion of cytokines that inhibit the maturation of immature myeloid
cells). Each cell is in one of the following states: empty, immature myeloid cell, mature myeloid
cell, or tumor. All transition events between one state variable to another are independent and
the waiting time between each event is distributed exponentially. For this Poisson process, the
states are given by a Markov chain where the state variables are distributed in a Von Neumann
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neighborhood with toroidal boundary conditions. We noticed that the lattice size do not affect the
steady state of tumor cells for the CA model as mentioned before in figure 5.

In addition, we considered the mean-field approximation of the stochastic Cellular Automaton
through an ODE system to observe non-spatial interactions of immature myeloid cells, mature
myeloid cells, and tumor cells from a deterministic perspective. The ODE system is defined by the
difference between the in-flows and out-flows of each state. Through the mean-field approximation,
we analyzed the local stability related with the tumor-free equilibrium of the system. In contrast
to Cellular Automaton, this approximation allowed the analysis of global interactions instead of
local interactions, assuming a well mixing between variables. In addition, we found a R0 and
addressed its meaning with regards to the tumor free equilibrium. We provided a simulation of
the mean-field conditions that satisfy an R0 < 1 and R0 > 1 which describes a tumor extinction

The parameters used in Figure 7 and 8 for the Cellular Automaton simulations show that there
exists a co-existence between mature myeloid cells and tumor cells. These suggest that despite the
surpassing of mature myeloid cell quantity over tumor cell quantity, it is not sufficient for tumor
eradication. The possibility of coexistence implies two things. First, despite the ability of mature
myeloid cells to mass to a quantity greater than tumor cell numbers (Figure 9), the tumor cell
population is able to adjust their defense mechanism and exploit space in such a way that allows
them to survive and evade eradication. Second, despite tumor cells ability to mass to quantities
greater than myeloid cell numbers (Figure 9), myeloid cells can still maintain a steady population
count. This co-existence can be explained by tumor immunoediting phases: designed elimination,
equilibrium, and escape [29]. The immune system tries to eradicate tumor cells from the body but
is not always successful. This causes surviving tumor cells to evolve and proliferate [29, 23]. This
cycle continues and surviving tumor cells continue to evolve. The tumor cells that evolve become
better at evading the immune system, develop resistance to other physical attacks, and are more
effective at suppressing anti-tumor immune responses which leads to the escape phase [29, 33]. In
particular, tumor cells induce CD11b+Gr-1+ cells that suppress myeloid cells in order to evade the
immune system [33].

We swept the most critical parameters related with the tumor growth (θ, β, λ, and κ1) through
CA simulations in order to look for critical behaviors of the system. We found a set of ranges to
analyze for four parameters (θ, β, λ and κ1) based on R0 evaluations less than one and greater
than one. This allowed for a comparison of the results between the mean-field approximation and
the cellular automaton in which case there were various situations where the mean-field results
(the evaluated R0 based on parameter values simulated) did not relate to the results from the
cellular automaton simulations. This ultimately allowed us to notice the limitation of the mean-
field approximation in its inability to model the spatial dynamics of the system. We obtained three
equilibrium points, one tumor free and at least one tumor endemic (See Figure 4). We obtained
an expression for R0 and performed simulations on tumor growth for R0 < 1 and 1 < R0 at the
tumor free-equilibrium in which case our tumor went to extinction and steady-state, respectively.

In Figure 14 we used the same parameter values for tumor endemic as in Figure 6 and for
tumor extinction as in Figure 9. The results of Figure 14 underestimates the results of Figure 6
and 9. For instance, the results of the stochastic cellular automaton simulations of tumor endemic
shows that the number of tumor cells is around 80, whereas the mean field simulations suggest that
the number of tumor and immature myeloid cells are around 40. Similarly, for tumor extinction,
the results of the stochastic cellular automaton shows that the number of mature myeloid cells
is around 80, whereas in the mean field simulations the number of mature myeloid cells reach a
boundary condition given by the total number of cells of the simulation.

Figure 6 represent cases of rapid tumor spread. The proportion of initial tumor cells with
respect to the lattice size is 1

5 . After the first 50 days, tumor cells reach a boundary condition
given by the lattice size. At this stage, the tumor cells are defined as carcinoma in situ, which is
a group of tumor cells that are found on the same tissue where they arose [4]. However, due to
the aggressive behavior of tumor spread it is possible for this clump of tumor cells to spread to
invade main bronchus and visceral pleura [32]. The stage in which tumor cells overcome immune
recognition and become clinically noticeable is also known as scape stage [6]. Moreover, tumor
cells in the escape stage are able to secrete cytokines, as a defense mechanism, that leads to an
enhanced tumor proliferation and metastasis [6]. Note that manipulating the rates of inhibition of
maturation of immature myeloid cells by tumor cells (g), tumor death induced by mature myeloid
cells (β), and maturation of immature myeloid cells (θ), we can obtain a change in the behavior of
tumor cells and how they spread in the lattice. These findings could lead to the implementation of
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new cancer immunotherapies that boost the activation of mature myeloid cells against tumor cells
in order to halt tumor spread and metastasis. Several studies have shown that mature myeloid cells
are able to recognize and present tumor cell-derived molecules to T-cells, which are responsible to
kill tumor cells by the secretion of perforin [22, 14, 31, 5, 28].

A large number of mature myeloid cells can kill tumor cells and decrease the tumor population,
as seen in Figure 9. Nowadays, mature myeloid cell-based immunotherapy is able to enhance the
production of mature myeloid cells, thus increasing the number of tumor cells that are presented
to T-cells for their elimination [11]. Furthermore, our stochastic Cellular Automaton model and
Mean Field approximation confirms the potential efficacy of myeloid cell-based immunotherapies,
as seen in Figure 12, increasing the value of θ from 0.01 to 0.04 affect the steady state of tumor
cells and mature myeloid cells. This is, small values of θ promotes tumor endemic tumor spread,
whereas high values of θ lead to an increase in the population of mature myeloid cells and tumor
extinction despite the tumor defense mechanism. This result is also confirmed by our R0 (See
Figure 4).

6 Conclusions
The discrete space of our stochastic CA model enables us to study the spatial dynamics of cancer
at the cell-to-cell interaction level. Other key aspects of our model are the inclusion of immature
myeloid cells migration in response to tumor cells, the local effects of the defense mechanism of
tumors against maturation of myeloid cells, and the empty space that a cell leaves after death.
Nowadays, myeloid cell-based immunotherapies focus on raising the levels of mature myeloid cells
which are able to kill and present tumor cells to T-cells, thus stimulating the immune system
to fight tumor cells and halt tumor proliferation and metastasis. Our model enables researchers
to study the three phases of immunoediting: elimination equilibrium and scape, and gain more
insight about the complex interactions between the immune system and tumor cells at early stages
of non-small cell adenocarcinoma.

7 Future Work
Despite the results of this project, more stochastic Cellular Automaton simulations with a bigger
lattice size and for a greater number of days are needed in order to examine more effective can-
cer treatment strategies among practitioners and medical doctors in the field. Moreover, further
analysis on the behavior of tumor cells and their interaction with the immune system would help
researchers gain a deeper understanding about the mechanistic behavior of caner. In addition,
similar simulations can be implemented to study the behavior of cell competition and its effects
on the tissue.
For the mean-field approximation, we considered an expected value approximation of the number
of TM1 and TM2 pairs. Future works can be done on finding the actual expected values of TM1

and TM2 pairs in order to best implement the mean-field approximation. Pair-approximations
could also be considered in future work because they will allow more accurate approximations of
the spatial dynamics for the system.
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9 Appendix

9.1 R0 Computation
In section 3.1, for the equation (28) consider the following computation in order to get (29):

R0 =
λψ2(4θ + κ2 + ψ1)

4βθκ1 + 4θψT (κ1 + ψ2) + ψ2ψT (κ1 + κ2 + ψ1)

R0 =
λ

4θ(βκ1+(κ1+ψ2)ψT )+(κ1+κ2+ψ1)ψ2ψT
ψ2(4θ+κ2+ψ1)

R0 =
λ

4θ(βκ1+κ1ψT )+κ1ψ2ψT+(4θ+κ2+ψ1)ψ2ψT
ψ2(4θ+κ2+ψ1)

R0 =
λ

ψT + κ1(4θβ+4θψT+ψ2ψT )
ψ2(4θ+κ2+ψ1)

R0 =
λ

ψT + 4θβκ1

ψ2(4θ+κ2+ψ1)
+ 4θψTκ1

ψ2(4θ+κ2+ψ1)
+ κ1ψT

4θ+κ2+ψ1

R0 =
λ

ψT + γκ1(
β+ψT
ψ2

+ ψT
4θ )

where

γ =
4θ

(4θ + κ2 + ψ1)

R0 =
λ

ψT +RM2
(RM1

(β + ψT + ψT
RM2

))

=
λ

ψT (RM1
+ 1) +RM2

RM1
(β + ψT )

=
λ

ψT (RM1
+RM2

RM1
+ 1) + βRM2

RM1

=
λ

ψT (RM1
+RM2

RM1
+ 1) + βRM2

RM1

where

RM1
=

κ1
4θ + κ2 + ψ1

, RM2
=

4θ

ψ2

(15)
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9.2 Stochastic Realization: Clustered Tumor Initial Conditions

Initial Lattice Lattice After Event 96 Lattice After Event 192 Lattice After Event 288

Lattice After Event 384 Lattice After Event 480 Lattice After Event 576 Lattice After Event 672

Snapshots of Cellular Automaton Simulation

Figure (15) Sample stochastic CA simulation to visualize dynamics on the lattice.

