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Abstract

Dispersal is a critical ecological process that influences population dynamics, gene flow,
and species distribution across landscapes. Factors that affect dispersal rate include envi-
ronmental variability, habitat fragmentation, density-dependent interactions, and interspe-
cific interactions. In metapopulations, dispersal connects multiple subpopulations. Which
reduces risk of local extinctions and increases metapopulation persistence. Proximate
causes of dispersal include genetics and environmental connectivity. However, the mech-
anisms by which natural selection influences dispersal rates under varying environmental
conditions remain unclear. Here we show that the evolution of dispersal rates can be pre-
dicted under various environmental conditions. By expanding the famous LPA model of
Tribolium population dynamics to a metapopulation context, we confirmed that environ-
mental homogeneity leads to the evolution of a zero dispersal rate. Using evolutionary
game theory, we predict ESS dispersal rates in Tribolium beetles in both 4-patch and 5-
patch metapopulations when catastrophic extinctions occur on individual patches. These
results will be tested using data from experiments in our lab. However, our models can be
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applied to more general population configurations and sources of environmental stochas-
ticity. These findings can be applied to broader ecological and evolutionary studies, of-
fering insights into the mechanisms that govern species survival and adaptation in frag-
mented landscapes. Our methods offer a powerful tool for researchers aiming to predict
organismal dispersal patterns using existing data. This approach can enhance conservation
strategies, habitat management, and ecological forecasting by offering precise predictions
of dispersal behavior and its impact on population stability.
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1. Introduction

Dispersal is defined as “any movement of individuals or propagules that has potential
consequences for gene flow across space” (Ronce, 2007). This evolutionary trait affects
fitness within a population and can influence population dynamics. Dispersal can be bene-
ficial, yet also risky. Dispersal can increase genetic variation by limiting inbreeding, allow
individuals to avoid competition and/or fill empty habitats. However, dispersal expends
metabolic energy, exposes organisms to increased predation and other deadly threats both
during immigration and in the new habitat. It can also force organisms into less suitable
habitats. The combination of costs and benefits determine how natural selection operates
on dispersal rate. For understanding the rate of dispersal, Lewontin (1970) lists three nec-
essary and sufficient conditions for evolution by natural selection. First, there must be
variation in dispersal probability among individuals in a population. Second, this varia-
tion must be at least partially heritable. Lastly, the trait must correlate with reproductive
success. There are other factors which operate to determine dispersal rate. One of these
reasons is local extinctions within a population. Dispersal can be influenced by kin com-
petition, successional dynamics, habitat turnover rates, and spatial structure of a landscape
(Dieckmann et al., 1999).

Dispersal is especially important within metapopulations as they are vital for under-
standing species persistence and spatial population dynamics . A metapopulation is com-
prised of many subpopulations connected by dispersal (Levins, 1969, 1970). If each of
the subpopulations consist of equal environmental conditions, then there will be no need
for an individual to disperse (Hanski and Gilpin, 1991) . If each subpopulation has dif-
ferent environmental conditions where dispersal may increase fitness, then individuals are
more likely to disperse. For a species long-term existence, dispersal and colonization are
needed processes as they enable populations to recover from local extinctions and maintain
genetic diversity across landscapes (Wang and Altermatt, 2019).

Dispersal can be density-independent or density-dependent though it is very rare to
naturally see density-independent dispersal in an ecological setting. In homogeneous
metapopulations, density-independent dispersal has no effect on the metapopulation stabil-
ity. However, if the metapopulation is heterogeneous, then density-independent dispersal
may stabilize the metapopulations. With density-dependence, a positive dispersal may
destabilize homogeneous metapopulations. Whereas a negative density-dependent disper-
sal will stabilize the homogeneous metapopulations. This indicates that dispersal is too
costly to increase the fitness of dispersing organisms (Tromeur et al., 2016). It is worth
noting that within homogeneous populations there can be evolutionary dynamics as be-
cause space itself can count as an evolutionary parameter (Ochocki and Miller, 2017).

Evolution based dispersal strategy doesn’t always maximize population size or min-
imize the probability of extinction, so metapopulations might not always be beneficially
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impacted (Parvinen et al., 2012). Furthermore, emigration within density-dependant dis-
persal might have different density thresholds (Parvinen et al., 2012). Overall, it is impor-
tant to determine dispersal cost and how a species fitness might change with their dispersal
rate. This is especially important as dispersal within metapopulations may have extremely
varying results for the dispersing individuals. We wish to specifically study how natural
selection determines dispersal rate in metapopulations

In order to effectively study evolutionary based dispersal within metapopulations, we
chose to look at Tribolium beetles. The flour beetle, a Tenebrionid beetle in the genus
Tribolium, have features that make them an important research organism. First, they have
adapted to live in flour or other household mediums as well as rotten logs, and natural
locations (Park, 1934).

Their ease of manipulation in laboratory settings and robustness make them ideal for
experiments that bridge mathematical predictions with empirical data. Additionally, Tri-
bolium beetles exhibit unique behaviors, such as cannibalism, which have been extensively
documented and provide valuable insights into population dynamics and dispersal tenden-
cies. The cannibalism of Tribolium also creates a non-linear feedback system (?). An
additional feature that makes Tribolium a viable study species is how easy they are to ma-
nipulate in a lab, this allows us to compare our mathematical predictions to real life data.
Furthermore, These creatures are incredibly robust, so they are hard to kill. Tribolium
also contains the unique evolutionary trait of cannibalism. Though these creatures often
eat younger members of the species, they never eat themselves into extinction (Park and
Frank, 1948). Due to their unique characteristics, Tribolium have been studied for nearly
100 years. Their characteristics, population dynamics, and dispersal likelihood have been
meticulously investigated.

Tribolium beetles dispersal is largely oligogenic (Pointer et al., 2023), but can also be
influenced by different biological traits. These traits include number of mating’s by males,
duration of mating by males, total reproductive fitness, timing of reproductive fitness,
development time, and longevity (Pointer et al., 2024). Tribolium beetles are more likely
to disperse when in ideal humidity and temperature conditions. They also tend to disperse
when faced with a dense population . Dispersal rates in Tribolium can evolve due to
natural selection acting on genetic variations in dispersal-related traits. Dispersal rates
are also affected by population density, food availability, and natal environment (Ogden,
1970).

All organisms face a cost with dispersal, and Tribolium are no exception. A high
tendency for dispersal is notably linked to reduced mating effort, diminished early repro-
ductive investment, slower development of offspring laid later, and extended lifespan in
female Tribolium beetles (Pointer et al., 2024). We are interested to see how dispersal
evolves within metapopulations by using Tribolium
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Figure 1: Park, 1934 population dynamics of Tribolium separated into eggs, larvae, pupae, and adults. This
is with 25g of medium which was changed every two weeks.

This paper will provide deeper insights into the evolutionary dynamics of dispersal and
its implications for population stability and species survival. In order to study the evolution
of dispersal, we first need an accurate model of population dynamics for Tribolium beetles
within a metapopulation.

1.1. Population Dynamics Data Set
In our search for an accurate model, we first need a data set. We looked at two different

data sets created by previous researchers. Park (1934) and Jillson and Costantino (1980)
both collected data sets of the population dynamics of Tribolium which are displayed be-
low.

Figure (2) displays the population dynamics of Tribolium as a single population dy-
namics. This figure indicates that the overall population dynamics of Tribolium exhibit
oscillatory behavior. Meanwhile, Figure (1) separates the population into eggs, larvae,
pupae, and adults and shows how these oscillations primarily occur in larvae and pupae.

In terms of current research with Tribolium population dynamics, we utilized a com-
prehensive data set generated by our lab. This data set includes population dynamics from
four distinct populations of Tribolium beetles, each cultivated under controlled conditions.

The experimental setup involved four separate containers, each with 50 grams of
medium composed of 5% yeast and 95% white flour. Each container was initially stocked
with 20 mature Tribolium adults. Following standard Tribolium husbandry practices, the
medium was completely replaced every two weeks. During each medium change, larvae,
pupae, adults, and eggs were extracted and transferred to fresh medium. The number of
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Figure 2: Jillson and Costantino, 1980 total population dynamics of Tribolium, The entire population of
beetles were counted at each time step. The control group is with no media change occurring, while the 8
week group is part of a study conducted. The black blocks represent the Tribolium living in 32g of medium,
while no block indicates the Tribolium living in 8g of medium.
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Figure 3: Our full data set of Tribolium population dynamics. Adults appear to dampen the oscillations of
larvae

larvae, pupae, and adults in a population were counted and recorded. The mean popula-
tion size for all four containers, along with the standard error of the mean (SEM) bars, was
plotted against time.

We compared our population dynamics to both Park, 1934 and Jillson and Costantino,
1980’s population dynamics. In order to compare our population dynamics with the dy-
namics from Jillson and Costantino, 1980; Park, 1934 we plotted both the larvae, pupae,
and adults individually, as well as plotted the total population sum.

