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Abstract

Chikungunya (CHIK) appeared in the western hemisphere in 2013 and is rapidly spreading

to South American countries such as Ecuador. In this study, we estimate the geographical

distribution of transmission rates of CHIK for 12 majorly affected Ecuadorian provinces and

evaluate how spatial heterogeneity and movement of individuals impact the dynamics of the

disease. Using information from past CHIK outbreaks and human transportation patterns in

Ecuador, we developed a 12 patch metapopulation network model that involves connectivity

of nodes via specific routes. In addition to human mobility, the altitude of the different re-

gions is considered because it is directly correlated with vector abundance. Our results aim to
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illustrate the effect of altitude, human mobility, and population heterogeneity on the spatial-

temporal transmission dynamics of CHIK in Ecuador. Since past records show regular CHIK

outbreaks, this information will not only aid public health officials to focus control efforts to

specific regions and prepare for future outbreaks, but also help in identifying regions where

CHIK can be introduced and established.

1 Introduction

Chikungunya (CHIK) is a re-emerging vector-borne disease transmitted to humans primarily by

the Aedes aegypti mosquitoes [17]. This specie is most common in tropical and subtropical regions

and is the principal vector of diseases such as dengue, yellow fever, CHIK, and zika [21]. These

mosquitoes are widely distributed in urban environments and bite primarily during the day [1].

Large quantities of Aedes aegypti can be found in objects such as tires, cans, flowerpots, plastic

containers, bottles, and natural vessels which can hold water and foster their development [21].

The females of this species are the main carriers of the chikungunya virus (CHIKV) and can live

up to 50 days in optimal conditions [26].

About 72%-97% of people infected with CHIKV display symptoms similar to dengue, a dis-

ease which is also spread by the Aedes aegypti mosquitoes. These symptoms include fever, rash,

conjunctivitis, nausea, and vomiting [30]. CHIKV victims also suffer from severe polyarthralgia

which can result in arthritis. This notable feature of the disease is highlighted in its name which

means “that which contorts or bends up” [30, 9, 27]. Since there are currently no vaccines for
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CHIK, treatment methods for the disease are aimed at alleviating symptoms [15].

The first occurrence of CHIK was discovered in Tanzania in 1954 and resulted in outbreaks

in various countries of Asia and Africa from the 1960s to the 1980s [29, 18]. Within the last

decade, CHIK resurfaced and has since received national attention. A major outbreak of the

disease occurred in Kenya in 2005 and spread to numerous islands in the Indian Ocean, notably

the French island of La Reunion where over 266,000 people were infected [32]. From there, the

virus made its way throughout most of Asia and is now being locally transmitted in Europe and the

Americas [30, 15]. CHIK in South America was initially observed in French Guiana in December

2013 [22]. Since then, local transmission of the virus has been reported in the South American

countries of Argentina, Bolivia, Brazil, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname,

and Venezuela [22].

The earliest case of CHIK in Ecuador occurred in the Loja province on October 2014 and

was imported from a woman who traveled to Colombia [25]. Since then, over 4,000 CHIK cases

have been reported by Ecuador’s Ministry of Public Health, most of which are concentrated in

the coastal regions of Esmeraldas, Manabı́, and Guayas [13]. The spread of CHIK in Ecuador

poses a concern for many public health officials who are left with the task of controlling its spread.

However, in order to control the spread, it is important for them to understand the nature of CHIK’s

geographical distribution.

In this study, a metapopulation model is used to describe the dynamics of CHIK in Ecuador.

The model considers how human mobility and the altitude of twelve Ecuadorian provinces shape

the CHIK epidemic in the country. Studies have shown that there is a negative correlation between
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the abundance of Aedes aegypti mosquitoes and elevation [11, 16, 19]. This change in vector

population is a factor which we believe may effect CHIK outbreaks in regions of different altitudes.

In addition to altitude, we investigate human mobility which is said to increase the transmission

of infectious diseases [18, 4, 12, 20, 5, 6, 4]. Within our model, we consider the effect of human

mobility by taking into account the land transportation connecting the twelve provinces that we

are investigating.

2 Methods

Many research projects have explored the transmission of disease through metapopulation models

[2, 5, 12, 20, 3]. In [20], authors use an 18,000 node metapaopulation model to study the effect of

human and vector mobility on the CHIK epidemic in Reunion Island. Their study incorporates a

stage structured SI model for the vector population and an SIR model for humans. After validating

their model using data from the Reunion epidemic, authors found that human mobility was key in

the spread of the epidemic. In another paper, mobile data and climate information are used to study

the effect of human mobility and seasonal variability on the 2013 dengue outbreaks in Pakistan

[31]. Numerous mathematical tools such as ordinary differential equations and time dependent

parameters are used to create an epidemiological model that predicts the spread and timing of

dengue outbreaks in the country. In [12], a 32 patch network is used to investigate reasons for

the 2009 influenza outbreak in Mexico. Their work considers land transportation, public health

measures, and social distancing and suggests that a combination of these factors shaped the course

of the outbreak.
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While the above studies highlight the importance of migration in shaping the spread of dis-

eases, our model goes further to combine this factor with the geographical effect of altitude on a

vector borne disease. Numerous papers such as [31] consider temperature and other seasonal vari-

ations in the development and survival of the vector population. However, we focus specifically

on altitude since it effects vector abundance and hence transmission of CHIK [11, 16, 19]. The

value in combining the two aspects of migration and altitude lies in the fact that both play vital

roles in the spread of CHIK. The two factors do not work in isolation but together shape CHIK

outbreaks and modeling their combined effect provides an additional layer of understanding for

this epidemic.