References
[1] How does the immune system work? https://www.ncbi.nlm.nih.gov/pubmedhealth/

PMH0072548/. Accessed: 2018-07-10.

[2] Immune system. https://www.ncbi.nlm.nih.gov/pubmedhealth/PMHT0025680/. Accessed:
2018-07-10.

[3] Key statistics for lung cancer. https://www.cancer.org/cancer/
non-small-cell-lung-cancer/about/key-statistics.html. Accessed: 2018-07-10.

[4] Nci dictionary of cancer terms. https://www.cancer.gov/publications/dictionaries/
cancer-terms/def/carcinoma-in-situ/. Accessed: 2018-07-20.

[5] B. Almand, J. I. Clark, E. Nikitina, J. van Beynen, N. R. English, S. C. Knight,
D. P. Carbone, and D. I. Gabrilovich, Increased production of immature myeloid cells in
cancer patients: a mechanism of immunosuppression in cancer, The Journal of Immunology,
166 (2001), pp. 678–689.

[6] V. K. Anagnostou and J. R. Brahmer, Cancer immunotherapy: a future paradigm shift in
the treatment of non–small cell lung cancer, Clinical Cancer Research, 21 (2015), pp. 976–984.

[7] R. J. de Boer and P. Hogeweg, Interactions between macrophages and t-lymphocytes:
tumor sneaking through intrinsic to helper t cell dynamics, Journal of theoretical biology, 120
(1986), pp. 331–351.

[8] L. G. de Pillis, W. Gu, and A. E. Radunskaya, Mixed immunotherapy and chemotherapy
of tumors: modeling, applications and biological interpretations, Journal of theoretical biology,
238 (2006), pp. 841–862.

[9] A. Di Gregorio, S. Bowling, and T. A. Rodriguez, Cell competition and its role in the
regulation of cell fitness from development to cancer, Developmental cell, 38 (2016), pp. 621–
634.

[10] A. Diefenbach, E. R. Jensen, A. M. Jamieson, and D. H. Raulet, Rae1 and h60
ligands of the nkg2d receptor stimulate tumour immunity, Nature, 413 (2001), p. 165.

94



[11] D. Escors, Tumour immunogenicity, antigen presentation, and immunological barriers in
cancer immunotherapy, New journal of science, 2014 (2014).

[12] O. Finn, Immuno-oncology: understanding the function and dysfunction of the immune sys-
tem in cancer, Annals of oncology, 23 (2012), pp. viii6–viii9.

[13] O. J. Finn, A believer’s overview of cancer immunosurveillance and immunotherapy, The
Journal of Immunology, 200 (2018), pp. 385–391.

[14] D. I. Gabrilovich, S. Ostrand-Rosenberg, and V. Bronte, Coordinated regulation of
myeloid cells by tumours, Nature Reviews Immunology, 12 (2012), p. 253.

[15] S. I. Grivennikov, F. R. Greten, and M. Karin, Immunity, inflammation, and cancer,
Cell, 140 (2010), pp. 883 – 899.

[16] W. J. Grossman, J. W. Verbsky, W. Barchet, M. Colonna, J. P. Atkinson, and
T. J. Ley, Human t regulatory cells can use the perforin pathway to cause autologous target
cell death, Immunity, 21 (2004), pp. 589–601.

[17] D. Hanahan and R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, 144
(2011), pp. 646 – 674.

[18] J. M. Hanna and M. W. Onaitis, Cell of origin of lung cancer, Journal of carcinogenesis,
12 (2013).

[19] M. A. Hayat, Methods of Cancer Diagnosis, Therapy and Prognosis: General Methods and
Overviews, Lung Carcinoma and Prostate Carcinoma, vol. 2, Springer Science & Business
Media, 2008.

[20] N. C. Institute, What is cancer? https://www.cancer.gov/about-cancer/
understanding/what-is-cancer. Accessed: 2018-07-10.

[21] W. J. Janssen, D. L. Bratton, C. V. Jakubzick, and P. M. Henson, Myeloid cell
turnover and clearance, Microbiology spectrum, 4 (2016).

[22] I. Kareva, F. Berezovskaya, and C. Castillo-Chavez,Myeloid cells in tumour–immune
interactions, Journal of biological dynamics, 4 (2010), pp. 315–327.

[23] C. M. Koebel, W. Vermi, J. B. Swann, N. Zerafa, S. J. Rodig, L. J. Old, M. J.
Smyth, and R. D. Schreiber, Adaptive immunity maintains occult cancer in an equilibrium
state., Nature, 450 (2007), pp. 903 – 907.

[24] V. Labi and M. Erlacher, How cell death shapes cancer, Cell death & disease, 6 (2016),
p. e1675.

[25] A. Lanzavecchia and F. Sallusto, Dynamics of t lymphocyte responses: intermediates,
effectors, and memory cells, Science, 290 (2000), pp. 92–97.

[26] J. C. Liu and J. A. Ridge, Chapter 67 - what is cancer?, in Abernathy’s Surgical Secrets
(Seventh Edition), A. H. Harken and E. E. Moore, eds., Elsevier, seventh edition ed., 2018,
pp. 307 – 310.

[27] N. Margolus and T. Tommaso, Cellular Automata Machines: A New Environment for
Modeling, MIT Press Cambridge, MA, USA c©1987, 1987.

[28] D. Marvel and D. I. Gabrilovich, Myeloid-derived suppressor cells in the tumor microen-
vironment: expect the unexpected, The Journal of clinical investigation, 125 (2015), pp. 3356–
3364.

[29] K. Movahedi, M. Guilliams, J. Van den Bossche, R. Van den Bergh, C. Gysemans,
A. Beschin, P. De Baetselier, and J. A. Van Ginderachter, Identification of discrete
tumor-induced myeloid-derived suppressor cell subpopulations with distinct t cell–suppressive
activity, Blood, 111 (2008), pp. 4233–4244.

[30] K. Murphy and C. Weaver, Janeway’s immunobiology, Garland Science, 2016.

95



[31] P. Oberoi, R. A. Jabulowsky, H. Bähr-Mahmud, and W. S. Wels, Egfr-targeted
granzyme b expressed in nk cells enhances natural cytotoxicity and mediates specific killing of
tumor cells, PLoS One, 8 (2013), p. e61267.

[32] M. Reck, S. Popat, N. Reinmuth, D. De Ruysscher, K. Kerr, and S. Peters,
Metastatic non-small-cell lung cancer (nsclc): Esmo clinical practice guidelines for diagnosis,
treatment and follow-up, Annals of oncology, 25 (2014), pp. iii27–iii39.

[33] J. B. Swann and M. J. Smyth, Immune surveillance of tumors, The Journal of clinical
investigation, 117 (2007), pp. 1137–1146.

[34] P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold en-
demic equilibria for compartmental models of disease transmission, Mathematical biosciences,
180 (2002), pp. 29–48.

[35] J. E. Visvader, Cells of origin in cancer, Nature, 469 (2011), p. 314.

96



The Effect of Gonadotropin-Releasing Hormone

(GnRH) on the Regulation of Hormones in the

Menstrual Cycle: A Mathematical Model

Shanell S. George1, Laura O. Mora Mercado2, Corina Y. Oroz3, Darwin
X. Tallana-Chimarro4, Juan R. Melendez-Alvarez5, Anarina L. Murrillo6,

Carlos W. Castillo-Garsow7 and Karen R. Ŕıos-Soto2
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Abstract

Gonadotropin Releasing Hormone (GnRH) is the drving force for hormonal regu-
lation during the menstrual cycle. GnRH signals the anterior pituitary gland to
secrete follicle stimulating hormone (FSH) and luteinizing hormone (LH) which
promotes the release of estradiol (E2) and progesterone (P4). Interferences in the
cyclic interactions have been shown to cause irregularities in the menstrual cy-
cle. In this study, the non-linear dynamics of GnRH, FSH, LH, E2, and P4 are
examined. A simplified model of six non-linear ordinary differential equations is
developed to model the effect of GnRH on the dynamics of hormones in the men-
strual cycle. A mathematical analysis is performed to observe the regulation of
GnRH in a monthly cycle. Our findings suggest that the relationship between E2

and GnRH plays an important role in concentrations and patterns of release of
the hormones involved in the menstrual cycle.