We compared our total population data as seen in Figure (4) to (Jillson and Costantino,
1980)’s data as portrayed in Figure (2). Both of these populations show oscillations. How-
ever, a key difference is Figure (4) has a downward trend of the entire population where
Figure (2) has the adult population increasing within the control group.
We further compared our population dynamic data in Figure (3) to data in (Park, 1934)
(Figure (1)). While (Park, 1934)’s data does have larval oscillations, ours are more fre-
quent. Furthermore, our adults have a downward trend whereas (Park, 1934)’s have adults
appear to reach a steady state.

For the purpose of this paper, we plan on using the Tribolium dynamics from our
specific lab. Therefore, our goal is to find a model that matches our specific population
dynamics of Tribolium. In order to do so we subsequently divided our data into two cat-
egories: training data and predictive data. The training data covers the first 36 weeks of
the population’s life cycle, while the predictive data extends from week 36 to 58. We will
compare a variety of potentially viable models with this data.
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Figure 4: Our population dynamics of the sum of adult, pupae, and larvae. This is the average of four
different populations with SEM bars plotted.

2. Model Review

2.1. LPA Model
In our search for viable models that exhibit the population dynamics of Tribolium we

first resorted back to previous research. There is a variety of research both biological and
mathematical on Tribolium asTribolium beetle’s population dynamics has been a long-
standing subject of interest, especially due to their non-linear chaotic behavior. In 1995,
Dennis et al. (1995) created the original population dynamic model of Tribolium beetles.
This model, known as the LPA model, focuses on the life stages of Larvae (L), Pupae (P),
and Adults (A) of Tribolium beetles,described by the following equations

Ln+1 = bAne−ceaAn−celLn ,

Pn+1 = Ln(1−µl),

An+1 = Pne−cpaAn +An(1−µa).

(1)

We do a detailed mathematical derivation of Dennis et al.’s (1995) model expressed in
the system above. Let Ln represent the number of feeding larvae, Pn denotes the number
of non-feeding larvae, pupae, and callow adults, and An represent the number of mature
adults at time step n. The model assumes all stages will move to the next stage every
time-step, except for adults, the amount of eggs the adults lay is constant, and oviposition
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Figure 5: The population dynamics of Tribolium separated into training and predictive data. The gray shaded
area represents the training data whilst the non-shaded region is the predictive data

and cannibalism occur simultaneously at each unit time step. To derive the Larvae com-
partment of the model, we assume adults eat eggs at rate cea while larvae eat eggs at rate
cel. Additionally, there is no competition for eggs between individuals given that there is
a high proportion of eggs compared to the number of adults and larvae at all times. These
assumptions mean the cannibalism of adults and larvae on eggs is independent. Lastly,
births occur at the beginning of the time step while deaths occur at the end.

Larvae Compartment: To analyze the number of larvae in any given next-generation,
we first examine the rate at which the egg population increases, considering the rate at
which adults and larvae cannibalize eggs before they become larvae. Let E(t) be the num-
ber of eggs at time t:

dE
dt
= (−ceaAn− celLn)E

To analyze the number of larvae in any given next-generation, we must first analyze
the rate at which the egg population is increasing. This can be done by observing the rate
at which adults and larvae cannibalize eggs before they become larvae. Considering adult
and larvae cannibalism, let E(t) be number of eggs at time t:

dE
dt
= (−ceaAn− celLn)E

dE
dt
= (−ceaAn− celLn)E
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Solving this by separation of variables:

∫
1
E

dE =
∫

(−ceaAn− celLn)dt

Integrating both sides:

ln E
∣∣∣∣E(n+1)

E(n)
= (−ceaAn− celLn)

∣∣∣∣n+1

n

ln
E(n+1)

E(n)
= −ceaAn− celLn

E(n+1)
E(n)

= e−ceaAn−celLn

Let E(n) = bAn, then:

E(n+1) = bAne−ceaAn−celLn

Therefore, the number of larvae in the next generation is:

Ln+1 = bAn︸︷︷︸
Recruitment

e−ceaAn−celLn︸        ︷︷        ︸
Cannibalism

Pupae Compartment: The number of pupae in the next generation is the number of
larvae that survive the previous time-step:

Pn+1 = (1−µl)︸  ︷︷  ︸
Survival

Ln

Adult Compartment:The number of adults in the next time step considers both pupae
becoming adults and the survival of current adults. The number of pupae that survive
cannibalism and emerge as adults is Pne−cpaAn . The proportion of adults that survive is
(1−µa):
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Table 1: The parameters, definition, and values of the LPA model with Dennis et al. 1995.

Parameter Definition Value
b Number of viable eggs per adult 11.68
µa Natural death rate of adults 0.6
µl Natural death rate of larvae 0.5129
cea Cannibalism of adults on eggs 0.0110
cel Cannibalism of larvae on eggs 0.0110
cpa Cannibalism of adults on pupae 0.0178

Figure 6: Solution to the LPA model with parameter values from (Dennis et al., 1995, see Table 1).

An+1 = Pn e−cpaAn︸ ︷︷ ︸
Cannibalism

+An (1−µa)︸  ︷︷  ︸
Survival

Thus, Dennis et al.’s Dennis et al. (1995) LPA model is summarized as follows:Ln+1
Pn+1
An+1

 =
 0 0 be−ceaAn−celLn

1−µl 0 0
0 e−cpaAn 1−µa


Ln
Pn
An

 (2)

The parameters are shown in Table 1.
Dennis et al. (1995) used the parameter values shown in Table 1. It is worth noting that

though these parameters are biologically reasonable for Tribolium beetles, these values
were specifically used due to the oscillations they cause the model to portray. Thus, their

11



Figure 7: Costantino et al., 1998 population dynamics of Tribolium. Their population dynamics contained
high oscillations within the pupae and larvae from their data collection.

model causes nonlinear chaotic dynamics and oscillations within each group. This can
be observed with the projected oscillations. However, (Costantino et al., 1998) did end
up with Tribolium beetles to have large oscillations in their population data. Their LPA
model is reflected of the oscillations they saw in their populations. However, they did also
specifically manipulate different things to get these effects.

Additional modeling such as bifurcation diagrams have been reflected with the LPA
model. Figure 8 shows the bifurcation diagram of model (1) and represents the sum of
larvae, pupae, and adults with the Liapunav exponent. Cannibalism of pupae by adults is
used as the bifurcating parameter. Each arrow indicates different asymptotic dynamical
regions where the experimental treatments are placed. Their primary result is that even in
these chaotic dynamics, extinction is exceedingly rare.

Brozak Brozak et al. (2024) expanded the study of the original LPA model to best
match our training data showcasing the population dynamics of Tribolium beetles. The
LPA equations remained consistent, however each specific variable was optimized to fit
the data.
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Figure 8: Bifurcation diagram directly from the Costantino et al. (1997) paper.

Table 2: Parameters, Definition, and Values of the LPA Model with Brozak et al. Data

Parameter Definition Brozak
b Number of viable eggs per adult 20
µa Natural death rate of adults 0.0842
µl Natural death rate of larvae 0.6053
cea Cannibalism of adults on eggs 0.0179
cel Cannibalism of larvae on eggs 0.0003
cpa Cannibalism of adults on pupae 1.0760×10−13 height
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Figure 9: LPA model with Brozak et al. parameters

Figure 10: Brozak et al. Bifurcation with µa

Brozak compared her LPA model in a bifurcation diagram focusing on µa which is
the natural adult mortality. The stability results for extinction and positive steady states
matched the original LPA model. However, with Brozak’s LPA model with µa as the bi-
furcation parameter, no chaotic dynamics occurred.

2.2. Cushing et al. LPA with Noise Model (1998)
The original LPA model does not consider for demographic or environmental stochas-

ticity; therefore, Cushing et al. (1998) added noise to the system to study its effect. Specif-
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ically, they introduce a random vector,
(
E1 E2 E3

)
, which has has a multivariate normal

distribution with a mean of zero. The equation is expressed below.

Ln+1 = bAne−celLn−ceaAn+E1

Pn+1 = Ln(1−µl)eE2

An+1 = P−cpaAn
n +An(1−µa)eE3

(3)

The larvae term is dependent on how many eggs are laid by adults coupled with how
many of those eggs survive cannibalism by larvae and pupae. The noise causes subtle
variations in the formula to account for any environmental shifts or factors. The pupae is
simply the amount of larvae which survive past the larval stage, once again with random
noise added. The adult term is depended on current adults surviving as well as the new
pupae becoming adults.

The most concerning factor of the LPA model with noise is that it does not adhere to
the necessary requirements of the conservation equation. It allows for adult beetles to enter
the population without being born or immigrating. This was a concern with the model, in
addition the added environmental stochasticity does not better fit the model to the training
data.