The Ecuadorian provinces that we choose to explore correspond to regions reported by Ecuador’s

Ministry of Public Health in 2015 to have presence of the Aedes Aegypti vector as well as cases

of CHIK [7]. The demographics of these provinces are shown in Table 1. The provinces mostly

belong to the coastal and amazonian regions of Ecuador. Provinces such as Guayas, Manabı́, El

Oro, Santo Domingo, Esmeraldas, and Los Rios lie along the coast. These areas have a warm

climate with a variation of temperature between 25 and 36 degrees Celsius . There is also a large

influx of tourists to these regions during vacations and holidays because of their beautiful beaches

[8]. Extensive road networks connect these provinces and have improved trade between different

regions. Guayas, Manabı́, El Oro, Esmeraldas and Los Rı́os have immense commercial diversity

and contain seaports and oil refineries [28] .

In the amazonian region where there is great biodiversity of flora and fauna, annual temper-

atures range between 15 and 40 degrees Celsius [10]. The provinces of Sucumbios, Orellana,
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Pastaza, and Zamora Chinchipe are in this region and occupy an area of 120,000 square kilome-

ters which accounts for 48% of Ecuadorian territory. Pichincha and Azuay provinces are found

in the highlands which are notorious for their high altitudes. These regions are difficult to access

because of their many mountains [8].

N Province Population Altitude (meters) Area (miles2)
1 Guayas 2,794,156 21.25 6,617
2 Manabı́ 878,480 74.00 7,104
3 El Oro 437,289 20.60 2,312
4 Santo Domingo 348,331 535.00 1,614
5 Esmeraldas 233,064 17.40 5,750
6 Los Rı́os 183,806 43.00 2,415
7 Sucumbı́os 105,025 321.67 7,186
8 Orellana 71,703 267.50 8,020
9 Pastaza 43,292 926.00 11,398
10 Pichincha 38,170 360.50 3,666
11 Zamora Chinchipe 15,552 1,116.00 4,076
12 Azuay 10,643 1,575.00 3,334

Table 1: Demographics of 12 Ecuadorian Provinces

In order to understand the connectivity of different provinces, we used Google Maps. This

interface allowed us not only to highlight major roadways connecting the provinces, but also al-

lowed for the assessment of efficient pathways from one region to another based on travel time and

geographical features (i.e. mountains and rainforests). With this information, we were able to cre-

ate a network whose edges represent the flux of transportation to and from the various provinces.

The network that we employ is shown in Figure 1.
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Figure 1: Transportation Network of Provinces. The numbered circles in this map represent the
twelve provinces with presence of CHIK vector and CHIKV cases. The provinces are numbered by
population size with province 1 having the largest population and province 12 having the smallest
population as shown in Table 1. As shown in the legend, the color of each province corresponds
to its altitude. Finally, the edges in the network represent transportation flux between provinces.

From this network, a transportation matrix T was created. Each element αi,j of the previous

matrix represents the rate of transportation from province i to province j. In our model, we

assume that this matrix is symmetric.This means that the proportion of people traveling out of

each province is equal to the proportion of people traveling into each province. Hence we have

αi,j = αj,i.

The values of αij that we use were estimated based on transportation information from the

National Institute of Statistics and Census (INEC) in Quito-Ecuador [23]. This public database

gave information on the number of buses leaving each province and the maximum number of

people each bus can hold. From this, we calculated the maximum number of total individuals
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leaving the provinces. However, there was no data on the destinations of the buses. Hence, we

could not find accurate αij values. Instead, we assume that the people leaving each province travel

only to the provinces they are connected to. With this, we calculated the proportion of people

leaving each province and divided by the number of connections for that province. To attain αij ,

we took the average of the proportion of people leaving provinces i and j. The values of αij that

we use are on Table 2 we estimate these by using information from the census as shown in Table

2.

αi,j Value αi,j Value
α1,3 0.20 α4,6 0.04
α1,6 0.21 α4,5 0.03
α1,12 0.20 α4,10 0.10
α2,4 0.13 α7,10 0.10
α8,10 0.09 α9,10 0.09
α11,12 0.02

Table 2: Values of Transportation: αi,j represents the proportion of people traveling from
province i to province j.

As mentioned earlier, altitude effects the abundance of vectors. Hence, we alter the initial

population of Aedes aegypti mosquitoes in each province based on their altitude. Data presented

in [19] is used to determine the quantity of vectors. This data, which is given in units of mosquitoes

per km2, was converted to represent the number of mosquitoes per square mile. After plotting the

data points and removing outliers, a best fit line constructed. Using the best fit, the number of

mosquitoes per m2 was estimated. This is multiplied by the area of the respective regions to

approximate the total number of mosquitoes present in that region.
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Figure 2: Proportion of Buses in the 12 provinces. Instituto Nacional de Estadisticas y Censo de
Ecuador

2.1 Mathematical Model

Within each province that we considered two populations are studied: a population of humans (H)

and a population of mosquitoes (V ). We assume that only humans travel in between provinces and

that all vector populations move locally within each province. This assumption is made because

the vector Aedes aegypti can only fly on average a range of 400 m. [24]. The human population

in each province, i, is assumed to be constant and is modeled using an SEIAR model where Shi is

the susceptible human class in province i, Ehi the exposed, Ihi the symptomatic, Ahi the asymp-

tomatic, and Rhi the recovered class. The vector population in province i is also considered to be

constant and is described using an SI compartmental model with susceptible, Svi, and infected,

Ivi, classes. The epidemiological classes are shown in Table 3

The movement between different classes in each province is shown in Figure 3. This flowchart
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T =