1 Introduction

Understanding the structural mechanisms of the female menstrual cycle is nec-
essary to gain a better understanding of the female reproductive system and conditions
that may affect it. This is critical given that roughly 50.5% of the U.S. population is
female [2]. The menstrual cycle is defined as the hormonal regulation of three stages:
follicular phase, ovulation, and luteal phase. The menstrual cycle is regulated by the en-
docrine system through a series of feedback mechanisms and hormonal interactions. The
functional process of the menstrual cycle is initiated by the secretion of gonadotropin
under the influence of GnRH. The signaling processes between the hypothalamus, pi-
tuitary, and ovaries (also referred to as the hypothalamic-pituitary-ovarian axis) are
critical for the regulation and maintenance of a normal cycle. On average, the men-
strual cycle should occur 21 to 35 days [1, 4]. However, any physiological factors can
alter the length of the cycle causing extreme variability.
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External and internal pressures can alter the length of the cycle causing extreme
variability. One of these abnormalities is the functional hypothalamalic amenorhera
(FHA), which is the absence of menstruation for a period of three months or greater
due to a perturbance in the signaling of gonadotropin releasing hormone (GnRH) [6].
A regulated pulse rate of GnRH to the hypothalamus is vital to the signaling process
that begins the secretion of follicle stimulating hormone (FSH) and luteinizing hormone
(LH). By understanding the signaling processes and the behavior of these hormones
in the menstrual cycle, we develop a mathematical model that captures the dynami-
cal interactions between GnRH, FSH, LH, E2, and P4. As a result, we gain further
understanding as to how disturbances in the production and regulation of GnRH can
cause irregularities in the menstrual cycle and to what extent.

In recent years, studies have attempted to mathematically model the menstrual cycle
in order to capture the physiological phenomena of the signaling behavior that occur.
In 2009, Isabel Reinecke etal., used a system of delay differential equation to model
the menstrual cycle with the purpose of modeling feedback mechanism in the signaling
process, including a GnRH pulse generator [9]. A simpler model consisting of a system
of three nonlinear delay differential equations was developed in order to describe the
hormonal interactions along the HPOA that can later be extended to future models
involving the disruption of the menstrual cycle [7]. Another approach was developed by
Brueggemanns model with the aim to predict potential fertility windows. Brueggemann
constructed a simple model with four differential equations, taking period length as an
input parameter without including GnRH, with the intent to simulate a complex system
[10, 5]. However, in this project we construct a reduced model that can study the effect
of GnRH on the cycle without accounting for time delays while still demonstrating the
hormonal interactions and feedback mechanisms occurring in the menstrual cycle.

1.1 Hypothalamic-Pituitary-Ovarian Axis

The hypothalamic-pituitary-ovarian axis is orchestrated by a series of hormones that
work in concert to regulate the function of the menstrual cycle. In the female repro-
ductive system, the hypothalamus releases gonadotropin releasing hormone, GnRH, at
high levels, which travels through the anterior pituitary circulating blood stimulating
cells called the gonadotrophes. Gonadotrophes are responsible for the productions and
release of follicular stimulating hormone (FSH) and lutenizing hormone(LH). FSH and
LH travels to the ovaries through the bloodstream where they aid in the maturation of
the premordial follicles into fully mature follicle, this process is known as the follicular
phase. The growth of the follicles is important because it contains the immature egg that
will develop over time until release from the follicles. As the follicle matures estradiol,
active form of estrogen during the menstrual cycle, is released. In the present of low
estradiol levels FSH will increase and LH will stay at a steady state given that GnRH
is still increasing and releasing FSH and LH. As estradiol increases, FSH will decrease
and LH levels will begin to increase. The follicular phase usually last around 14 days.
Approaching day 14 an increase in LH will occur transitioning from follicular phase into
the ovulatory phase.

During the ovulatory phase, the increase in LH causes the mature follicle to release
an egg. The egg will travel through the fallopian tubes awaiting fertilization. The ovula-
tory phase is quiet short. Following the ovulatory phase, the luteal phase will begin will
the degration of the corpus luteum. The corpus luteum is the structure that remains
after the follicle has released the matured egg. As the corpus luteum begins to degrade
it releases progesterone and other inhibitory hormones, such as Inhibin, to slow the
production of hormones, such as GnRH, FSH, LH, and E2, and the maturation of new
follicles. As the corpus luteum degrades and fertilization has not occurred progesterone
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levels will decrease. In result, menstruation will occur causing the uterine line to shed.
Finally once the discharge of the lining has discontinued the body will prepare itself for
the next cycle.

In this study, we aim to construct a simplified model that captures the qualitative
behavior of the menstrual cycle in order to study the behaviors that GnRH will have
on the system as parameters vary. This study is arranged in the following sections. In
Section 2, we divided the hypothalumus-pititary-ovarian axis into five compartments:
GnRH, FSH, LH, E2 and P4 to describe the regulatory mechanisms each hormone have
on one another. Following this, we constructed a system of six non-linear differential
equations (basic model) that simplifies the regulatory pathway of the menstrual cycle
as seen in Section 2.2. In Section 2.3 we extend our model by developing an entirely
new equation for GnRH, called GnRH(t) providing us a new model (sinusoidal model)
where GnRH(t) replaces the GnRH ordinary non-linear differential equation. In Section
3, we perform numerical simulations on both the basic model and the sinusoidal model,
following a hopf bifurcation analysis performed using the basic model. In Section 4, we
perform a sensitivity analysis using model 1 to understand how parameters in GnRH
in model consisting of the six non-linear ordinary differential effect the concentration of
the hormones in the system. Lastly, we summarize our study in Section 5.

2 Methodology

2.1 Model Description

To capture the dynamic of the menstrual cycle mathematically, a system of six non-
linear ordinary differential equations were decomposed from two independent studies.
The equations developed simplifies the dynamic of the menstrual cycle to explore the
effects of hormonal disruptions by GnRH. Each equation captures the qualitative be-
havior of the hormones, in which they are defined as concentration per day. In order
to describe the feedback regulation between the hormones of our model we use Hill
functions, which characterize inhibition and/or stimulation of hormones production. A
description of the equations are illustrated by the model in Figure 2. The change in
concentration of the hormones GnRH, LH, FSH, E2 and P4 are reflected in 4a, 4b, 4c,
4d and 4e, respectively. Additionally, this model proposes Equation 4f as a tool that
accounts for the transition of the follicular stage to the corpus luteum, in addition to
the changes in progesterone precursor levels.

2.1.1 Hill Function

Hill Functions are used in this study to model and understand the feedback mech-
anism of the hypothalamic-pituitary-ovarian axis model mathematically [9]. Feedback
mechanism alters the rate at which the production of a hormone is being inhibited or
stimulated. Generally, hormonal output is mediated by either positive feedback or neg-
ative feedback. Positive feedback mechanism tend to stimulate the release of a hormone
while, negative feedback mechanism tend to down-regulate the release of a hormone.

Positive feedback is defined in Equation 1 given by:

h+(S, T1, n) :=
[S]n

Tn1 + [S]n
(1)
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While negative feedback is defined in Equation 2 given by:

h−(S, T2, n) :=
Tn2

Tn2 + [S]n
(2)

where T1 and T2 ∈ R+ represent the threshold values that the hormonal concentration
must surpass in order to be efficient for up-regulation or down-regulation, respectively.
The threshold value signifies the half-way point at which the feedback mechanism is
either close to being efficient or ineffective. Ultimately, as more stimulation or inhibition
occurs the Hill function will exhibit values either close to 1 or 0, respectively, as seen in
Figure 1 [9]. The concentration of the hormone is denoted by S, which acts in concert
with the feedback mechanism [9] and n > 1 represents the steepness of the graphs;
the steeper the graph, the faster the reaction; while the less steep the graph is, the
slower the reaction. Moreover, S represents the concentration of the hormone producing
the feedback (Fig 1a and 1b). For instance, to describe the positive feedback between
hormone L induced by hormone S, a differential equation is derived to study the changes
of L with respect to time and Equation 1 as follows, for some parameter C1.When the
concentration of S is bigger than the threshold value T1, then there is a stimulation of
production:

dL

dt
= S,C1h

+(S, T, n)

On the other hand, negative feedback between hormone L induced by hormone S is given
by,

dL

dt
= C2h

−(S, T, n),

which models the inhibition of production of hormone L due to hormone S [9].
Moreover, production of hormone L can be stimulated or inhibited depending on

the concentration of hormone S. This behavior can be described using a biphase Hill
function given by,

h−,+(S) = h+(S, T1, n) + h−(S, T2, n) (3)

provided that T1 > T2 to model the dynamics of inhibition and stimulation of hormone
S on hormone L. In this case, for concentrations of S less than (T1 ·T2)1/2 L is inhibited
(Fig 1c); and for higher concentrations than (T1 · T2)1/2, hormone S stimulates L [9].
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(a) (b)

(c)

Figure 1: Hill functions: (a) represents the positive Hill function, Equation 1, which
models stimulation for concentrations of S bigger than the threshold value T1. (b) rep-
resents the negative Hill function, Equation 2, which models inhibition for concentra-
tions of S bigger than the threshold value T2. (c) represents the biphase Hill function,
Equation 3 which models positive feedback and negative feedback depending on the
concentrations of S.
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2.2 System of Ordinary Differential Equations

Figure 2: Mathematical Model describing the interaction of hormones in the menstrual
cycle. Activation is represented by the solid line arrow heads. Bipashic interaction is
represented by the solid line arrow with a stroke. Activation of degradation is represented
by dashed lines with dot end. Promotion of production is represented by dashed arrow
head. Full block arrows represent natural degradation of the hormone.