2.3. Discrete-Time Markov Chain
We used the birth and death process to model dynamics for larvae, pupae, and adults.

This is for representing the average probability of each stage moving to the next stage,
independent of previous stages. We built the model with stochastic considerations in order
to compare it with the classical discrete time LPA model. We assume that the number
of eggs follow a Poisson distribution with the mean 2λ. The total number of offspring
in a single time step born to the population is λAn. We define the natural mortality has
probability of dying which will be different for each class. Between n and n+1 all number
of individuals are binomially distributed with means µlLn, µpPn, µaAn. This is for larvae,
pupae, and adults respectively. We assume the probability that the eggs survive hatching
is e−ceaAn . The number of eggs and larvae that survive cannibalism will be binomially
distributed with the probability across λAn trails. Therefore, the number of eggs/larvae
which survive cannibalism from large larvae is binomially distributed with the probability
of e−celLn . Similarly, the number of pupae that survive cannibalism by adults is defined as
e−cpaAn .

We further assume that after each time step, adults lay eggs. After the eggs are laid,
then cannibalism of both larvae and pupae will occur. Then, natural mortality will occur.
After that, all survivors will advance 1 age class except adults who will remain as so until
they die.
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Figure 11: Mean value of 100 runs of discrete time Markov chain compared to original LPA model. The
Markov chain is faded whilst the original LPA model are the solid lines.

Parameters from the original LPA model (Dennis et al., 1995) was used in this discrete-
time Markov chain.

One of the major issues with the Markov model is that it implies beetles can stay in
each life stage for weeks, which is simply not biologically accurate. This specific Markov
chain we utilize uses a smaller time step which does not align with our work.

2.4. ELPA Model
We decided to recast the LPA Model in continuous time instead of discrete. In order

to do so, we are holding a variety of assumptions and parameters for the continuous time
model. Our first assumption is that adults lay eggs at a constant rate of λ. Second, µi jJ is
the per capita rate at which i are being eaten by j. Furthermore, every stage has a natural
death rate but eggs and pupae death rates are so small, they’re negligible. Lastly, any stage
that cannibalizes increases their fitness and lifespan by decreasing their death rate.

We also carry the additional assumptions regarding the timeline of lifestages for Tri-
bolium. The average time to get from an egg to larvae is 3 days, the average time to get
from larvae to pupae is 11 days, and the average time to get from pupae to adult is 14 days

Our variables for the continuous time model are E, L, P and A where E equals the total
number of eggs, L equals the total number of larvae, P equals the total number of pupae,
and A equals the total number of adults. The continuous time model is expressed below
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Table 3: The ELPA Model parameters, definitions and values with D as number of days.

Parameter Definition Units Value
λ Oviposition rate of viable eggs 1

D·adult 13
µea Cannibalism rate of an Egg eaten by an Adult 1

D·adult –
µel Cannibalism rate of an Egg eaten by a Larvae 1

D·adult –
µla Cannibalism rate of a Larvae eaten by an Adult 1

D·adult –
µpa Cannibalism rate of a Pupae eaten by an Adult 1

D·adult –
αe Average time of eggs to hatch 1

D
1
3

αl Average transformation time from Larvae to Pupae 1
D

1
11

αp Average transformation time from pupae to adult 1
D

1
14

δmax Maximum death rate for Adults 1
D

ln2
14

δmin Minimum death rate for Adults 1
D

ln2
364

γmax Maximum death rate for Larvae 1
D 4ln2

γmin Minimum death rate for Larvae 1
D

ln2
14

with the following parameters.

dE
dt
= λA−µeaAE−µelLE−αeE

dL
dt
= αeE+−µlaAL−αlL−ΓL

dP
dt
= αlL−µpaAP−αpP

dA
dt
= αpP−∆A

(4)

where Γ = γmax · e−κlµelE +γmin and ∆ = δmax · e−κa(µeaE+µlaL+µpaP)+δmin.
Additionally, κ is our predation efficiency parameter and D is day.
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The explanation of each term in the ELPA model is as follows:

dE
dt
= λA︸︷︷︸

eggs laid

−µeaAE−µelLE︸            ︷︷            ︸
cannibalism

− αeE︸︷︷︸
Hatching

dL
dt
= αeE︸︷︷︸

Eggs to Larvae

+ −µlaAL︸  ︷︷  ︸
Cannibalism

− αlL︸︷︷︸
Larvae to Pupae

− ΓL︸︷︷︸
Natural Death

dP
dt
= αlL︸︷︷︸

Larvae to Pupae

− µpaAP︸ ︷︷ ︸
Cannibalism

− αpP︸︷︷︸
Pupae to Adult

dA
dt
= αpP︸︷︷︸

Pupae to Adult

− ∆A︸︷︷︸
Adult Death

Since this model is continuous, we define each stage with an ODE. The first stage is
the rate of the growth of eggs. We define it as viable eggs being born per adult with the
cannibalism of adults and larvae upon the eggs being accounted for. We also account for
the average time necessary for each egg to hatch, or how long it will be in the egg stage.

The second stage is focusing on each individual as they are larvae. We start with the
eggs that successfully moved out of the egg stage and into the larvae stage. We then
account for adults cannibalizing on larvae and the time it takes for a larvae to become a
pupae. Finally we account for natural death of the larvae with a decreasing death function.

The third stage demonstrates the pupae. We start with all of the larvae that become
pupae before accounting for the cannibalism of adults on pupae. Additionally, we ensure
that the average time of a pupae becoming an adult is added.

Finally the adult stage starts with pupae becoming adult. We then account for adults
leaving the population due to natural death and cannibalism whilst also assuming that the
cannibalism adults partake in increases their fitness.

We fit the ELPA data using Trust Region Reflective Algorithm. The scipy optimize
tool corrfit in python is utilized to show correct data fitting.

The following parameters demonstrated the fitted values of the ELPA model.
All of these parameters are biologically reasonable. However, this model does not

accurately model the training data.

2.5. Age-Structured Model
We created a model aimed to address the limitations of simpler models like the LPA

model by capturing the continuous progression and interactions across various develop-
mental stages, which are critical for understanding the population dynamics more pre-
cisely. This age-structured population model divides the beetle population into different
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Figure 12: Data fitting for larvae, pupae, and adults with the ELPA model

Table 4: The best fit values for the ELPA model adjacent to the parameters and definitons.

Parameter Definition Fitted Values
cea Cannibalism rate of an egg eaten by an adult 0.3327
cel Cannibalism rate of an egg eaten by a larvae 0.0009
cla Cannibalism rate of a larvae eaten by an adult 0.0161
cpa Cannibalism rate of a pupae eaten by an adult 1.7907×10−5

αe Average time of eggs to hatch 1.7908
αl Average transformation time from larvae to pupae 0.7009
αp Average transformation time from pupae to adult 3.2945
λ Oviposition rate of viable eggs 116.2452
δmax Maximum death rate for adults 6.9332
δmin Minimum death rate for adults 0.3977
γmax Maximum death rate for larvae 1.2670
γmin Minimum death rate for larvae 0.0042
κ Time it takes to eat enough to decrease death rate by 1

2 19.8272
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stages: 0-s1(eggs and early instar larvae), s1-s2(feeding larvae), s2-s3(non-feeding larvae,
pupae, and callow adults), and s3-∞(adults). The population density within each stage is
governed by a partial differential equation (PDE), and the adult population is described
by an ordinary differential equation (ODE). The transitions between stages are governed
by boundary and continuity conditions. The objective of this model is to describe the dy-
namics of a beetle population as it transitions through various life stages. The model aims
to capture the effects of growth, cannibalism, and natural death rates on the population
density across different stages. By solving these equations, not only can we generalize it
to analyze evolution of dispersal, but understand how the population evolves over time and
identify key factors influencing population stability and growth. We define the population
density p(s, t) as different PDEs for different intervals of the stage variable s.

∂p
∂t
=



− g(s)
∂p
∂s︸  ︷︷  ︸

Development

−ceaA(t)− cel

∫ s2

s1

p(s, t)ds︸                           ︷︷                           ︸
Cannibalism

, s ∈ (0, s1),

−g(s)∂p
∂s −µl p(s, t)︸  ︷︷  ︸

Mortality

, s ∈ [s1, s2),

−g(s)∂p
∂s − cpaA(t)︸  ︷︷  ︸

Cannibalism

, s ∈ [s2, s3),

(5)

with

dA
dt
= g(s)p(s3, t)︸       ︷︷       ︸

Maturation

−µaA(t).︸ ︷︷ ︸
Mortality

Since the age-structured model (5) is an accumulation of PDE’s we need to ensure there
are viable boundary conditions as well as continuity conditions. We define our boundary
condition (B.C.) as

p(0, t) = bA(t) at s = 0.

Furthermore, our continuity conditions are defined as

∂p(s1, t)
∂t

= g(s1)p(s1, t) at s = s1

∂p(s2, t)
∂t

= g(s2)p(s2, t) at s = s2

The parameters and variable for our age-structured model is described by the table
below.
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Table 5: The parameters and variables for the age-structured model.