0 0 α1,3 0 0 α1,6 0 0 0 0 0 α1,12

0 0 0 α2,4 0 0 0 0 0 0 0 0
α1,3 0 0 0 0 0 0 0 0 0 0 0
0 α2,4 0 0 α4,5 α4,6 0 0 0 α4,10 0 0
0 0 0 α4,5 0 0 0 0 0 0 0 0
α1,6 0 0 α4,6 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 α7,10 0 0
0 0 0 0 0 0 0 0 0 α8,10 0 0
0 0 0 0 0 0 0 0 0 α9,10 0 0
0 0 0 α4,10 0 0 α7,10 α8,10 α9,10 0 0 0
0 0 0 0 0 0 0 0 0 0 0 α11,12

α1,12 0 0 0 0 0 0 0 0 0 α11,12 0



Transportation Matrix. Each αi,j represents the flux of transportation from province i to
province j. We assume αi,j=αj,i.

corresponds to the system of ordinary differential equations 1.
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State Variable Description
Shi Susceptible Humans
Ehi Exposed Humans
Ihi Symptomatic Humans
Ahi Asymptomatic Humans
Rhi Recovered Humans
Svi Suseptible Vectors
Ivi Infected Vectors

Table 3: Epidemiological Classes

Ṡhi = −bβvh
IviShi
Nhi

+

12∑
j=1

αjiShj −
12∑
j=1

αijShi (1)

Ėhi = bβvh
IviShi
Nhi

− δEhi +
12∑
j=1

αjiEhj −
12∑
j=1

αijEhi

İhi = δ(1− φ)Ehi − γIhi +
12∑
j=1

αjiIhj −
12∑
j=1

αijIhi

Ȧhi = δφEhi − γAhi +
12∑
j=1

αjiAhj −
12∑
j=1

αijAhi

Ṙhi = γ(Ihi +Ahi) +

12∑
j=1

αjiRhj −
12∑
j=1

αijRhi

Ṡvi = −bβhv
(Ihi +Ahi)Svi

Nhi
− µ(Svi −Nvi)

İvi = bβhv
(Ihi +Ahi)Svi

Nhi
− µIvi

The susceptible humans, Shi, within each province increases by transportation from suscep-

tible individuals in other regions and decreases by movement of susceptible people out of the

province. This influence of transportation, which is represented by the summations in the differ-

ential equations, is also true for other human classes that we study. Once a susceptible person

gets infected with CHIKV through a mosquito bite, he or she enters an incubation phase of the
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Figure 3: Chikungunya Model Schematic.: The solid lines in this flow chart represent movement
between different state variables while the dotted lines signify interaction between the human and
vector populations

virus which takes between 2 to 4 days [17]. The progression of susceptible people to the exposed

class is given by the term bβvh
IviShi
Nhi

where b is the biting rate, and βvh the infection probability

of vectors to humans.

After exposure to the CHIKV, an individual may display symptoms unless he or she is asymp-

tomatic. In either case, the individual is still a carrier of the virus and can infect susceptible

mosquitoes. The transition from exposed humans to asymptomatic humans is represented by

δφEhi with δ being the incubation rate and φ the proportion of exposed people that become asymp-

tomatic. The proportion of individuals that become symptomatic is given by (1−φ), where φ is in

[0, 1]. Both symptomatic and asymptomatic people are assumed to recover from CHIK at a rate γ.

Mosquitoes in each province are born into the susceptible class with birth rate µ. This birth rate

is equal to the death rate in the susceptible and infected classes. The mosquitoes becomes infected
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with CHIK after feeding on an infected human (symptomatic or asymptomatic). The term that

represents the force of infection is bβhv
(Ihi+Ahi)Svi

Nhi
where b is again the biting rate, and βhv the

transmission rate of the virus from human to mosquito. This is multiplied by the proportion to

infected humans (Ihi+Ahi)
Nhi

and susceptible vectors Svi. A complete list of the parameters used in

this model is shown in Table 4.

In the following sections, we provide mathematical and numerical simulations of our model.

We start first by finding the disease free and endemic equilibrium and analyzing them for stability.

Simulations are then used to first determine the effect of altitude and transportation on the spread

of CHIK in two arbitrary provinces and then to the 12 Ecuadorian provinces in this study.

3 Analysis

3.1 Disease Free Equilibrium

The disease free equilibrium (DFE) point is the point where the disease is not present in the

population. For that reason, in the model the following variables are: For each provinces i ∈
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Symbol Description Value Source
βvh Infection probability, mosquito to hu-

man
0.24 [17]

βhv Infection probability human to
mosquito

0.24 [17]

φ Proportion of exposed that become
asymptomatic

0.15 [14]

δ−1 Incubation period 35 [days] [14]
γ−1 Recovered time 8 [days] [14]
αij Rate of people traveling from province

i to province j
estimated [23]

µ−1 Life span of mosquito 14 [days] [17]
b Mosquito biting rate 0.5 [day]−1 [17]

Table 4: Model Parameters and Values

{1, · · · , 12} with i 6= j :

Ehi = Ihi = Ahi = Rhi = Ivi = 0 (2)

With this, the system of equations (1) simplifies to:

Ṡhi = Nhi

Ṡvi = Nvi

(3)

Thus, the disease free equilibrium for each province i lies in the pointDFE = (Nhi, 0, 0, 0, 0, Nvi, 0)

To find conditions for stability, we calculate the Jacobian matrix for the previous system of equa-

tions, and evaluate it at the DFE in (3). The Jacobian matrix is:
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J =



−A 0 0 0 0 0 −bβvh

0 −δ −A 0 0 0 0 bβvh

0 δ(1− φ) −γ −A 0 0 0 0

0 γφ 0 −γ −A 0 0 0

0 0 γ γ −A 0 0

0 0 −bβhv −bβhv 0 −µ 0

0 0 bβhv bβhv 0 0 −µ



In this matrix, A is equal to
12∑
j=1

αij . To determine stability we look at the trace and determinant

of the Jacobian matrix. The trace of matrix J is given by:

trace(J) = −5A− δ − 2γ < 0 (4)