The system of equations corresponding to the model is as follows:

dGnRH

dt
= C1 + C2

(
rn1
1

rn1
1 + En1

2

+
En2

2

qn2
1 + En2

2

)
− µ1GnRH (4a)

dLH

dt
= C3

(
rn3
2

rn3
2 + En3

2

+
En4

2

qn4
2 + En4

2

)
· Pn5

4

qn5
3 + Pn5

4

·GnRH − µ2LH (4b)

dFSH

dt
= C4

(
Pn6
4

qn6
4 + Pn6

4

· rn7
3

rn7
3 + (αE2 + βP4 + ih0)n7

)

[(
rn8
4

rn8
4 + En8

2

+
En9

2

qn9
5 + En9

2

)
GnRH

]
− µ3FSH

(4c)

dE2

dt
= C5·

rn10
5

rn10
5 + FSHn10

−C6·E2·
LHn11

qn11
6 + LHn11

+C7·
En12

2

qn12
7 + En12

2

−C8·E2·
Pn13
4

qn13
8 + Pn13

4
(4d)

dP4

dt
= C9D − µ4P4 (4e)

dD

dt
= C10 ·

rn14
6

rn14
6 +Dn14

· LH ·D − C11 ·
Dn15

qn15
9 +Dn15

(4f)
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In order to use Hill functions to model the inhibitor/stimulator behavior of these
hormones, we consider q1 > r1, q2 > r2 and q5 > r4. The change of GnRH over
time, Equation 4a, depends on E2 and GnRH itself. In this equation, C1 represents
the basal release rate per day of GnRH. The dependence of GnRH on E2 is given by
a biphase Hill function, which shows that for concentrations less than (r1 · q1)1/2 E2

acts as an inhibitor and for concentrations greater than this threshold as a stimulator.
Additionally, GnRH naturally degrades through metabolism at a rate per day µ1. This
parameter µ1 also represents the portion of GnRH that is not used for the menstrual
cycle.

Equation 4b models the rate of change of LH that is dependent on E2, P4 and GnRH
at rate of C3 per day. The first term shows that GnRH concentration is necessary for
growth of LH concentrations, whereas E2 stimulates or inhibits LH depending on the
threshold concentration value of the biphase function and on q2. Moreover, for levels of
P4 greater than q3 we have stimulation of LH production. LH naturally degrades and
is metabolized at a rate µ2.

The change in FSH over time, Equation 4c, depends on P4, E2, GnRH, and FSH.
In the first term, GnRH concentration is necessary for growth of FSH concentrations.
This growth is given at rate of C4 per day. If the levels of P4 are greater than q4
there is stimulation or production of FSH. Whether or not E2 stimulate or inhibit the
production and release of FSH depends on threshold concentration values r4 and q5. In
addition, αP4 +βE2 capture the dynamic of the hormone inhibin that is released during
the luteal stage. The production of FSH is inhibited when αP4 + βE2 < r3. Parameter
estimation of α and β was calculated in MATLAB using least square.

The change in concentration of E2 over time, Equation 4d, depends on FSH, LH,
E2 and P4. FSH inhibits E2 at a rate C5 and for concentrations larger than r5. On the
other hand, E2 stimulates its own production for larger concentrations than q7 and at a
daily rate of C7. Moreover, the second term shows that E2 decreases its own production
depending on the feedback of LH. When the levels of LH passes the threshold level
q6, E2 signals the decrease in production of itself, i.e. inhibition occurs. The impact of
this feedback depends on the constant daily rate of C6 . For levels of P4 greater than
q8 there is a decreasing in the rate of change of E2 that depends on the concentration
of E2 and also on the constant of C8 per day.

Equation 4e represents the rate of change of P4, which has degradation rate µ4,
and increases as its precursor D increases, which occurs at a rate per day C9. Finally,
Equation 4f works as a precursor to P4 in order to account for the follicular stages
without including a time precursor in the dynamics of P4. This precursor depends on
the levels of LH and on its own values. LH is necessary for the growth of the precursor
D, and for larger values of the precursor D the rate of change of D slows down.

Table 1 define the state variables of the model. While Table 2 provides a com-
prehensive description of the parameter values of the model described as well as their
definitions.

Table 1: State variables of the system of ordinary differential equations

State Variables Definition Unit
GnRH Gonadotropin Release Hormone µg

L

LH Luteinizing Hormone µg
L

FSH Follicular Stimulating Hormone µg
L

E2 Estradiol ng
L

P4 Progesterone nmol
L

D Precursor nmol
L
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Table 2: Parameters of the system of ordinary differential equations

No. PARAM Description Units
1 C1 basal release rate of GnRH µg

d
2 C2 conversion factor of GnRH w.r.t the concentration of E2

µg
d

3 C3 conversion factor of LH w.r.t the concentration of E2
1
d

4 C4 conversion factor of FSH w.r.t the concentration of P4, E2 & GnRH 1
d

5 C5 conversion factor of E2 w.r.t the concentration of FSH
ng/L
d

6 C6 conversion factor of E2 w.r.t the concentration of LH and E2
1
d

7 C7 conversion factor of E2 w.r.t the concentration of E2
ng/L
d

8 C8 conversion factor of E2 w.r.t the concentration of FSH 1
d

9 C9 conversion factor of P4 w.r.t its delay, D 1
d

10 C10 conversion factor of D w.r.t D and LH L
µg∗d

11 C11 conversion factor of D w.r.t D
nmol/L

d
12 n1 speed of inhibition of GnRH dependent on E2 unitless
13 n2 speed of stimulation of GnRH dependent on E2 unitless
14 n3 speed of inhibition of LH dependent on E2 unitless
15 n4 speed of stimulation of LH dependent on E2 unitless
16 n5 speed of stimulation of LH dependent on P4 unitless
17 n6 speed of stimulation of FSH dependent on P4 unitless
18 n7 speed of inhibition of FSH dependent on E2 and P4 unitless
19 n8 speed of inhibition of FSH dependent on E2 unitless
20 n9 speed of stimulation of FSH dependent on E2 unitless
21 n10 speed of inhibition of E2 dependent on FSH unitless
22 n11 speed of stimulation of E2 dependent on LH unitless
23 n12 speed of stimulation of E2 dependent on E2 unitless
24 n13 speed of stimulation of E2 dependent on P4 unitless
25 n14 speed of inhibition of D dependent on D unitless
26 n15 speed of stimulation of D dependent on D unitless
27 q1 threshold value of E2 that stimulates GnRH ng

L
28 q2 threshold value of E2 that stimulates LH ng

L
29 q3 threshold value of P4 that stimulates LH nmol

L
30 q4 threshold value of P4 that stimulates FSH U

L
31 q5 threshold value of E2 that stimulates FSH ng

L
32 q6 threshold value of LH that stimulates E2

µ∗g
L

33 q7 threshold value of E2 that stimulates E2
ng
L

34 q8 threshold value of P4 that stimulates E2
nmol
L

35 q9 threshold value of D that stimulates D nmol
L

36 r1 threshold value of E2 that inhibits GnRH ng
L

37 r2 threshold value of E2 that inhibits LH ng
L

38 r3 threshold value of E2 and P4 that inhibits FSH nmol
L

39 r4 threshold value of E2 that inhibits FSH ng
L

40 r5 threshold value of FSH that inhibits E2
µg
L

41 r6 threshold value of D that inhibits D nmol
L

42 α linear coefficient for E2
U
ng

43 β linear coefficient for P4
U

nmol
44 µ1 natural degradation rate of GnRH 1

d
45 µ2 natural degradation rate of LH 1

d
46 µ3 natural degradation rate of FSH 1

d
47 µ4 natural degradation rate of E2

1
d

2.3 Sinusoidal Equation for GnRH

GnRH secretion acts on the anterior pituitary to regulate the production and release
of LH and FSH, which ultimately triggers the cyclic reaction of the menstrual cycle.
Findings have characterized that GnRH function is expressed through a series of pulsatile
secretions.If the pulsatile release of GnRH increases, its levels in the body are higher.
The higher levels of GnRH can be correlated with the width of GnRH curve: as the
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concentration of GnRH increases, its width increases, and viceversa. For this reason,
this study focused on the impact of width of GnRH. Through this analysis, we can
determine a quantifiable impact of GnRH on LH and FSH, which ultimately control
the transition between follicular phase, ovulation, and lutheal phase . For this purpose,
the following equation was modified from [5] to capture the periodicity of GnRH pulse
behavior:

GnRH(t) = g1 + g2 · exp

(
−g3 · sin

((
π · t

28

)
+ g4

)2
)

(5)

given g1, g2, g3, g4 positive parameters. The basal concentration of GnRH is represented
by the value of g1. The amplitude of the GnRH curve is represented by g2, at which the
time GnRH reaches its peak along the interval is given by the value of g4. The width
of the curve of GnRH depends only on the value of g3. If g3 increases, the width of the
curve decreases, corresponding to less pulsatile release of GnRH. In contrast, for small
values of g3, the width is larger, which represents more pulsatile release of GnRH (see
Table 3).