Parameter/Variable Description
p(s, t) Population density at stage s and time t
A(t) Adult population at time t
g(s) Growth function
cea Cannibalism rate of eggs by adults
cel Cannibalism rate of eggs by larvae
cpa Cannibalism rate of pupae by adults
b Birth rate of new eggs
µl Natural death rate of feeding larvae
µa Natural death rate of adults

s1, s2, s3 Stage boundaries

We then preform a discretization of our age-structured model. We define the eggs and
early instar larvae which is (s ∈ (0, s1)) as

pn+1
i = pn

i +∆t

g pn
i−1− pn

i

∆s
− ceaAn− cel

s2/∆s∑
j=s1/∆s

pn
j∆s


Our feeding larvae which is from (s ∈ [s1, s2)) is defined as:

pn+1
i = pn

i +∆t
(
g

pn
i−1− pn

i

∆s
−µl pn

i

)
Furthermore, we define the non-feeding larvae, pupae, and callow adults as (s ∈ [s2, s3))

pn+1
i = pn

i +∆t
(
g

pn
i−1− pn

i

∆s
− cpaAn

)
Lastly, the adults (s ∈ [s3,∞)) are defined as:

An+1 = An+∆t
(
gpn

i −µaAn
)

The boundary condition for this is:

pn+1
0 = bAn at s = 0,

with the Continuity Conditions (C.C.) being:

pn+1
s1/∆s = pn

s1/∆s+∆t ·g · pn
s1/∆s at s = s1
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Table 6: Model Parameters and Variables for Age Structured Model

Parameter/Variable Description
p(s, t) Population density at stage s and time t
A(t) Adult population at time t
g(s) Growth function
cea Cannibalism rate of eggs by adults
cel Cannibalism rate of eggs by larvae
cpa Cannibalism rate of pupae by adults
b Birth rate of new eggs
µe Natural death rate of eggs and early instar larvae
µl Natural death rate of feeding larvae
µp Natural death rate of non-feeding larvae, pupae, and callow adults
µa Natural death rate of adults

s1, s2, s3 Stage boundaries

pn+1
s2/∆s = pn

s2/∆s+∆t ·g · pn
s2/∆s at s = s2.

The parameter’s and variables for our model is defined in the table below.
We then calculated the R0 of our age structured model. There are 3 events which must

happen for our R0 value.The first is adults will survive long enough to grow from size s3
to some s ∈ [s3,∞). Second, adults will breed at the size s. Lastly, eggs will survive long
enough to grow from size s0 to s3. Therefore, R0 is all these probabilities multiplied which
gives us the following equation: P{C|A,B} ·P{B|A} ·P{A}

For P{A}, A(t) is the number of adults in this cohort at time t ≥ t0 and can only leave
by dying at rate µa.For an adult beetle, we start by solving the differential equation for its
survival:

=⇒
dA
dt
= −µaA(t),

ds
dt
= g

Solving this ODE, we get:

A(t) = A0e−µat

Additionally, the expected lifespan of an adult is given by the mean of the exponential
distribution:

1
µa
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We then look at P{B|A}. The birth rate of new eggs per adult is given by b. Since an
adult lives on average 1

µa
time units, the total number of eggs laid by an adult is:

b
µa

Finally, we must calculate our P{C|A,B} value. Since we are determining where the
beetle-free equilibrium (0,0,0) changes stability, then survival throughout the stages are
unaffected by cannibalism. Similarly to the adults, all stages s ∈ [0, s3) only leave their
cohort due to natural mortality.
Hence,

s ∈ [0, s1):

dE
dt
= −µeE

...

E(t) = E0e−µet

s ∈ [s1, s2):

dL
dt
= −µlL

...

L(t) = L0e−µlt

s ∈ [s2, s3):

dP
dt
= −µpP

...

P(t) = P0e−µpt

=⇒ R0 =
bE0L0P0e−(µe+µl+µp)t

µa
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Figure 13: Age Structured Model 3D

■
After that, we created a 3D rendition of the Age Structured Model yields the following

image.
By utilizing integration we formed the following 2D rendition of the Stage Structured

Model.
We fit the age structured model to our training data utilizing least squares optimization.
The best fit values we received from our age- structured model are biologically accu-

rate. However the b value is a bit low. We attempted to adjust our age-structured model by
adding a natural juvenile mortality function. We define this function as

µ j(s) =


µe, if s ∈ [0, s1)
µl, if s ∈ [s1, s2)
µp, if s ∈ [s2, s3)

The population density p(s, t) for this reworked model is described by different PDEs
for different intervals of the stage variable s:

∂p
∂t
=


−g(s)∂p

∂s − ceaA(t)− cel
∫ s2

s1
p(s, t)ds−µ j(s)p(s, t), if s ∈ (0, s1)

−g(s)∂p
∂s −µ j(s)p(s, t), if s ∈ [s1, s2)

−g(s)∂p
∂s − cpaA(t)−µ j(s)p(s, t), if s ∈ [s2, s3)

(6)

24



Figure 14: 2 Dimensional Stage Structure Model

Figure 15: Best data fitting for the age structured model.
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Table 7: Parameters and Best Fit Values of the Age Structured Model

Parameter/Variable Description Best Fit Values
p(s, t) Population density at stage s and time t N/A
A(t) Adult population at time t N/A

g Growth rate N/A
cea Cannibalism rate of eggs by adults 0.16142
cel Cannibalism rate of eggs by larvae 2.3609×10−14

cpa Cannibalism rate of pupae by adults 1.5954
b Birth rate of new eggs 11
µl Natural death rate of feeding larvae 2.2682×10−8

µa Natural death rate of adults 0.23235
s1, s2, s3 Stage boundaries N/A

We continue to govern the adult population A(t) as an ODE which is defined below.

dA
dt
= gp(s3, t)−µaA(t), if s ∈ [s3,∞)

Our boundary conditions and continuity conditions remain the same as they were in
our original age-structured model. We are still working on the optimization and data fitting
of our new model.

2.6. Potential Fallacies
None of these models are able to accurately predict the larval oscillations we see within

our data set. A leading hypothesis for the larval oscillations is that it is driven by adult
cannibalism (Costantino et al., 1998; Jillson and Costantino, 1980). However, the data
set tells another story. As adult population decrease, larval oscillations are appearing to
increase which means that adult cannibalism is not responsible for the large oscillations.
The models we reviewed did take adult cannibalism into account, but we believe there is a
better reasoning for why these larval oscillations are occurring.

We hold two viable hypotheses for these larval oscillations. The first hypothesis has to
do with intraspecific competition between larvae. Larger larvae cannibalize smaller larvae.
This unique form of both competition and predation may produce the chaotic dynamics
seen. The Rosenzweig-MacArthur Model could be a viable method for testing this

The second hypotheses is that the larval oscillations are driven by the medium change
of Tribolium beetles. It is standard practice within researchers of Tribolium to change
their medium every two weeks (Park, 1934; Jillson and Costantino, 1980; Park and Frank,
1948). While adults, pupae, larvae, and eggs are carefully extracted, it is near impossible
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Table 8: LPA Forcing Function Best Fit Values

Parameters Definition Value
µa The natural mortality proportion of adults 0.0842
µl The natural mortality proportion of larvae 0.6053
µg The mortality due to medium change 0.359
b The average larval recruitment, without cannibalism 20

cea The cannibalism rate of eggs being eaten by adults 0.0179
cel The cannibalism rate of eggs being eaten by larvae 0.0003
cpa The cannibalism rate of pupae being eaten by adults 0.0

to filter out the eggs within a flour environment. The eggs of these beetles will adapt to best
match the environment of medium (Park, 1934). If all of the eggs aren’t being filtered out
during the medium change, then we might be adding an environmental forcing function,
shifting the population dynamics.

A further experiment in our lab provides insight into this conundrum. Peralta’s exper-
iment consisted of studying Tribolium dynamics with different medium changes. put 40
adult beetles into cup A with 50g medium. Each time step she split the original cup evenly
between two cups. She split the beetles evenly, as well as putting 25g of the old medium
into each cup. Then, she added 25g of fresh medium into each cup. She only split each
cup letter once. For example, after she split cup A at time step 1, she no longer touched
cup A and didn’t change the medium at all. She did the experiment with a two week and
a four week time step.