Since the trace is negative, it is necessary that the determinant be positive for stability to hold, that

is:

det(J) = µA2((A+ δ)(A+ γ)µ− b2δβvhβhv)(A+ γ) > 0 (5)

(A+ δ)(A+ γ)µ− b2δβvhβhv > 0

(A+ δ)(A+ γ)µ > b2δβvhβhv
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Notice that the following equation suggests stability when the fraction is less than one.

b2δβvhβhv
(A+ δ)(A+ γ)µ

< 1. (6)

3.2 Basic Reproduction Number

We compute the basic reproduction numberR0 of this model using the next generation matrix. We

start by identifying the infectious and disease free classes. These classes correspond respectively

to the vectors (X) and (Y ).

X =



Ehi

Ihi

Ahi

Ivi


Y =


Shi

Rhi

Svi

 (7)

Now, we create the matrix (F̃ ) whose entries represent the gain terms of each infectious class. The

partial derivative of this matrix with respect to each state variable is taken and evaluated at the

DFE to attain:

F̃ =



bβvh
IvhShi
Nhi

0

0

bβhv(Ihi+AhiSvi)
Nhi


F =



0 0 0 bβvh

0 0 0 0

0 0 0 0

0 bβhv bβhv 0


(8)
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The loss terms in the differential equations corresponding to the infectious classes is shown in

matrix Ṽ .

Ṽ =



δEhi −B +
∑12

j=1 αijEhi

−δ(1− φ)Ehi + γIhi − C +
∑12

j=1 αijIhi

−δφEhi + γAhi −D +
∑12

j=1 αijAhi

µIvi


(9)

where:

B =
12∑
j=1

αjiEhj , C =
12∑
j=1

αjiIhj , D =
12∑
j=1

αjiAhj (10)

The partial derivative of matrix Ṽ is taken and evaluated at the DFE :

V =



δ +

12∑
j=1

αij 0 0 0

−δ(1− φ) γ +
12∑
j=1

αij 0 0

−δφ 0 γ +

12∑
j=1

αij 0

0 0 0 µ


(11)
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In which case the inverse of (11) is given by:

V −1 =



1

δ+

12∑
j=1

αij

0 0 0

− δ(1−φ)

γ+

12∑
j=1

αij

1

γ+

12∑
j=1

αij

0 0

− δφ

γ+

12∑
j=1

αijδ +

12∑
j=1

αij

0 1

γ+

12∑
j=1

αij

0

0 0 0 1
µ



. (12)

Finally, the next generation matrix is constructed:

FV −1 =



0 0 0 bβvh
µ

0 0 0 0

0 0 0 0

M bβvh

γ+

12∑
j=1

αij

bβvh

γ+

12∑
j=1

αij

0



where:

M =
bβhvδ(1− φ)δ + 12∑

j=1

αij

γ +
12∑
j=1

αij

 +
bβhvδ(φ)δ + 12∑

j=1

αij

γ +
12∑
j=1

αij


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Finally, we get the R0 per province to be:

R0i =

√√√√√√
b2βvhβhvδ(1− φ)

(µ)(δ +

12∑
j=1

αij)(γ +

12∑
j=1

αij)

+
b2βvhβhvδ(φ)

(µ)(δ +

12∑
j=1

αij)(γ +

12∑
j=1

αij)

The R0 of the entire system is then bounded by:

min
i=1,2,..,12

R0(i) ≤ R0 ≤ max
i=1,2,..,12

R0(i)

3.3 Endemic Equilibrium point

Now we consider the case where ˙Ihi 6= 0 and ˙Ivi 6= 0 to obtain the endemic equilibrium point.

For the endemic equilibrium we focus on a special case involving only two patches which have

no asymptomatic class. In other words we choose φ = 0. The following system of equations

corresponds to this scenario.
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Ṡh1 = −
bβvhIv1Sh1

Nh1
+ α21Sh2 − α12Sh1

Ṡh2 = −
bβvhIv2Sh2

Nh2
+ α12Sh1 − α21Sh2

Ėh1 =
bβvhIv1Sh1

Nh1
− δEh1 + α21Eh2 − α12Eh1

Ėh2 =
bβvhIv2Sh2

Nh2
− δEh2 + α12Eh1 − α21Eh2

İh1 = δEh1 − α12Ih1 − γIh1 + α21Ih2

İh2 = δEh2 + α12Ih1 − α21Ih2 − γIh2

Ṡv1 = −
bβhvIh1Sv1

Nv1
+ µIv1

Ṡv2 = −
bβhvIh2Sv2

Nv2
+ µIv2

İv1 =
bβhvIh1Sv1

Nv1
− µIv1

İv2 =
bβhvIh2Sv2

Nv2
− µIv2

(13)

Where the total individual and mosquito population are given by:

Nh1 = Sh1 + Eh1 + Ih1

Nh2 = Sh2 + Eh2 + Ih2

Nv1 = Sv1 + Iv1

Nv2 = Sv2 + Iv2

(14)
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The endemic equilibrium point is found by setting to zero and solving the previous system equa-

tions. Here, we assume α12 = α21. This simplifies the equations and gives the following solution:

Eh1 = −
α21µ(Nh1Nv1Sv2 −Nh2Nv2Sv1)(γ + 2α21)

Sv2Sv1βhvβvhb2δ

Eh2 =
α21µ(Nh1Nv1Sv2 −Nh2Nv2Sv1)(γ + 2α21)

Sv2Sv1βhvβvhb2δ

Ih1 = −
α21µ(Nh1Nv1Sv2 −Nh2Nv2Sv1)