Equation 5 was used together with Equations 4b to 4f to get a different modeling
approach to study the pulse behavior in our original system of equations. Then, we
created a MATLAB code to find numerical solutions for the second model. These
results were used to calculate the width, maximum peak, and time at which the peak
occurs for LH and FSH concentration curves (see Section 3.3).

Table 3: Parameters of GnRH(t) given by Equation 5.

Parameter Description Units
g1 Basal concentration of GnRH(t) µg

L

g2 Amplitude of GnRH(t) µg
L

g3 Width Parameter unitless
g4 Phase Parameter unitless

3 Analysis

In this section we seek qualitative results on what effect GnRH has on LH and
FSH. This can be achieved using system 4 by studying the occurrences of the system
of hormonal regulation as GnRH is changed.

3.1 Description of Data and Parameter Estimation

First we start with the estimation of baseline parameter values used on our model.
The parameters used during analysis were obtained from two sources. In both Reinecke’s
and Brueggemann’s models of the menstrual cycle, nonlinear least square approaches
were used to estimate parameters [9, 5]. In the GynCycle model, Reinecke uses four
different sources for experimental data with sample sizes ranging between 6 to 33 healthy
women between all within the ages of 18 and 40 and with average cycles [9].

For the differential equations of GnRH,LH, and FSH, parameter values from Rei-
necke’s model were used. For the differential equations of E2, P4, and D, parameter
values of Brueggemann’s model were considered. Together these values were used as a
baseline of parameter values for the model, see Table 5 in A.1
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Table 4: Estimated initial values of the state variables of the system of ordinary differ-
ential equations that produce periodic pulses.

State Variables Definition Value Unit
GnRH Gonadotropin Release Hormone 1.000 µg

L

LH Luteinizing Hormone 25.34 µg
L

FSH Follicular Stimulating Hormone 142.5 µg
L

E2 Estradiol 16.387 ng
L

P4 Progesterone 1.200 nmol
L

D Precursor 1.000 nmol
L

Figure 3: Numerical Simulation of the concentration of hormones as a function of time
in our model with baseline parameter values as shown in Table 5.

Figure3 shows the concentration of hormones as a function of time for one menstrual
cycle. Since the parameter values used were taken from more complicated models, this
simulation does not resemble what happens during a normal cycle. Thus we modified
baseline values to obtain a numerical stimulation that more closely resembled the pat-
terns we know to be true of hormonal regulation in an average menstrual cycle [8]. These
parameter values were then used for the rest of our work as the basis of our analysis.
Many of the key components of the menstrual cycle are described in a reduced model of
a complex dynamical system, however it comes at the expense of having less quantitative
results.
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Figure 4: Representation of changes in hormonal concentration over a 28 day menstrual
cycle using the parameter values from Table 6 using initial conditions provided in Table
4 above.

With a vector of initial conditions at t(0), the simulation in Figure 4 shows that
at as t(0) → t(1) = day 1, E2 and P4 increase followed by the increase of GnRH.
FSH starting at t0 decreases, meanwhile GnRH begins to increase, followed by the
increase of FSH and LH. In a normal cycle, a peak of LH and FSH around day
14, when ovulation occurs. However, in Figure 4 FSH peaks around day 8. Although
the simulation is not quantitatively accurate, the behavior of the system qualitatively
coincides with what is known to occur during an average menstrual cycle such that E2

activates GnRH and GnRH stimulates the release of LH and FSH [8].

3.2 Numerical Simulations of 6 Ordinary Differential Equation
Model

In this section we show simulations of our model in order to demonstrate the min-
imum value at which stimulation and inhibition occur for GnRH and for what values
threshold parameters must be in order to have periodicity within a cycle.

3.2.1 Minimum concentration for stimulation

By definition of the Hill Function we know that in a biphase Hill function (Equation
3),
√
T1 · T2 is the minimum concentration of the S hormone for stimulation [9].

First let q1 > r1, that is the threshold value of stimulation ofGnRH by E2 is greater than
the threshold condition of GnRH, also by E2. The minimum value of the Hill function
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For example, when q1 = 75 and r1 = 8,
√
q1 · r1 = 24.4949. Observe that tmin1 is

approximately around day 1 and tmax2 is approximately around day 10. As expected,
for values of t in [tmin1 , tmax2 ] stimulation of GnRH primary occurs.

Figure 5 provides the concentration of GnRH over time, it can be seen that, although
there is a slight delay, around days 1 through 10, GnRH is still being stimulated. Before
day 1 and after day 10, GnRH reaches an equilibrium showing inhibition of GnRH. We
have to keep into consideration that GnRH is also effected by C1 and its natural decay,
µ1, and variation of these affect also the simulation of GnRH.

Figure 5: Concentrations of GnRH by the impact of E2.The minimum concentration
of E2 in order to stimulate GnRH in the h+,− is shown by the dotted line provided by
Table 6.

3.2.2 Impact of the threshold condition of stimulation of GnRH on the
system.

Let q1 ≥ r1, that is that the threshold parameters of the stimulation and inhibition
of GnRH dependent on E2. Then there exists an interval (qmin1 , qmax2 ) such that GnRH
produces periodic behavior or reaches an equilibrium after a certain time, t∗ as shown
in equation 6.

˙GnRH(q) =

{
periodic for qmin1 ≤ q ≤ qmax2

limt→∞ → GnRH∗, otherwise
(6)

Figure 6 shows the description of ˙GnRH(q) on a line.

Figure 6: GnRH reaches will lose periodic behavior when q < qmin1 or when q > qmax2 .

When q1 ≤ qmin1 or when q1 ≥ qmax1 , GnRH reaches a steady state which halts the
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system as time goes to infinity as also seen in Figure 6. When q1 ≥ qmax1 periodicity of
the system will come to a halt.

Figure 7: For q1 = 55 the system will eventually reach a steady state as time goes to
infinity. The dotted line in E2 represents the minimum concentration on E2 to stimulate
GnRH.

Figure 7 shows the solution of 4 and the rest of the parameters are taken as Table
5 when q1 = 55. It can be seen that the system eventually reaches a steady state;
therefore, disrupting the system. It can also be noticed that the peak of E2 occurs
sooner and at lower levels than that seen in Figure 5 and that the peak in GnRH also
occurs soon and at a much smaller level. E2 will have impact on the stimulation of
GnRH because it will not stimulate at the higher levels. Lower levels of GnRH will
lead to less stimulation of LH and FSH. Since the system shows to lose periodicity, it
can be assumed that q1 is less than qmin1 .
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Figure 8: For q1 = 900 the system reaches a steady state. The dotted line in E2

represents the minimum concentration on E2 to stimulate GnRH.

Similarly, when q1 = 900, GnRH, LH, FSH, E2, and P4 lose periodicity and
therefore the system goes to a halt. The time interval where E2 stimulates GnRH is
larger; however, GnRH decreases in the time before E2 can stimulate. This means that
E2 will have minimal to no concentration of GnRH and in turn GnRH can be seen
to provide not much stimulation to FSH and LH, and as a consequence leading to a
decrease in GnRH, LH, and FSH.
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Figure 9: Hopf Bifurcation is shown for ranges of the conversion factor of GnRH by
ranges of the threshold value of stimulation of GnRH dependent on E2.

In order to understand within what intervals can q1 be for there to be periodicity
within the system it must be known at what point the system loses its stability. Through
numerical analysis preformed using XPP-Auto we were able to find the Hopf Bifurcation,
shown in Figure 9, for ranges of the conversion factor of GnRH, C2, by ranges of q1.
Within the region over the line exists all values of C1 and q1 where periodic solutions
of the system exist. Below the bifurcation curve exists all values of q1 and C2 where
the system leads to a steady state. We only look at values within the region because
it is necessary to have periodic solutions in order have periodic effects in the menstrual
cycle. We can conclude from 9 that the value of C2 gets smaller the range of q1, where
the system is periodic, gets smaller as well.