2.7. LPA with Forcing Function
We hypothesized that the medium changes are an environmental factor which is caus-

ing these oscillations. It is vital to reiterate that this is firmly a hypothesis and has not been
proven. In order to account for this hypothesis, we added a forcing function to the original
LPA model (Dennis et al., 1995).Ln+1

Pn+1
An+1

 =
 0 0 (1−µg)be−ceaAn−celLn

1−µl 0 0
0 e−cpaAn 1−µa


Ln
Pn
An


We decided to use parameters estimated by Brozak et al. (2024) to fit to our data. We

then performed optimization analysis to find a best fit for µg. More specifically, we used
the least-squares regression method to minimize the difference between our data set and
the simulations done setting different values of µg. We set lower and upper bounds for µg
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Figure 16: These are the results from Peralta’s Experiment which was conducted over 8 weeks. Each time
step is 2 weeks long. (a) demonstrates the medium being changed on week 2 when cup A was split into cups
A and B. The medium was not changed for the rest of the experiment. (b) shows Cup B which is half of the
original cup A. It was split at Time Step 2, and was then left unchanged for the rest of the experiment. (c)
displays cup C which is half of the original cup B. It was split at Time Step 3, and was then left unchanged
for the rest of the experiment. (d) Shows Cup D which is half of the original cup C. It was split at Time Step
4, and was then left unchanged for the rest of the experiment.]
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Figure 17: These are the results from Brozak et al., 2024 which was conducted over 16 weeks. Each time
step is 4 weeks long.(a) begins the experiment where 40 adult beetles are placed. After 4 weeks, cup A was
split into cups A and B. An equal number of beetles were placed into a and b, furthermore the 50g of old
medium was split evenly between cup a and cup b. 25 of fresh medium was placed into cup a and cup b.
demonstrates the medium being changed on week 4 when cup A was split into cups A and B. The medium
was not changed for the rest of the experiment. (b) shows Cup B which is half of the original cup A. It was
split at Time Step 2, and was then left unchanged for the rest of the experiment. (c) displays cup C which
is half of the original cup B. It was split at Time Step 3, and was then left unchanged for the rest of the
experiment. (d) is a visual representation of Cup D which is half of the original cup C. It was split at time
step 4, and was then left unchanged for the rest of the experiment.]
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Figure 18: LPA model with forcing function implemented every 4 weeks

to be 0 and 1, respectively. The bounds were setting to represent the proportion of larvae
dying due to the medium change. We performed the analysis using function built in the
SciPy Python package Virtanen et al. (2020).

While this does not fit our data any better, it is still a potentially viable hypothesis
where a biologically study should be conducted.

3. Materials and Methods

We reviewed a variety of models to accurately represent our data on the population dy-
namics of Tribolium. However, all models contained issues in best fitting our data. While
we have valid hypothesis for why, we still wish to predict evolution of dispersal with one
of the models demonstrated above. We wish to continue evolving our age structured model
as we do believe it will eventually be an accurate representation of our data. However, we
decided to continue our studies with dispersal utilizing the LPA model. The LPA model is
an incredibly robust and well-studied model. There isn’t another model that significantly
fits our data better, and the LPA model is biologically accurate. We used this model to
determine how natural selection determine the dispersal rate of Tribolium beetles under
various environmental conditions. The first thing we need in order to accurately study the
evolution of dispersal within Tribolium with the LPA is to determine the linear stability of
the LPA model.

3.1. Calculating R0 for LPA
In order to determine linear stability for the LPA model, we utilize (Hale et al., 2012)

linear stability for discrete-time maps theorem, which is as follows:
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Consider an equilibrium x∗ of a discrete-time map of the form xn+1 = f (xn), where
f (x) ∈ C1 and f ′(x∗) , 0. Then x∗ is asymptotically stable if | f ′(x∗)| < 1 and unstable if
| f ′(x∗)| > 1.

We found our Jacobin of our beetle free equilibrium 0,0,0 to

J(0,0,0) =

 0 0 b
1−µl 0 0

0 1 1−µa


If the modulus of dominant eigenvalue is > 1 then it is an unstable system. However,

if the modulus of dominant eigenvalue is < 1 then it is a stable system. While there is a
general solution to a cubic equation, we decided to utilize a concept from epidemiology
R0. The basic reproduction number R0, in our context, is the expected number of adult
beetles that a single adult beetle will produce over its lifetime. We are interested in the
beetle-free equilibrium (0,0,0), where the population is zero. This equilibrium is where
we want to determine the threshold R0 which tells us whether the population will grow or
go extinct.

There are three causes we must consider, and calculate their probabilities to find R0.
We must consider the expected lifespan of an adult, the number of eggs an adult will lay
in its lifetime, and the probability of eggs surviving long enough to grow into an adult.

The differential equation for the adult population is given by:

dA
dt
= −µaA

By separating variables, we solve this differential equation:

1
A

dA = −µadt.

We then integrate both sides to get

∫
1
A

dA = −µa

∫
dt

ln |A| = −µat+C.

We then must solve for A where we get
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A =C1e−µat, (C1 > 0).

By then adding the initial condition A(0) = A0

A(t) = A0e−µat.

The expected lifespan E[La] is given by the mean of the exponential distribution, which
is:

E[La] =
1
µa

.

We then must find the number of eggs laid by an adult. Given that an adult produces b
viable eggs per time unit, the total number of eggs an adult will produce over its expected
lifespan is:

b ·E[La] =
b
µa

.

To find the probability that an egg survives and transitions through each stage to be-
come an adult, we consider the survival probabilities at each stage.

The egg to larvae stage must survive cannibalism by adults and larvae which provides
the following equation:

P{A} = e−(cea
∫ t

0 A(τ)dτ+cel
∫ t

0 L(τ)dτ).

Next, we look at larvae becoming pupae where they must survive to become a pupae,
we then get,

P{B|A} = 1−µl.

For the pupae to adult stage, a beetle must survive cannibalism by adults which pro-
vides this equation:

P{C|A,B} = e−cpa
∫ t

0 A(τ)dτ.
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Therefore, the overall probability that an egg will survive through all stages to become
an adult is:

P{E→ A} = P{A} ·P{B|A} ·P{C|A,B}.

When we substitute the probabilities we get:

P{E→ A} = e−(cea
∫ t

0 A(τ)dτ+cel
∫ t

0 L(τ)dτ)
· (1−µl) · e−cpa

∫ t
0 A(τ)dτ.

At the beetle-free equilibrium (0,0,0), there are no beetles present, hence any integral
over the population densities A(t), L(t), etc., will be zero because the integrands are zero.

This implies that P{E→ A} = (1−µl)

The basic reproduction number, R0, is the product of the total number of eggs laid by
an adult and the probability of an egg surviving to become an adult:

R0 =
b(1−µl)
µa

3.2. Metapopulation
We now wish to apply the previous LPA results to study dispersal. In order to ac-

curately measure dispersal within Tribolium, we need to ensure the Tribolium have the
ability to disperse. We created artificial metapopulations which allows us to study how the
beetles move in a laboratory setting. Only the adult Tribolium beetles have the ability to
move between metapopulations. The metapopulations used are either 4-patch or 5-patch
metapopulations.

The 4-patch metapopulation as seen on the left hand side of Fig 7 demonstrates the four
equal patches. Each cup is identical and has equal length tubing connecting the cups. The
beetle is able to move freely between cups adjacent to their current residential patch. The
5-patch metapopulation is no longer identical. Only the middle cup contains connections
to four different cups. A beetle must go through the middlemost cup to disperse to another
cup.
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Figure 19: A visual representation of both a 4-patch and 5-patch metapopulation used to study dispersal

4. Results

We adjusted the original LPA model of Dennis et al. (1995) to account for dispersal
within a 4-patch and 5-patch metapopulation environment. All original parameters and
assumptions hold for this adjusted model. We have also added a few additional parameters.
The additional parameters added were γ and ϵ. γ is necessary, as it accounts for the random
chance that an adult will disperse. ϵ is necessary as dispersal will always have a cost
associated with it. We don’t need to add a parameter for the benefit of dispersal, as we will
account for that within heterogeneous metapopulations. We represent the current patch a
beetle is in as i, and the patches adjacent to that individual beetle as j and k.

4.1. LPA 4-Patch
With these parameters and assumption, we then adjusted the LPA model to account for

dispersal in a 4-patch metapopulation and obtained the following equations. We hold the
same assumptions as the original LPA model. Our additional assumptions is that beetles
will only disperse into an adjacent patch. Furthermore, we assume that there is an equal
change of beetles dispersing into the different adjacent patches.
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Table 9: LPA with Dispersal Parameters

Parameter Definition
b Number of viable eggs per adult
µa Natural death rate of adults
µl Natural death rate of larvae
cea Cannibalism of adults on eggs
cel Cannibalism of larvae on eggs
cpa Cannibalism of adults on pupae
γ Chance of adult leaving any patch
ϵ Chance of adult dying due to dispersal (cost)

Ln+1,i
Pn+1,i
An+1,i

 =
 0 0 be−ceaAn,i−celLn,i

1−µl 0 0
0 e−cpaAn,i (1−µa)(1−γ)


Ln,i
Pn,i
An,i

+
0 0 0
0 0 0
0 0 1

2γ(1−µa)(1−ϵ)(An, j+An,k)


Since adults are the only ones who disperse, the larvae and pupae derivation is the

same as before. The adult derivation is as follows:

An+1,i = Pn e−cpaAn,i︸  ︷︷  ︸
Cannibalism

+ (1−µa)︸  ︷︷  ︸
Survival

(1−γ)︸ ︷︷ ︸
Philopatric

An,i+
1
2
γ(1−µa)(1− ϵ)(An, j+An,k︸                              ︷︷                              ︸

Migration

)

We then crafted a numerical representation of these equations. As (Brozak et al., 2024)
parameters best fit our population dynamics data, we used her best fit values for the visual
representation as shown below.