βhvβvhSv1Sv2b2

Ih2 =
α21µ(Nh1Nv1Sv2 −Nh2Nv2Sv1)

βhvβvhSv1Sv2b2

Iv1 = −
α21(Nh1Nv1Sv2 −Nh2Nv2Sv1)

bβvhSv2Nv1

Iv2 =
α21(Nh1Nv1Sv2 −Nh2Nv2Sv1)

bβvhSv2Nv1

Sh1 =
(4α2

21 + 2α21δ + 2α21γ + δγ)Nv1Nh1µ

(b2Sv1βvhβhvδ)

Sh2 =
(4α2

21 + 2α21δ + 2α21γ + δγ)µNh2Nv2

b2βvhβhvδSv2

Sv1 = Sv1

Sv2 = Sv2

(15)
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3.4 Stability for endemic equilibrium point

To analyze the stability of the equilibrium point, the first step is to find the Jacobian matrix:



− bβvhIv1
Nh1

− α12 α21 0 0 0 0 0 0 − bβvhSh1
Nh1

0

α12 − bβvhIv2
Nh2

− α21 0 0 0 0 0 0 0 − bβvhSh2
Nh2

bβvhIv1
Nh1

0 −δ − α12 α21 0 0 0 0 bβvhSh1
Nh1

0

0 bβvhIv2
Nh2

α12 −δ − α21 0 0 0 0 0 bβvhSh2
Nh2

0 0 δ 0 −α12 − γ α21 0 0 0 0

0 0 0 δ α12 −α21 − γ 0 0 0 0

0 0 0 0 − bβhvSv1
Nv1

0 − bβhvIh1
Nv1

0 µ 0

0 0 0 0 0 − bβhvSv2
Nv2

0 − bβhvIh2
Nv2

0 µ

0 0 0 0 bβhvSv1
Nv1

0 bβhvIh1
Nv1

0 −µ 0

0 0 0 0 0 bβhvSv2
Nv2

0 bβhvIh2
Nv2

0 µ


This Jacobian matrix is evaluated at the endemic equilibrium point (EE) with the aim of finding

the stability conditions for this point, where the terms are denoted by:

• M1 =
α12(Nh1Nv1Sv2−Nh2Nv2Sv1)

Sv2Nv1Nh1

• M2 = −
Nv1µ(4α2

12+2δα12+2γα12+δγ)
bδSv1βhv

• M3 = −α12(Nh1Nv1Sv2−Nh2Nv2Sv1)
Sv1Nv2Nh2

• M4 = −
µNv2(4α2

12+2δα12+2γα12+δγ)
bδβhvSv2

• M5 = −α12(Nh1Nv1Sv2−Nh2Nv2Sv1)
Sv2Nv1Nh1

• M6 =
Nv1µ(4a212+2α12δ+2α12γ+δγ)

bSv1βhvδ

• M7 =
α12(Nh1Nv1Sv2−Nh2Nv2Sv1)

Sv1Nv2Nh2

• M8 =
(4α122+2α12δ+2α12γ+δγ)µNv2

bβhvδSv2

• M9 = − bβhvSv1
Nv1

• M10 =
α12µ(Nh1Nv1Sv2−Nh2Nv2Sv1)

bβvhSv1Sv2Nv1

• M11 = − bβhvSv2
Nv2

• M12 = −α12µ(Nh1Nv1Sv2−Nh2Nv2Sv1)
bβvhSv1Sv2Nv2

• M13 =
bβhvSv1
Nv1

• M14 = −α12µ(Nh1Nv1Sv2−Nh2Nv2Sv1)
bβvhSv1Sv2Nv1
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• M15 =
bβhvSv2
Nv2

• M16 =
α12µ(Nh1Nv1Sv2−Nh2Nv2Sv1)

bβvhSv1Sv2Nv2

And the matrix is:



M1 − α21 α21 0 0 0 0 0 0 M2 0

α12 M3 − α21 0 0 0 0 0 0 0 M4

M5 0 −δ − α12 α21 0 0 0 0 M6 0

0 M7 α12 −δ − α21 0 0 0 0 0 M8

0 0 δ 0 −α12 − γ α21 0 0 0 0

0 0 0 δ α12 −α21 − γ 0 0 0 0

0 0 0 0 M9 0 0 µ 0

0 0 0 0 0 M11 0 M12 0 µ

0 0 0 0 M13 0 M14 0 −µ 0

0 0 0 0 0 M15 0 M16 0 −µ


To determine the conditions for stability, we look at the eigenvalues of the Jacobian evaluated

at the EE point. The eigenvalues were not easily simplified. Hence, we took many realistic param-

eter values and calculated the eigenvalues of the Jacobian with these values. In all cases we got

one eigenvalue with positive real part. For that reason we concluded the endemic point is unstable

for any value of the parameters.
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4 Results

This section is divided into four subsections. In the first three subsections we assess how trans-

portation, altitude and the combination of these two factors effect CHIK dynamics in 2 provinces,

province A and province B. In all cases, we start the epidemic with one infected individual in

province A. This is because the simulations obtained when starting with one infected individual in

province A had the same effect on peak size, peak time, final size, and duration of the epidemic as

starting with one infected individual in province B. Although the numbers differed in each case,

the general trend did not. Whenever these factors increased in the case where we start in province

A, they also increased in the scenario starting with province B.