3.3 Numerical Simulation for GnRH Pulse Function

In this section, we use Equation 5 together with Equation 4b to 4f in order to built
a second system of ordinary differential equations that shows periodicity behavior. This
new system gives a better approximation to the behavior of the curves of concentration
for all the hormones compared to the original system of differential equations. We
analyze the effects of varying the width of the curve of GnRH on the curves of FSH and
LH. The width of GnRH gives us a way to measure the release of GnRH by saying that
as the width is larger,the levels of GnRH increases.

For this purpose, we varied the width of the GnRH curve by changing g3 (for defini-
tions of gi parameters see Table 3). On the other hand, we fixed the basal concentration
of GnRH, its amplitude, and the peak time to g1 = 1µgL , g2 = 999µgL , and g4 = 1.78,
respectively. We use the initial conditions given as in Table 4 . Then, for LH and FSH
hormones, we analyze how the width, the value of the peak, and the time at which the
peak is achieved are affected as g3 varies.

Let us denote LH3 as the width of LH, FSH3 as the width of FSH. We plot g3 versus
LH3; g3 versus the maximum concentration of FSH and LH, denoted as Max LH and
Max FSH, respectively; and g3 versus the peak time for LH and FSH(tmax).
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(a) (b) (c)

Figure 10: (a) g3 vs. LH3, shows that the increment of the width of GnRH increases
the width of LH; in addition, the rate of change of LH3 is positive respect to g3. (b)g3
vs. Max LH, shows that as the width of GnRH decreases (i.e. g3 increases), the max
of LH also decreases. (c) g3 vs. tMaxLH , shows that LH achieves its peak earlier as the
width of GnRH decreases.

In figure 10a shows that as the width of GnRH decreases, the width of LH3 decreases
as well. This effect can be seen in Figure 12 and Figure 13. On the other hand, 10b
describes graphically that the decrease of width in GnRH decreases the peak of LH
levels. For example, 12 and Figure 13 shows a peak of LH to be 554.9µgL for g3 = 10 and
2649µgL for g3 = 5. Moreover, Figure 10c shows that when the width of GnRH decreases,
the period of time at which LH rises its peak is smaller. Additionally, since 10a is a
concave graph, the rate change of LH3 respect to g3 is decreasing, which suggests that
for larger values of g3, LH3 is less affected by varying g3. Figure 10b and 10c suggest
that for larger values of g3m Max LH and tMaxLH varies very little. ( Two examples
are shown in Figure 12 and Figure 13.)

112



(a) (b) (c)

Figure 11: In (a), g3 vs. FSH3, we can see that the decrease of the width of GnRH
decreases the width of FSH. (b) g3 vs. Max FSH, shows that there is a maximum at
g3 = 10 for Max FSH. (c) g3 vs. tmaxFSH , shows that FSH achieves its peak earlier as
the width of GnRH increases, but there is also small width of GnRH that decreases the
time at which the maximum peak is achieved.

Figure 11 shows three different graphs. Figure 11a , g3 vs. FSH3, shows that the
width of FSH increases as g3 increases.We can see two examples in Figure 12 and Figure
13 were it is shown a peak of FSH at 813.2µgL for g3 = 10 and 677.3µgL for g3 = 5.
However, in contrast to the case of LH, the rate of change of width of FSH respect
to g3 is positive. In addition, Figure 11b represents the impact of GnRH width on the
maximum level of FHS. This image shows a concave graph of Max FSH vs. g3, achieving
its maximum at g3 = 10. For this reason, there is a region around this values where
the peaks of FSH decreases by varying g3. Moreover, looking at Figure 11c we can
see that there is two local maxima and one local minimum at g3 = 4.25, g3 = 10.75,
and g3 = 5.55, respectively. We can see that between the two maxima there is a huge
variation in the values of tmaxFSH . Also, for values smaller than g3 = 10, changes in g3
will affect more the value of tmaxFSH than for values greater than 10.

Additionally, we also performed a numerical simulation that shows the levels of each
hormone during a period of 28 days using Equation 5 together with Equations 4b to 4f.
The results are presented in Figure 12 and Figure 13. These graphs show the sinusoidal
behavior of GnRH, LH, and FSH. We can see that this model give us a much better
peak time of GnRH, LH, and FSH compared with those of Figure 4.
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Figure 12: Numerical simulation for the effect of the width of GnRH(t) (g3 = 10 ) in
the other hormones producing pulses on all.
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Figure 13: Numerical simulation for the effect of the width of GnRH(t) (g3 = 5 ) in the
other hormones producing pulses on all.

4 Sensitivity Analysis

Sensitivity analysis (SA) determines how changes in an input, e.g. a parameter
value or an initial condition of variables of a model affects changes in its output [3]. SA
considers the ratio between the output perturbation and input perturbation given by:

Sp :=
||α||
||H||

∂H

∂α
(7)

where H 6= 0, α is a parameter, and H is an output of interest.
For this research, local sensitivity analysis of parameters was performed using the

parameter values from literature, Table 5, and from parameter estimation, Table 6. In
particular, sensitivity analysis to the solutions of the model per day was performed for
values that affect the production of GnRH, i.e. r1 and q1.

The objective of sensitivity analysis is to understand the qualitative behavior of
GnRH effects on LH, FSH, E2, and P4. The SA to D will not be considered for this
analysis given that it is a precursor to P4. The parameters considered for the analysis are
r1 and q1 from Equation 4a. The parameter r1 represents the threshold concentration
value of E2 that controls the inhibition mechanism for GnRH, and q1 represents the
threshold concentration value of E2 that controls the stimulation mechanism for GnRH.
Qualitatively, these two parameters are those that affect the rate of change of GnRH
the most and their sensitivity comes from the fact that they are the two parameters
within the biphase Hill function in Equation 4a.

Eighteen ordinary differential equations were taken into account: six equations come
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from the Forward Problem (FP) (Equations 4a to 4e); and twelve equations from the
Forward Sensitivity Equations (FSE). To get the FSE we use partial derivatives of the
steady state with respect to r1 and q1. For the calculations of the sensitivity indexes of
Equations 4a to 4e see Appendix B.

To find the initial conditions for the twelve Forward Sensitivity Equations we take
the sensitivity index equal to one at t = 0, i.e.,

(
α

H

∂H

∂α

) ∣∣∣
t=0

= 1. (8)

The system of ODE’s with twelve equations was solved using the NDSolve function
on the software Mathematica. The SA results for the parameters obtained in literature
are shown in Figure 14.

(a)

(b) (c)

(d) (e)

Figure 14: Sensitivity indexes of GnRH, LH, FSH, E2, and P4 respectively with
respect to r1 and q1 as time changes using parameters given in Table 5.

The simulation of the sensitivity analysis of the system using the parameters given
in the literature show no significant changes in solutions according to how the values of
r1 and q1 change. For example, for the parameter values given in Table 5, the impact
of changing values r1 and q1 are more significant for FSH and E2. However, in both
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cases, the sensitivity indexes are positive, meaning that increasing r1 and q1 values by
1% will increase E2 and FSH. However, as time progresses, after 8 days, the impact
that r1 and q1 have on both FSH and E2 diminishes until eventually there is no effect.

It is important to note that the sensitivity analysis with respect to the literature
parameters in Table 5 do not accurately reflect the expected periodic behavior of the
hormones. Equations 4a to 4e are made up of feedback mechanisms meaning that the
five hormones GnRH, LH, FSH, E2, and P4 all have negative and positive impacts
on the concentration of one another. Therefore, it is evident that the parameters used
must be adjusted to achieve the expected qualitative and quantitative results, as was
done in Section 3.1

Through parameter estimation, the values in Table 6 were then used to accurately
reflect the expected behavior of the model. The results of SA are shown in Figure 15.

(a)

(b) (c)

(d) (e)

Figure 15: Sensitivity Index of GnRH, LH, FSH, E2, and P4, in (a) to (e), respectively.
Sensitivity Analyses with respect to r1 and q1 as time changes using parameters given
in Table 6.

Figures 15a to 15e show that all hormones are highly sensitive to changes in r1 and
q1 with a set of parameter values that replicate the qualitative behavior of the hormones
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in the menstrual cycle. Figure 15a illustrates how the sensitivity indexes of GnRH
change with time for r1 and q1. Recall that r1 and q1 are the threshold concentration
values with respect to E2 that inhibit and stimulate GnRH, respectively. It was found
that GnRH is sensitive to changes of r1 and q1 when 0 < t < 1 day, but sensitive to r1
by a greater magnitude when 11 < t < 27 days. This means that when r1 and q1 are
increased by 1%, the concentration of GnRH increases by 1% for the first time period,
but increases between 1% to 10% for 11 < t < 27 days when r1 increases. On the other
hand, 15a suggests that GnRH is sensitive to q1 on a greater magnitude than r1, and
that GnRH is sensitive to q1 at all times.