Figure (20) represents how Tribolium will disperse within the 4-patch metapopulation.
All of the beetles start in patch 1. At the next time step, patch 2 and patch 3 become filled
with adults who begin reproducing. Patch 4 takes longer for a viable population to grow
as beetles first must disperse to either patch 2 or patch 3 before dispersing into patch 4.

Additionally, using the same assumptions and parameters, we derived a formula for a
5-patch metapopulation.

4.2. LPA 5-Patch
Patches 1-4Ln+1,i

Pn+1,i
An+1,i

 =
 0 0 be−ceaAn,i−celLn,i

1−µl 0 0
0 e−cpaAn,i (1−µa)(1−γ)


Ln,i
Pn,i
An,i

+
0 0 0
0 0 0
0 0 1

4γ(1−µa)(1−ϵ)An,5
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Figure 20: Predicted dispersal within a 4-patch metapopulation utilizing (Brozak et al., 2024) best fit param-
eters

Adult Class in Patch 5Ln+1,5
Pn+1,5
An+1,5

 =
 0 0 be−ceaAn,5−celLn,5

1−µl 0 0
0 e−cpaAn,5 (1−µa)(1−γ)


Ln,5
Pn,5
An,5

+

0 0 0
0 0 0
0 0 γ(1−µa)(1−ϵ)

∑4
j=1 An, j


The LPA 5-Patch model holds all of the same derivations as the 4-patch LPA model.

We then introduced a different formula specifically for patch 5, as that patch is different
from all of the other patches. All beetles start in this patch and all beetles must go through
patch 5 to disperse to any other patch.

An+1,5 = Pn e−cpaAn,5︸   ︷︷   ︸
Cannibalism

+ (1−µa)︸  ︷︷  ︸
Survival

(1−γ)︸︷︷︸
Sedentary

An,5+γ(1−µa)(1−ϵ)
4∑

j=1

An, j︸                      ︷︷                      ︸
Immigration from 4-patches

Figure (21) displays how dispersal happens within a 5-patch metapopulation. Beetles
begin in patch five, which means a population establishes first in that patch. Afterwards,
beetles have an equal chance of dispersing into patches 1-4 which means that the predicted
dispersal is even throughout all of those patches. The population dynamics are the exact
same in those 4 patches.
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Figure 21: Predicted dispersal within a 5-patch metapopulation.

R0 Metapopulation
Earlier, we derived the R0 for the LPA model in a single population patch. Now, we

wish to determine the R0 for the artificial metapopulations. The R0 holds true for both
the 4-patch and 5-patch metapopulations. We used the exact same methods for viability
conditions with the LPA. The only difference is we introduce γ as the dispersal rate and ϵ
as the cost of dispersal . This is added to the mortality of adults, as now adults face death
both by natural consequences and by dispersal. The full proof will be in the appedix.

R0 for both 4 & 5 patch metapopulation models:

R0 =
b(1−µl)
µa+γϵ

where γ is dispersal rate and ϵ is the cost of dispersal
The basic reproduction number R0, in our context, is the expected number of adults that

a single adult will produce over its lifetime. We are interested in the beetle-free equilibrium
(0,0,0), where the population is zero. This equilibrium is where we want to determine the
threshold R0 which tells us whether the population will grow or go extinct The R0 is the
same for both the 4-patch and 5-patch artificial metapopulation.
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4.3. Applications to evolution
The construction of artificial metapopulations using the adjusted LPA models allows us

to delve into the evolutionary dynamics of dispersal in a structured and controlled manner.
By simulating the life cycle and dispersal behaviors of Tribolium beetles across multiple
interconnected patches, we can investigate how dispersal strategies evolve in response to
varying environmental pressures and habitat configurations.

The primary advantage of our artificial metapopulation models lies in their ability to
capture the interplay between local population dynamics and dispersal. By incorporating
realistic parameters such as cannibalism rates, natural death rates, and the costs associ-
ated with dispersal, these models provide a reliable framework for studying the adaptive
significance of dispersal.

By adjusting parameters such as dispersal rate (γ) and dispersal cost (ϵ), we can simu-
late different evolutionary scenarios and observe how these factors influence the fitness of
Tribolium beetles. For instance, we can explore how increased dispersal costs affect the
propensity of beetles to move between patches and identify the conditions under which
dispersal traits are favored by natural selection.

Using the models, we can introduce small mutations in dispersal traits and analyze
their impact on population dynamics. By comparing the fitness of mutant and resident
strategies, we can determine whether a particular dispersal rate is an Evolutionary Stable
Strategy (ESS) – one that, if adopted by the population, cannot be invaded by any alterna-
tive strategy. This approach helps us understand the long-term evolutionary outcomes of
dispersal behaviors.

Our models allow us to simulate metapopulations in heterogeneous environments,
where patches differ in terms of resource availability, predation pressure, and other eco-
logical factors. This heterogeneity can have significant implications for the evolution of
dispersal, such as adaptive responses to environmental changes. By varying the condi-
tions across patches, we can study how Tribolium beetles adjust their dispersal strategies
to optimize their fitness. For example, in environments where some patches offer higher
reproductive success or lower mortality risks, beetles may evolve higher dispersal rates to
exploit these favorable conditions.

4.4. ESS 4-Patch
To determine fitness we have to analyze the persistent equilibrium. This now means

that the process of maturing through the larval to adult stage will be affected by cannibal-
ism and natural mortality.
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Fitness of Residents:

Fr =
be−ceaE[A]−celE[L]−cpaE[A](1−µl)

µa+γrϵ
(7a)

Fitness of Mutants:

Fm =
be−ceaE[A]−celE[L]−cpaE[A](1−µl)

µa+γmϵ
(7b)

In order to calculate the relative fitness, we define our invasion exponent as the mea-
suring the exponential rate of divergence or convergence of nearby trajectories in phase
space. More formally, our invasion exponent is a dominant Lyapunov exponent. Since our
world is variable and nonlinear, then our best measure of available fitness is based on dom-
inant Lyapunov exponents When our invasion exponent is positive that indicates that small
differences in fitness lead to exponential divergence, signifying strong selection pressure
favoring the mutant. A negative Lyapunov exponent indicates convergence, meaning the
mutant is less fit. Metz et al., 1992. We calculate our relative fitness as

λ = ln
(

Fm

Fr

)
We can then analyze our invasion exponent by

ln
(

Fm

Fr

)
= ln

(
µa+γrϵ

µa+γmϵ

)
=⇒ ln

(
µa+γrϵ

µa+γmϵ

)
> 0 for mutant to invade

=⇒
µa+γrϵ

µa+γmϵ
> 1

=⇒ µa+γrϵ > µa+γmϵ

=⇒ γr > γm.

This demonstrates that evolution will tend dispersal to 0. Which implies there is no benefit
to disperse to identical patches. We demonstrate visually as well in which we create a
visual representation of which beetle type survives when γm is greater than γr and when
γm is less than γr.

Figure (22) represents that the beetles with the smaller dispersal rate will survive in
a 4-patch population when compared to those with a higher dispersal rate. Our results
are expected as in a homogenous metapopulation, there is not benefit to dispersal. The
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Figure 22: The figure to the left represents when γm > γr. Since the mutants have a higher dispersal rate
than the residents, they will die out as evolution will tend dispersal to 0. The right figure demonstrates that
one the dispersal rate of mutants is less than that have residents, γm < γr, then the mutants will invade as
dispersal tends to zero.

only thing dispersal does is increase your chance of dying due to dispersal. We have
seen this result in literature such as Hanski and Gilpin, 1991 which states a homogenous
metapopulation will not favor dispersal, and the ESS will always be zero. However, we
wish to discover if a 5-patch metapopulation can generate enough heterogeneity where the
ESS might not be zero, and if dispersal could be favored.

4.5. ESS 5-Patch
To calculate the evolutionary stability strategy for a 5-patch metapopulation, the pro-

cess is similar, with some adjustments for the different configuration of inner and outer
patches. We introduce the idea of a class-α beetle where α ∈ r, s

We define the fitness of a class-α beetle inside of the inner patch as

Fin,α =
be−ceaE[Ain]−celE[Lin]−cpaE[Ain](1−µl)

µa+γαϵ
.

The fitness of outer patch class-α as beetle is defined as

Fout,α =
be−ceaE[Aout]−celE[Lout]−cpaE[Aout](1−µl)

µa+γαϵ
.

We can then define our overall fitness of the class-α as

Fα = E[Ain]Fin,α+4E[Aout]Fout,α.
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Figure 23: The figure to the left represents when γm > γr. Since the mutants have a higher dispersal rate
than the residents, they will die out as evolution will tend dispersal to 0. The right figure demonstrates that
one the dispersal rate of mutants is less than that have residents, γm < γr, then the mutants will invade as
dispersal tends to zero.