Following the two patch simulations, we consider CHIK dynamics in our 12 patch model

based on the two factors that we expect affects the transmission of the CHIKV. We start with one

infected individual in the Manabı́ province. This province was chosen because it was reported to

have the most CHIK cases at the end of 2014. [7]

4.1 Effect of Transportation

4.1.1 Provinces with Same Population Size

Assume that province A and province B have the same population, namely the population size

of Guayas province, 2,794,156 people. If we change the flux of transportation between the two

provinces, we observe that a change in transportation does not significantly alter the dynamics in

this system. Since this case is trivial, we do not include graphics for it.
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4.1.2 Provinces with Vastly Different Population Size

We now consider two provinces with vastly different population size. Let province A have popu-

lation size 2,794,156 (highest population) and province B have population 10,643 (smallest pop-

ulation). The effect of changing transportation flux between the two provinces can be seen in the

following Figure 4 and Table 5. Decreasing α decreases peak time and duration for both provinces.

This decrease in transportation increases the peak size and final size in province A and decreases

the peak time in province B.

(a) alpha=0.50 (b) alpha=0.25

(c) alpha=0.10

Figure 4: Transportation Effect in Provinces with Vastly Different Population Sizes: Province
A has population size 2,794,156 and province B has population 10,643. In (a) α = 0.50, (b)
α = 0.25, and (c) α = 0.10.
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Epidemiological Province A Province B Province A Province B Province A Province B
Variable α = 0.5 α = 0.25 α = 0.10
Peak Size 91, 704 88, 410 100, 069 89, 409 128, 926 87, 300
Peak Time 365 366 345 346 296 299
Final Size 2, 399, 000 8, 981 2, 420, 000 8, 564 2, 471, 000 7, 251
Duration 350 350 320 320 300 300

Table 5: Effect of Changing Transportation in Provinces with Vastly Different Population
Size: Province A has population size 2,794,156 and province B has population 10,643.

4.1.3 Provinces with Similar Population Size

When we consider two provinces with similar population sizes, province A and B with 233,063

and 183,806 people respectively, we observe that decreasing transportation increases peak size in

province A and decreases it in province B. This change keeps peak time fairly constant and does

not change duration. On the other hand, it results in an increase in final size for province A and a

decrease in final size for province B. These observations can be seen in Table 6.

Epidemiological Province A Province B Province A Province B Province A Province B
Variable α = 0.5 α = 0.25 α = 0.10
Peak Size 13, 164 13, 110 13, 241 13, 059 13, 535 12, 848
Peak Time 328 329 327 328 326 327
Final Size 199, 900 157, 300 200, 600 156, 700 203, 500 154, 000
Duration 370 370 370 370 370 370

Table 6: Effect of Changing Transportation in Provinces with Similar Population Size:
Province A has population size 233,063 and province B has population 183,806.
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4.2 Effect of Altitude

4.2.1 Provinces with Same Population Size

In this part, we consider two provinces with the same population. Let province A and B have size

10,643. The proportion of tansportation between the two provinces does not change. In all cases

we let α = 0.1 while varying altitude. Since an increase in altitude is said to decrease mosquito

population, we assume that a low altitude region has 100% mosquitoes while the medium and high

altitudes have 62% and 25% of mosquitoes respect the altitude.

Epidemiological Province A Province B Province A Province B Province A Province B
Variable

Altitude High High High Low High Medium
Population 10,643 10,643 10,643 10,643 10,643 10,643
Peak Size 1 0 3,267 3,267 76 77
Peak Time 0 0 931 930 5,122 5,121
Final Size 1 0 600,000 3,000,000 200,000 700,000
Duration 200 days 1,100 days 8,000 days

Table 7: Effect of Changing Altitude with Same Population

By Table 7, we see that if two connected provinces with the same population both have high

altitude, there will be no epidemic of CHIK. However when we have varying altitude, final size

is higher in the lower altitude region. The total number of cases in connected provinces that have

high-low altitudes is higher than that in connected provinces that have high-medium altitudes.

4.2.2 Provinces with Vastly Different Population size

We now chose provinces A and B to have population like Guayas and Azuay according the Figure

1.
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Epidemiological Province A Province B Province A Province B Province A Province B
Variable

Altitude High Medium Low High Medium High
Population 2,794,156 10,643 2,794,156 10,643 2,794,156 10,643
Peak Size 1 0 68,953 65,649 20,838 19,825
Peak Time 0 0 489 490 1,040 1,041
Final Size 3 0 2,000,000 1,813 2,000,000 2,005
Duration 200 days 1,150 days 8,000 days

Table 8: Effect of Changing Altitude with Vastly Different Population

When looking at populations with vastly different sizes in Table 8, we see that if the bigger

region has higher altitude, there is no CHIK epidemic. We also observed this case when province

A has high altitude and province B has low altitude but do not include it on the table. However, if

this region has either low or medium altitude, an epidemic ensues. In the case where province A

is low altitude and province B is high altitude we get a larger peak size and smaller peak time than

if province A were medium altitude and province B high altitude.

4.2.3 Provinces with Similar Population size

Let province A and B have population sizes corresponding to Esmeraldas (233, 064) and Los Rı́os

(183, 806) respectively.

When provinces of similar population are connected, we observe that there is no disease out-
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Epidemiological Province A Province B Province A Province B Province A Province B
Variable

Altitude High Medium Low High Medium High
Population 233,064 183, 806 233,064 183, 806 233,064 183, 806
Peak Size 1 0 3,916 3,787 245 238
Peak Time 0 0 778 779 2,963 2,964
Final Size 3 0 200,000 40,000 90,000 20,000
Duration 200 days 900 days 4,000 days

Table 9: Effect of Changing Altitude with Similar Population

break when the larger province has high altitude. This is also the case when the larger province has

high altitude and the smaller one has low altitude. in the other altitude combinations considered,

an outbreak occurs.