When 1 < t < 7 days, if q1 is raised by 1%, then GnRH will decrease between 1%
to 10%. Given that GnRH is vital during the follicular stage for the induction of the
menstrual cycle, GnRH would be highly sensitive to changes in threshold concentration
values during the beginning of the menstrual cycle since certain levels of E2 are needed
to stimulate GnRH. From Figure 4, we observe that E2 levels are only beginning to
rise at about this time as q1 increases, so if the threshold concentration value that
stimulates GnRH is increased, it will be difficult for E2 to reach that increased value,
thus preventing GnRH from increasing. However, after the follicular phase, when 7 <
t < 12 days, GnRH has already signaled the release of LH and FSH which also leads to
the increase in concentration of E2. Since E2 levels are now high at this point, and if q1 is
increased by 1%, then GnRH will be stimulated, leading to the increase in concentration
by about 5%. The trend changes once again after 12 days when E2 has decreased (see
Figure 4), implying once again that if q1 is increased, E2 will be unable to stimulate
GnRH, thus allowing GnRH to decrease from 1% to 15%. Additionally, E2 increases
at the end of the cycle during the luteal phase, meaning that if q1 is increased by 1%, it
is possible for GnRH to increase by about 5%. This lends to a greater understanding
as to how levels of E2 greatly affect GnRH and at what time periods.

Considering the sensitivity index of LH with respect to changes in r1 and q1, (see
Figure 15b), the change in q1 has a greater effect on LH compared to the effect caused
by the change in r1. For 0 < t < 6 days, if r1 is increased by 1%, then the concentration
of LH will increase by about 1%. However, the relationship transitions for 6 < t < 16
days such that increasing r1 will decrease LH by about 0.5%. Furthermore, after 16
days, increasing r1 will increase LH by 1%. This analysis shows that changes in the
threshold concentration value for E2 that inhibits GnRH has a very small effect on
the concentration of LH, meaning that if GnRH is inhibited, LH will still be released.
On the other hand, since the sensitivity index with respect to q1 is negative after 4
days, if q1 increases by 1%, LH will decrease by up to 9%. The magnitude is less for
8 < t < 13 days when the concentration of E2 is decreasing. However, at this point, LH
has already increased towards its maximum concentration value (see Figure 4), meaning
that increasing the threshold concentration value that stimulates GnRH will decrease
the concentration of LH on a smaller magnitude given that LH is already increasing.
Additionally, if q1 is increased, recall that GnRH will be prevented from increasing for
most of the 30 day period. Similarly, LH will also decrease during this time period. This
shows that the release of GnRH leads to the release of LH, suggesting that when it is
difficult for E2 to meet its threshold concentration value required for GnRH stimulation,
LH will also be released at much lower concentrations.

In the case of FSH, the sensitivity index with respect to r1 and q1 is very similar to
that of GnRH (see Figure 15c). However, the time periods are shifted which suggests
that there is a time period accounted for when GnRH is signaling to the release of
FSH. This is also observed in Figure 4 in which the peak of FSH occurs after the
GnRH peak. In Figure 15c, for 0 < t < 4 days, if r1 and q1 are increased by 1%, FSH
will increase by 1%. Additionally, for 4 < t < 9 days, if q1 is increased by 1%, FSH
will decrease up to 7% which is 3% less than what GnRH would decrease by at this
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time. This trend continues, such that FSH is sensitive to changes in q1 on a greater
magnitude compared to r1. Although the time periods for high sensitivity are shifted in
Figure 15c compared to 15a, this indicates that FSH is dependent on E2 in the same
manner as GnRH because the release of FSH is induced by GnRH. Additionally, FSH
is sensitive to changes in r1 and q1 to a smaller magnitude because GnRH acts as an
intermediary stage, meaning that the effect of E2 on FSH is lessened due to the direct
relationship between GnRH and FSH.

The sensitivity index of E2 with respect to r1 and q1 are nearly opposite to that
of GnRH, LH, FSH, and P4. Observe that whenever q1 is increased, E2 will also
increase. This is because if the threshold concentration value needed to stimulate GnRH
is raised, levels of E2 will increase in order to fulfill its role as a hormone. Observe that
for 0 < t < 5 days, if q1 is raised by 1%, then E2 increases up to 1%. This percentage
is small because E2 has already began to increase, meaning that it is possible for E2 to
account for the increase in q1. Notice that the sensitivity magnitude with respect to q1 is
much greater for 7 < t < 14 days. At this time period, the menstrual cycle is preparing
for ovulation, implying that hormones are required to be at certain levels during stage
transitions. Therefore, changing threshold concentration values will extremely affect E2

which is needed to regulate GnRH which regulates the other hormones based on the
feedback mechanisms observed in System 4. Moreover, E2 is also highly sensitive to
changes in both r1 and q1 during the luteal phase and towards the end of the menstrual
cycle. This is because at this point, the concentration of E2 needs to increase in order
to prepare for the follicular phase when GnRH is required to induce the menstrual cycle
once again.

Figure 15e illustrates the sensitivity index of P4 with respect to r1 and q1. For
0 < t < 1 day, if r1 and q1 are increased by 1% then P4 also increases by about 1%.
This suggests that at this time period, the inhibition and stimulation of GnRH caused
by E2 greatly affect the change in concentration of P4. After 1 day, r1 has little effect on
P4 until about day 15 when the sensitivity index begins to rise, meaning that increasing
r1 by 1% increases P4 by up to 1%. For 15 < t < 30 days, P4 raises between 0.1% to
0.9%. Ultimately, P4 is highly sensitive to q1, such that at any point after day 5, if q1 is
raised by 1%, P4 decreases by up to 2%. When the threshold concentration value of E2

that stimulates GnRH is increased, P4 is prevented from increasing, just as GnRH is
prevented for most of the 30 day period if q1 increases. If the concentration of GnRH
decreases, then so does P4. This confirms our understanding of the menstrual cycle such
that the release of GnRH leads to the release of P4. Thus, the increase of P4 is highly
dependent on both E2 and GnRH suggesting that if a woman has usually low or high
progesterone levels, then the cause may be due to irregular regulation of E2.

Altogether, the sensitivity analysis reflects the expected variations in concentration
over time of GnRH, LH, FSH, E2, and P4 when the threshold concentration values
of E2 that control the stimulation and inhibition of GnRH are varied. We are able
to conclude that the hormones are sensitive to r1 and q1, but they are affected by q1,
the threshold concentration value of E2 that stimulates GnRH, to a greater extent.
Through this analysis, we observe how r1 and q1 affect GnRH, LH, FSH, E2 and P4

and at what time periods these hormones are most sensitive. Ultimately, by observing
all sensitivity indexes with respect to the parameter values from Table 6, it is evident
that the hormones are extremely sensitive to the change in r1 and q1 during phase shifts.
These changes are observable at the end of the follicular phase. It is plausible that the
concentration of hormones would be highly sensitive at this point because the menstrual
cycle is preparing for ovulation which occurs during the middle of the cycle. Similarly,
sensitivity is high for all hormones at the end of the luteal phase which occurs right
before the female body begins another menstrual cycle. It is unsurprising that these
dynamics would occur at phase shifts given that hormones are required to be at certain
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levels in order to properly induce each the follicular phase, ovulation, and the luteal
phase.

5 Conclusion

The complexities of the menstrual cycle were captured by the decomposition of two
independent studies into six non-linear differential equations to model the dynamics of
hormonal regulation over a 30-day period. As parameter estimation was challenging,
simulations and analyses were performed in order for the model to reflect the qualitative
behavior and essential characteristics of hormone levels during the menstrual cycle.

Simulations of the model were performed to understand how changes in parameters
in the differential equation for GnRH impact the disturbances in the behavior of LH,
FSH, E2, and P4. By analyzing these disturbances and utilizing the necessary param-
eter values of GnRH for our model, we showed how sensitive the system behaved when
parameter values were not in the appropriate range. This illustrated how the behavior
of the hormones changed drastically when GnRH parameters were altered.

In addition, by using our second model which consider Equation 5, we conclude that
since the larger width of GnRH represents high levels of GnRH for larger period of
time, Figure 10 suggests that a larger time interval expositions to GnRH produces a
larger time interval production of LH, and at the same time increases the maximum
levels of LH. Specifically, the 10c suggests that decreasing the width of GnRH decreases
drastically the time of maximum release of LH, and consequently will affect the time
at which the production of P4 and E2 happens. In addition, Figure 11a shows that
if the concentration of GnRH per day decreases, the concentration of FSH per day
also decreases. Moreover, in Figure 11b as the GnRH concentration decreases, the
maximum level of FSH concentration increases until certain value corresponding to
g3 = 10 . Moreover, Figure 11c shows that higher concentrations of GnRH for larger
interval of time produces huge variations in the time of maximum release of FSH. In
general, comparing the shapes of Figure 11 and Figure 10 we suggest that FSH is more
affected than LH by changes of GnRH concentration. In general, comparing the shapes
of Figure 11 and Figure 10 we suggest that FSH is more affected than LH by changes
of GnRH concentration.