However, when we evaluate the relative fitness, we get the same result as the 4-patch
model

γr > γm.

This suggests that the 5-patch metapopulation does not create enough heterogeneity to
influence dispersal. We can demonstrate this result visually as well.

The 5-patch metapopulation does not generate enough heterogeneity for dispersal to
evolve past zero. The ESS still remains 0.

4.6. Random Extinctions
Since a 5-patch metapopulation does not generate enough heterogeneity, we looked at

random events in nature that has the potential to generate a heterogeneous environment.
We looked at local extinctions which is a common phenomena in nature. Furthermore,
local extinctions is a primary reason for dispersal (Dieckmann et al., 1999). We wished
to see if emulating extinction in different patches will generate enough heterogeneity for
dispersal to evolve.
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We created simulations in both 4-patch and 5-patch models where random extinction
would occur. This computational experiment involved running the LPA model for a spec-
ified amount of time to obtain the equilibrium points. Using Table 21, the starting amount
of larvae, pupae, and adults is 67, 26, and 236, respectively. After 20 time-steps, a patch
will be selected at random to empty the patch, imitating extinction.

The γ values chosen for the mutants were randomly chosen each simulation between
0 and 1; the dispersal rate of a resident beetle is fixed to 0.3. We realized that is pretty low
and the probability of the mutant γ’s is higher than 0.3 is pretty high. So for the 5-patch
models, the resident dispersal rate is set to 0.8. Next, a fraction of a mutant beetle will be
added in a random patch, excluding the patch selected for extinction. If we introduced a
mutant into a patch destined for extinction, we would be unable to see if the mutant had
the ability to invade.

The differences in dispersal rate (γ) caused fluctuations in all patches, although they
are all relatively similar with the stochastic factors. The graphs were also plotted using
the proportion of each class (resident, mutant #1, mutant #2, and mutant #3) to the en-
tire population, shown in Figure (36). It is important to note the bar graphs represent the
proportion of space each class takes up. With this in mind, the patch graph expresses the
proportion in a different way- showing the change proportion depending on the γ’s. Al-
though adding a fraction of a beetle truly shows the evolution of dispersal, no conclusions
can be drawn from it as the changes are so slow, it is near invisible to the naked eye.

To fix this issue, we increased the amount of mutant beetles added every 20 time-steps
to 1000. This does not affect whether they can take over or go extinct as dispersal rate is
the only indicator of each beetles individual fitness. Each time a new mutant was added,
a new color appeared in the graph. There are only 3 mutants, totaling up to 4 types of
beetles in this experiment. Seeing as that random extinction occurs and wipes a singular
patch population to zero, the proportion can be undefined. This is solved by setting it
to zero causing dips and dark lines on the graphs. Representative graphs were chosen
for this section. For the full list of graphs used for this project, see Appendix. In the
4-patch simulations, we see a monomorphic pattern where the beetle type with the lowest
dispersal rate take over the rest. The 5-patch however, it is showing a pattern representing
polymorphism.
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Figure 24: Simulation of dispersal evolution in a 4-patch metapopulation in a line graph. The third mutant
(dashed line) with γ 0.0684 takes over the population along with the resident (solid line). The vertical lines
represent the random extinction occurrences.
Resident: γ = 0.3 Mutant #1: γ = 0.7684 Mutant #2: γ = 0.5333 Mutant #3: γ = 0.0684

Figure 25: Legend
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Figure 26: Simulation of dispersal proportion in a 4-patch metapopulation using a bar graph. This represen-
tation is the most interesting because it shows every scenario. The first mutation has a γ of .988, meaning
they will disperse 98.8% of the time, forcing them into extinction in 2 years. Visually, the first mutant is
barely seen. When the second mutation gets added with a dispersal rate of 0.17, they take over everything
and will eventually be the only species to live on. When the third mutation gets added with a γ of 0.25, they
fall into extinction at almost the same rate as the resident because of how close the γ’s are.

4.6.1. Numerical solution of 4 and 5 patch dispersal
We now wish to mathematically prove our results. We do this by calculating the spe-

cific fitness of a given beetle in a given patch.
Suppose a 4-patch metapopulation where Li, Pi, Ai determines the Larvae, Pupae and

Adult population in patch i ∈ {1,2,3,4} respectively.
Given the current position and population configuration at time-step t we can determine

the specific fitness of a class-α beetle.
Let: Ψ1 = e−ceaAi−celLi−cpaAi , Ψ2 = e−ceaA j−celL j−cpaA j , and Ψ3 = e−ceaAk−celLk−cpaAk

where Ψ1,2,3 is the cannibalism force. i represents the patch of the beetle’s current
position, and j,k are the adjacent patches to i.

Specific Fitness of Class-α Beetle in 4-patch:

b(1−µl)[(1−γα)Ψ1+
1
2γαΨ2+

1
2γαΨ3]

µa+γαϵ
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Figure 27: Simulation of the proportion of dispersal evolution in a 4-patch metapopulation using a patch
graph. This is similar to Figure (26). The main difference is how the different classes (resident and mutants
#1-3) are proportioned. Unlike the bar graphs where the classes are taking up space, the patch graph shows
how the different γ values determine the rate at which the classes take up the space. The further away the
γ value is from the resident (0.3), the longer it takes to take over or fall to extinction. The colors blue,
red, yellow, and magenta represent the resident, mutant 1, 2, and 3, respectively. The breaks in the graph
designate the proportion being undefined as random extinction occurs.
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Figure 28: Simulation of dispersal evolution in a 5-patch metapopulation. The colors have the same repre-
sentation as the previous 4-patch figure. The resident dispersal rate has been set to 0.3. Mutant #3 has the
lowest dispersal rate, allowing it to grow over the rest of the population. Patch 5 always displays a differ-
ent pattern because the odds of a beetle arriving is higher than the outer 4 patches because they have to go
through it. The vertical lines represent the random extinction occurrences.
Resident: γ = 0.3 Mutant #1: γ = 0.5316 Mutant #2: γ = 0.8732 Mutant #3: γ = 0.0545

Figure 29: Legend
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Figure 30: Simulation of dispersal evolution in a 5-patch metapopulation using a bar graph. The resident
dispersal rate has been set to 0.3. The second mutation, with a of 0.045 grows into the proportion of the
other beetles, but it is interesting to note of the proportion decrease at the very end.

Suppose a 5-patch metapopulation where Li, Pi, Ai determines the population in patch
i ∈ {1,2,3,4,5}.

Given the current position and population configuration at time-step t we can determine
the specific fitness of a class-α beetle.

Let: Ψi = e−ceaAi−celLi−cpaAi and Ψk = e−ceaAk−celLk−cpaAk

where Ψi,k represents the cannibalism force. i represents the patch of the beetle’s cur-
rent position and k represents the surrounding patches of i. Note that i,k ∈ {1,2,3,4,5} and
k , i.

Specific Fitness of Class-α Beetle in 5-patch Outer Patches:

b(1−µl)[(1−γα)Ψi+γαΨ5]
µa+γαϵ

Specific Fitness of Class-α Beetle in 5-patch Inner Patch:

b(1−µl)[(1−γα)Ψ5+
1
4γα

∑4
j=1Ψ j]

µa+γαϵ
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Figure 31: Simulation of predicted dispersal proportion in a 5-patch metapopulation using a patch graph.
This graph shows that the 5-patch expresses a polymorphic pattern. The resident dispersal rate has been set
to 0.8. In the beginning when we introduce the first and second mutant, they immediately die out. But it is
when we add in the third mutation, we notice the mutants return and they all coexist. This is because the
mutants never completely went extinct, but had a proportion of 3∗10−7 so when the third mutation came in
it changed the required dispersal rate so they can coexist.The breaks in the graph designate the proportion
being undefined as random extinction occurs.
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Figure 32: Simulation of predicted dispersal proportion in a 5-patch metapopulation using a patch graph.
This figure shows how the 5-patch models can show a polymorphic pattern, but still runs the possibility of
showing monomorphism as time progresses. The resident dispersal rate has been set to 0.8. The noticeable
feature is that the γ value for the second mutant is so low that it still impacts the graphs in a big way,
regardless of the random extinctions. The breaks in the graph designate the proportion being undefined as
random extinction occurs.
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5. Discussion

Our study provides the necessary and sufficient conditions to prove that homogeneous
4-path and 5-path metapopulations do not generate enough heterogeneity for dispersal to
evolve. This finding aligns with established theories in metapopulation dynamics, partic-
ularly those proposed by Hanski and Gilpin, 1991, which suggest that in a homogeneous
environment, dispersal tends to be minimized due to the lack of selective pressure favoring
movement between identical patches. In such scenarios, a mutant beetle with a different
dispersal rate will either outcompete the residents, driving them to extinction, or fail to
establish, resulting in the mutant’s extinction.