4.3 Combined Effect of Altitude and Transportation

4.3.1 Provinces with Same Population size

After exploring the individual effects of transportation and altitude on two connected provinces,

we simulate what would happen when considering both factors simultaneously. We first start by

looking at two provinces with the same population size. We assume that one of these provinces,

province A, has low altitude and that province B has high altitude. We alter transportation between

the two provinces to obtain the following results.

Epidemiological Province A Province B Province A Province B Province A Province B
Variable α = 0.5 α = 0.25 α = 0.10
Peak Size 148 147 154 149 180 159
Peak Time 682 683 667 667 614 611
Final Size 9,850 2,445 9,972 2,427 1.1e4 2,341
Duration 1,000 days 1,000 days 775 days

Table 10: Effect of Altitude (Low-High) and Changing Transportation: Province A and B have
population size 10, 643. Province A has low altitude and province B low altitude.

29



In Table 10 we see that the province lower altitude has more cases of CHIK. In addition,

decreasing transportation resulted in a decrease in peak time in both provinces. However, this

same decrease in flux of transportation increased the final size and peak size of the epidemic in

both provinces.

4.4 Provinces with Vastly Different Population size

The effects of altering altitude and transportation on provinces of vastly different populations is

studied. Let province A have the same population size as Guayas which has 2,794,156 people, and

let province B have the same population size as Azuay with population 10,643 people. Assume

that A has low altitude and B with high altitude. We show the effect of changing transportation

below.

Epidemiological Province A Province B Province A Province B Province A Province B
Variable α = 0.5 α = 0.25 α = 0.10
Peak Size 200 196 217 202 286 221
Peak Time 505 504 484 483 424 427
Final Size 9,855 2,415 10,000 2,375 10,000 2,194
Duration 700 700 700 700 650 650

Table 11: Effect of Altitude (Low-High) and Changing Transportation with Vastly Different
Population Size: Province A has population size 2, 794, 156 and low altitude. Province B has population
10, 643 and high altitude

Through Table 11 we see that decreasing transportation results in a decrease in peak time and

increase in peak size. The final size for the low altitude region increased overall while the final

size for the high altitude region increases from α = 0.5 to 0.25 and decreases from α = 0.25 to

0.1.
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If province A were to have high altitude and province B low altitude, we observe that an

epidemic does not occur regardless of changing transportation, as seen in Figure 5.

Figure 5: Prevalence of Province A and B with Vastly Different Population Sizes. Province
A has population size 2,794,156 and high altitude. Province B has population 10,643 and low
altitude.

In the case where province A has high altitude and province B has medium altitude. We

observe results similar to the previous case where an epidemic does not occur regardless of a

change in transportation. Switching the altitudes of province A and B (i.e. province A has medium

altitude and province B has high altitude), we observe something different as shown in Table 12.

An epidemic persists and a decrease in transportation increases peak size and decreases the peak

time and duration for both provinces. However, it results in a decrease in final size for the high

altitude province.

31



Epidemiological Province A Province B Province A Province B Province A Province B
Variable α = 0.5 α = 0.25 α = 0.10
Peak Size 26,597 2,5631 31,808 28388 51,552 34,926
Peak Time 788 791 720 720 562 565
Final Size 2,000,000 2,398 2,000,000 2,344 2,000,000 2,071
Duration 800 800 700 700 600 600

Table 12: Effect of Altitude (Medium-High) and Changing Transportation with Vastly Dif-
ferent Population Size: Province A has population size 2, 794, 156 and medium altitude. Province B
has population 10, 643 and high altitude.

4.4.1 Provinces with Similar Population size

Assume that province A has population size 233,064 people as in Esmeraldas and that province

B has population size equal to that of Los Rı́os which is 183,806 people. If province A has low

altitude and province B has high altitude we observe the following results.

Epidemiological Province A Province B Province A Province B Province A Province B
Variable α = 0.5 α = 0.25 α = 0.10
Peak Size 5,096 4,969 5,543 5125 7,336 5,525
Peak Time 587 585 563 561 487 490
Final Size 200,000 40,000 200,000 40,000 300,000 40,000
Duration 600 600 600 600 600 600

Table 13: Effect of Altitude (Low-High) and Changing Transportation with Similar Popula-
tion Size: Province A has population size 233, 064 and low altitude. Province B has population 183, 806
and high altitude.

In Table 13, we see that a decrease in transportation results in an increases in peak size and

a decreases in peak time and duration for both provinces. However with a drastic reduction in

transportation, we see an increase in final size in the province with low altitude.

If province A were to have high altitude and province B low altitude, an outbreak does not

occur regardless of change in transportation. This is also true if A has high altitude and province
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B medium altitude so we do not include these tables. However, when we switch the altitudes

and allow province A to have medium altitude and province B to have high altitude we have the

following results in Table 14 we see that a decrease in transportation results in an increase in final

size for both provinces. It also results in a decrease in peak time and duration.

Epidemiological Province A Province B Province A Province B Province A Province B
Variable α = 0.5 α = 0.25 α = 0.10
Peak Size 313 307 385 362 747 593
Peak Time 2,258 2,259 2,069 2,071 1,583 1,579
Final Size 60,000 19,000 66,000 20,000 90,000 23,000
Duration 3,200 3,200 2,900 2,900 2,000 2,000

Table 14: Effect of Altitude (Medium-High) and Changing Transportation with Similar Pop-
ulation Size: Province A has population size 233, 064 and medium altitude. Province B has population
183, 806 and high altitude.