In addition, we performed a sensitivity analysis that revealed the effect of the two
parameters, q1 and r1 that directly affect the change in concentration ofGnRH, provided
that they are the threshold values that determine the output of GnRH. The sensitivity
analysis showed that the threshold conditions of E2 that inhibit and stimulate GnRH
played a significant role on the production of the hormones. Ultimately this led to a
strong understanding of not only how our model behaves, but also how sensitive each
hormone is during specific time intervals. Sensitivity levels are significantly higher before
ovulation and the follicular stage which shows how both r1 and q1 are required to be
within the correct range in order for hormones to be at the vital concentrations for the
menstrual cycle to occur as expected. Additionally, sensitivity varies during certain time
periods which suggests that any treatment for menstrual irregularity would be highly
dependent on timing of dosages.

In creating a model that qualitatively captured the hormonal behavior in the men-
strual cycle that was still simple enough to better interpret relationships betweenGnRH,
LH, FSH, E2, and P4, we were able to capture results that could be helpful in hor-
monal therapies. By identifying time intervals during which certain hormonal changes
are more drastic, it is possible to better regulate when treatment delivery will be more
efficient. Future studies can use this model as a basis for further research on external
influences of GnRH.
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A Appendix

A.1 Tables

Table 5: Parameter values of the system of ordinary differential equations given by
literature

Parameter Value Units Reference
C1 433.3447 µg

d
[9]

C2 102.4000 µg
d

[9]

C3 16.3680 1
d

[9]

C4 16.6120 1
d

[9]

C5 186.3917
ng/L
d

[5]

C6 4.4833 1
d

[5]

C7 202.2639
ng/L
d

[5]

C8 1.0303 1
d

[5]

C9 0.8848 1
d

[5]

C10 0.0715 L
µg∗d [5]

C11 0.9795
nmol/L

d
[5]

n1 1.0000 unitless [9]
n2 1.0000 unitless [9]
n3 1.0000 unitless [9]
n4 1.0000 unitless [9]
n5 1.0000 unitless [9]
n6 0.9994 unitless [9]
n7 1.0010 unitless [9]
n8 0.9996 unitless [9]
n9 1.0000 unitless [9]
n10 4.0000 unitless [5]
n11 4.0000 unitless [5]
n12 4.0000 unitless [5]
n13 4.0000 unitless [5]
n14 4.0000 unitless [5]
n15 4.0000 unitless [5]
q1 207.8000 ng

L
[9]

q2 348.8000 ng
L

[9]

q3 1.3010 nmol
L

[9]

q4 638.8000 U
L

[9]
q5 0.3118 ng

L
[9]

q6 115.0282 µg
L

[5]
q7 200.5842 ng

L
[5]

q8 0.3265 nmol
L

[5]

q9 0.0897 nmol
L

[5]
r1 7.8290 ng

L
[9]

r2 0.04647 ng
L

[9]

r3 4.1590 nmol
L

[9]
r4 42.0900 ng

L
[9]

r5 3.4154 µg
L

[5]

r6 3.8448 nmol
L

[5]

α 1.4030 U
ng

β 21.5474 U
nmol

µ1 26.7584 1
d

[9]

µ2 15.7300 1
d

[9]

µ3 1.7790 1
d

[9]

µ4 0.2590 1
d

[5]
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Table 6: Parameter values of the system of ordinary differential equations solved using
parameter estimation.

Parameter Value Units References
C1 0.9 µg

d
C2 1000 µg

d
C3 5.3 1

d
C4 5.9 1

d

C5 2.39
ng/L
d

C6 2 1
d

C7 8.26
ng/L
d

C8 1 1
d

C9 1.47 1
d

C10 5.5 L
µg∗d

C11 2.9695
nmol/L

d
n1 10 unitless
n2 10 unitless
n3 2 unitless
n4 2 unitless
n5 2 unitless
n6 2 unitless
n7 2 unitless
n8 2 unitless
n9 2 unitless
n10 2 unitless
n11 2 unitless
n12 2 unitless
n13 4 unitless [9]
n14 4 unitless [9]
n15 4 unitless [9]
q1 75 ng

L
q2 125 ng

L
q3 100 nmol

L
q4 7 U

L
q5 50 ng

L
q6 500 µg

L
q7 1.58 ng

L
q8 110.6 nmol

L
q9 0.089 nmol

L
[9]

r1 8 ng
L

r2 20 ng
L

r3 700 nmol
L

r4 20 ng
L

r5 90.415 µg
L

r6 5.844 nmol
L

α 1.4030 U
ng

β 21.5474 U
nmol

µ1 0.9 1
d

µ2 0.2 1
d

µ3 0.5 1
d

µ4 0.89 1
d
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Table 7: Initial values of the state variables of the system of ordinary differential equa-
tions taking from experimental data.

State Variables Definition Value Unit Reference
GnRH Gonadotropin Release Hormone 1.201 µg

L [9]
LH Luteinizing Hormone 4.465 µg

L [9]
FSH Follicular Stimulating Hormone 52.34 µg

L [9]
E2 Estradiol 35.4756 ng

L [5]

P4 Progesterone 1.5793 nmol
L [5]

D Precursor 1.000 nmol
L

B Forward Sensitivity Equations

Consider,

dGnRH

dt
= f1(E2, GnRH), (9)

dLH

dt
= f2(E2, P4, GnRH,LH), (10)

dFSH

dt
= f3(E2, P4, GnRH,FSH), (11)

dE2

dt
= f4(FSH,LH,E2, P4), (12)

dP4

dt
= f5(D,P4), (13)

(14)

Then, our Forward Sensitivity Equations is given by,
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d

dt

∂GnRH

∂r1
=

∂f1
∂GnRH

∂GnRH

∂r1
+
∂f1
∂E2

∂E2

∂r1
+
∂f1
∂r1

(15)

d

dt

∂GnRH

∂q1
=

∂f1
∂GnRH

∂GnRH

∂q1
+
∂f1
∂E2

∂E2

∂q1
+
∂f1
∂q1

(16)

d

dt

∂LH

∂r1
=
∂f2
∂E2

∂E2

∂r1
+
∂f2
∂P4

∂P4

∂r1
+

∂f2
∂GnRH

∂GnRH

∂r1
+

∂f2
∂LH

∂LH

∂r1
+
∂f2
∂r1

(17)

d

dt

∂LH

∂q1
=
∂f2
∂E2

∂E2

∂q1
+
∂f2
∂P4

∂P4

∂r1
+

∂f2
∂GnRH

∂GnRH

∂r1
+

∂f2
∂LH

∂LH

∂q1
+
∂f2
∂q1

(18)

d

dt

∂FSH

∂r1
=
∂f3
∂E2

∂E2

∂r1
+
∂f3
∂P4

∂P4

∂r1
+

∂f3
∂GnRH

∂GnRH

∂r1
+

∂f3
∂FSH

∂FSH

∂r1
+
∂f3
∂r1

(19)

d

dt

∂FSH

∂q1
=
∂f3
∂E2

∂E2

∂q1
+
∂f3
∂P4

∂P4

∂r1
+

∂f3
∂GnRH

∂GnRH

∂r1
+

∂f3
∂FSH

∂FSH

∂q1
+
∂f3
∂q1

(20)

d

dt

∂E2

∂r1
=
∂f4
∂E2

∂E2

∂r1
+
∂f4
∂P4

∂P4

∂r1
+

∂f4
∂LH

∂LH

∂r1
+

∂f4
∂FSH

∂FSH

∂r1
+
∂f4
∂r1

(21)

d

dt

∂E2

∂q1
=
∂f4
∂E2

∂E2

∂q1
+
∂f4
∂P4

∂P4

∂q1
+

∂f4
∂LH

∂LH

∂q1
+

∂f4
∂FSH

∂FSH

∂q1
+
∂f4
∂q1

(22)

d

dt

∂P4

∂r1
=
∂f5
∂P4

∂P4

∂r1
+
∂f5
∂D

∂D

∂r1
+
∂f5
∂r1

(23)

d

dt

∂P4

∂q1
=
∂f5
∂P4

∂P4

∂q1
+
∂f5
∂D

∂D

∂q1
+
∂f5
∂q1

(24)

d

dt

∂D

∂r1
=

∂f6
∂LH

∂LH

∂r1
+
∂f6
∂D

∂D

∂r1
+
∂f6
∂r1

(25)

d

dt

∂D

∂q1
=

∂f6
∂LH

∂LH

∂q1
+
∂f6
∂D

∂D

∂q1
+
∂f6
∂q1

(26)

Forward Sensitivity Equations where f1, f2, f3, f4, andf5 represents the ordinary differ-
ential equations for GnRH, LH, FSH, E2, and P4 respectively.
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