4.5 Effect of considering Altitude in 12 provinces

After observing what happens in two arbitrary provinces, we extend our scope to the 12 Ecuadorian

provinces with CHIK cases. We start by taking all αij = 0.08 and compare this result to that of

using the different transportation parameters that we calculated in Table 2. We then simulate what

would occur if only the altitude of the regions was taken into account, keeping the same flux of

transportation between all connected provinces. Finally, we compare our results of varying only

transportation to varying transportation and altitude. Our simulations are shown below. In all of

the simulations, we start with one infectious individual in the Manabı́ province.
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Figure 7: Difference in Final Size- Same Transportation Minus Varying Transportation :This
histogram shows the difference between the final epidemiological size when all αij = 0.08 and when taking
α values in 2

Figure 8: Difference in Final Size- No Altitude Minus Altitude :This histogram shows the differ-
ence between the final epidemiological size when we do not consider altitude between regions and when
we consider different altitude between regions as shown in 1. In both cases all αij = 0.1.
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Figure 10: Difference in Final Size - Varying Transportation Alone minus Varying Altitude
and Transportation:This histogram shows the difference between the final epidemiological size when
varying transportation alone versus varying atitude and transportation.
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5 Conclusions

In order to understand the spacial-temporal dynamics of CHIK in 12 of Ecuador’s most affected

provinces, it was vital to first understand the spacial-temporal dynamics embedded in two provinces.

Based on the results of the two patch system, we conclude that the factors of transportation, al-

titude, and region heterogeneity, especially with regards to varying population sizes, is essential

to understanding the nature of CHIK outbreaks. This is because each factor shapes the epidemic

dynamics of peak size, peak time, final epidemic size, and duration of the epidemic in different

ways. For example, increasing transportation will decrease the total number of cases in regions

of vastly different populations while increasing the peak time and duration of the epidemic. An

increase in transportation may be beneficial for these regions for it lessens the total number of

cases while providing time for control measures to be implemented. In another case, where two

areas have similar but not identical population sizes, increasing transportation decreases the final

size in the area with larger population and increases final size in the smaller region.

When altering only altitude between two provinces, we were able to visualize how geography

effects the natural spread of CHIK. We saw that if regions with similar or identical population

sizes and different altitudes are connected, altitude is usually a determining factor as to which

region has a higher cumulative case of CHIK. This is almost always the region with lower altitude

because of its abundance in mosquitoes. Some significant cases to consider are those that resulted

in no CHIK outbreaks. This scenario happened most often when pairing a populous high altitude

region with any other region.This result may be caused by a combination of varying population

sizes and small number of vectors in the populous city.
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Looking at the results from the previous section, we found that changing transportation in two

provinces of the same population but different altitudes has the same effect on peak size, peak time,

final size, and duration as altering transportation alone. We also see that decreasing transportation

in provinces of different altitudes and populations varies widely in its effect on CHIK spread.

However, when dealing with two cities of vastly different populations where the larger region has

high altitude, an epidemic does not occur regardless of a change in transportation. This shows that

the effect of altitude in these provinces supersedes that of transportation.

The above conclusions were true when looking at the 12 province simulations and helped

explain the changes in CHIK dynamics in those patches. We noticed that varying the flux of trans-

portation between provinces was more beneficial than keeping the flux constant for it decreases

the final epidemiological size in most provinces. Varying only altitude between regions seems to

drastically effect CHIK dynamics as seen in Figure 8. When varying both transportation flux and

altitude among the 12 provinces another story is told in regards to the the peak size, duration, and

final size of the epidemic in each region. This is a story which we believe may be more accurate

than considering only the effect of transportation as many studies do.

The wide variation in results when considering spacial heterogeneity, connectivity, and alti-

tude strongly supports the need to consider all three aspects in devising plans to combat CHIK

in Ecuador. This information can help focus control efforts for this disease and can inform the

creation of new risk maps based on transportation and altitude. Knowing scenarios where CHIK

outbreaks are less likely to occur, based on this data, will allow efficient use of government money

when funding control efforts. In addition, this information provides insight as to how the govern-

41



ment can strategically utilize the transportation and geographical features specific to their region

when dealing with CHIK. For example they may be able to temporarily limit the number of buses

traveling between different regions as a sort of social distancing measure while they enforce vec-

tor control methods in high risk regions. They can even create different (or temporary) routes of

transportation to get from one region to another to further the decline in CHIK cases.

While this study aimed at giving a fairly realistic analysis of the spread of CHIK in Ecuador,

it has some limitations. The first of these is the lack of transportation information for the different

provinces that we study. While we were able to approximate the proportion of people traveling

out of each province through Ecuadorian transportation data, we could find no public information

on what proportion of those people were going to the other provinces. Hence, our transportation

parameters could not fully tell the story of CHIK spread in the 12 Ecuadorian provinces. There was

also no substantial public data detailing CHIK cases in Ecuador which could validate our model.

In our future work, we hope to attaining both transportation information and cases of CHIK in

order to improve this model. We would also like to incorporate seasonality in the distribution

of cases. Control measures such as pesticides and larvicides could also be included to see how

effective they will be given the current state of CHIK in Ecuador.
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[20] Djamila Moulay and Yoann Pigné. A metapopulation model for chikungunya including

populations mobility on a large-scale network. Journal of theoretical biology, 318:129–139,

2013.

[21] Michael J Nelson. Aedes aegypti: biologı́a y ecologı́a. 1986.

[22] Center of Disease Control. Chikungunya in south america. http://wwwnc.cdc.gov/

travel/notices/watch/chikungunya-south-america.

[23] National Institute of Statistics and Census (INEC). La amazonEstadı́sticas de transporte.

Obtenido de http://www.ecuadorencifras.gob.ec/

estadisticas-de-transporte-2013/.

[24] World Health Organization. Dengue control.

http://www.who.int/denguecontrol/mosquito/en/.

[25] Panam Post. Chikungunya outbreak arrives in ecuador.

https://panampost.com/panam-staff/2014/10/03/

chikungunya-outbreak-arrives-in-ecuador/.
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