By introducting random extinctions within the 4-path metapopulation, we observed
evidence suggesting that high mutant γ values introduced did not influence the population
dynamics of the other patches, resulting in uniformity across the metapopulation. This out-
come is consistent with the notion that local extinctions alone do not introduce sufficient
heterogeneity to shift the evolutionary stable strategy (ESS) away from zero.

The 5-patch model, however, presented an interesting case of potential polymorphism,
where mutants and residents could coexist. Yet, similar to the 4-patch model, it also exhib-
ited patterns of monomorphism, where the ESS tends to the lowest dispersal. This duality
suggests that while the 5-patch structure introduces some level of complexity, it may not
be enough to sustain long-term polymorphism under the conditions tested. A plausible hy-
pothesis for these results is that the simulations might not have run for a sufficient duration
to capture the full evolutionary dynamics.

Doebeli and Ruxton provided a comprehensive overview of the evolution of disper-
sal within metapopulations, highlighting that the ecological dynamics are driven by both
local dynamics and the dispersal rate of each patch. They argue that in metapopulations
exhibiting non-equilibrium dynamics, the ESS can be nonzero. Our findings, which show
no evolution of dispersal within randomly extinct patches, suggest that either the hetero-
geneity introduced by random extinctions is insufficient, or other factors are influencing
the ESS towards zero.

Our model’s assumption of non-biased dispersal may also contribute to these results.
Ogden, 1970 demonstrated that Tribolium dispersal is often sex-biased and influenced by
environmental conditions such as humidity or flour conditioning. Additionally, (Robertson
and Cushing, 2011) found that adults tend to disperse away from juveniles, indicating that
intra-specific interactions play a significant role in dispersal behavior. These factors are
not accounted for in our model and could potentially affect the evolution of dispersal rates.

Future research should explore the conditions under which metapopulations might ex-
hibit polymorphism or lead to a dominant beetle dispersal rate. Specifically, it would be
valuable to extend the simulation’s duration to capture long-term evolutionary trends and
potential shifts in dispersal strategies. Incorporating sex-biased dispersal, environmental
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preferences, and interactions between life stages would reflect more realistic dispersal be-
havior. Additionally, considering the impact of temporally varying environments, where
patches change in connectivity over time, could create dynamic selective pressures for
dispersal.
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Appendix
Full calculation of R0 for Metapopulations

There are four causes we must consider, and calculate their probabilities to find R0. We
must consider the expected lifespan of an adult, the cost an adult will face when they

disperse, the number of eggs an adult will lay in its lifetime, and the probability of eggs
surviving long enough to grow into an adult.

The differential equation for the adult population is given by:

dA
dt
= −µaA

By separating variables, we solve this differential equation:

1
A

dA = −µadt.

We then integrate both sides to get

∫
1
A

dA = −µa

∫
dt

ln |A| = −µat+C.

We then must solve for A where we get

A =C1e−µat, (C1 > 0).

By then adding the initial condition A(0) = A0

A(t) = A0e−µat.

The expected lifespan E[La] is given by the mean of the exponential distribution, which
is:

E[La] =
1
µa

.

We then must have γ for dispersal rate and ϵ as the cost of dispersal. This will affect the
expected lifespan E[La].
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E[La] =
1

µa+γϵ
.

We then must find the number of eggs laid by an adult. Given that an adult produces b
viable eggs per time unit, the total number of eggs an adult will produce over its expected

lifespan is:

b·E[La] =
b

µa+γϵ
.

To find the probability that an egg survives and transitions through each stage to become
an adult, we consider the survival probabilities at each stage.

The egg to larvae stage must survive cannibalism by adults and larvae which provides the
following equation:

P{A} = e−(cea
∫ t

0 A(τ)dτ+cel
∫ t

0 L(τ)dτ).

Next, we look at larvae becoming pupae where they must survive to become a pupae, we
then get,

P{B|A} = 1−µl.

For the pupae to adult stage, a beetle must survive cannibalism by adults which provides
this equation:

P{C|A,B} = e−cpa
∫ t

0 A(τ)dτ.

Therefore, the overall probability that an egg will survive through all stages to become an
adult is:

P{E→ A} = P{A}·P{B|A}·P{C|A,B}.

When we substitute the probabilities we get:

P{E→ A} = e−(cea
∫ t

0 A(τ)dτ+cel
∫ t

0 L(τ)dτ)
·(1−µl)·e−cpa

∫ t
0 A(τ)dτ.
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At the beetle-free equilibrium (0,0,0), there are no beetles present, hence any integral
over the population densities A(t), L(t), etc., will be zero because the integrands are zero.

This implies that P{E→ A} = (1−µl)

The basic reproduction number, R0, is the product of the total number of eggs laid by an
adult and the probability of an egg surviving to become an adult:

R0 =
b(1−µl)
µa+γϵ

Additional Graphs of Dispersal Simulations

57



Figure 33: Simulation of dispersal evolution in a 4-patch metapopulation in a line graph. The vertical lines
represent the random extinction occurrences. Shown in the figures, the difference in dispersal rates allow the
mutant beetles to either take over the residents, or fall into extinction. The resident (solid line), having the
smallest γ takes over the population. Other mutations (dashed lines) with γ’s 0.98, 0.96, and 0.57 go extinct.
Resident: γ = 0.3 Mutant #1: γ = 0.9820 Mutant #2: γ = 0.9690 Mutant #3: γ = 0.5766
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Figure 34: Simulation of dispersal evolution in a 4-patch metapopulation using a line graph. Although
smaller than the last simulation, the third mutation that disperses at a rate of 0.1715 lives while the other
strands go extinct because they have the smallest γ. The first mutation (long-dashed line) has a γ of 0.8665
and immediately falls to extinction. The vertical lines represent the random extinction occurrences.
Resident: γ = 0.3 Mutant #1: γ = 0.8665 Mutant #2: γ = 0.6890 Mutant #3: γ = 0.1715

Figure 35: Legend
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Figure 36: Simulation of dispersal evolution proportion in a 4-patch metapopulation using a bar graph. It
is important to note that the proportion represented here is the amount of space each class takes up. The
resident beetle (blue) has the lowest γ value, meaning it disperses the least. All mutants have a very high
dispersal rate, killing them into extinction after just 7.5 years.
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Figure 37: Simulation of dispersal evolution proportion in a 4-patch metapopulation using a bar graph.
When the first mutant beetle gets added to the population with a dispersal rate of 0.6, they die out almost
immediately. Visually, they get pushed down by the second mutation, which has a γ of 0.08 allowing them to
take over the other mutants. Additionally, the dispersal rate of the third mutation is lower than the resident,
killing them too.
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Figure 38: Simulation of dispersal proportion in a 4-patch metapopulation using a patch graph. The high γ
values cause the beetles to go extinct. The breaks in the graph designate the proportion being undefined as
random extinction occurs.

Figure 39: Predicted dispersal proportion during a 4-patch metapopulation simulation using a patch graph.
The low γ values allow the mutant beetles to take over the population. The breaks in the graph designate the
proportion being undefined as random extinction occurs.
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Figure 40: Simulation of dispersal evolution in a 5-patch metapopulation. The colors red, blue, and black
represent the larvae, pupae, and adults, respectively. The resident dispersal rate has been set to 0.3. The
vertical lines represent the random extinction occurrences. As represented, all mutants are smaller than the
resident’s dispersal rate (0.3), so they all take over the resident.
Resident: γ = 0.3 Mutant #1: γ = 0.0675 Mutant #2: γ = 0.0690 Mutant #3: γ = 0.1668
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Figure 41: Simulation of dispersal evolution in a 5-patch metapopulation. The colors have the same repre-
sentation as the previous figure. The resident dispersal rate has been set to 0.3. The vertical lines represent
the random extinction occurrences. This graph is interesting because of the diversity of the γ values, they all
coexist.
Resident: γ = 0.3 Mutant #1: γ = 0.0787 Mutant #2: γ = 0.9331 Mutant #3: γ = 0.6029

Figure 42: Legend
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Figure 43: Simulation of dispersal proportion in a 5-patch metapopulation using a bar graph. The resident
dispersal rate has been set to 0.3. In a similar case as the previous figure, all beetles coexist regardless of
their γ values.

Figure 44: Simulation of dispersal proportion in a 5-patch metapopulation using a bar graph. The resident
dispersal rate has been set to 0.3. The dispersal rate of the second mutant is too high, which lowers the
fitness so the proportion is the lowest.
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Figure 45: Simulation of dispersal proportion in a 5-patch metapopulation using a patch graph. The breaks in
the graph designate the proportion being undefined as random extinction occurs. This allows the population
to refresh and take longer to go extinct, take over, or coexist. The resident dispersal rate has been set to 0.8.
The dispersal rate of the first mutant which is 0.03, allows it to take over the rest of the population.
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Figure 46: Simulation of predicted dispersal proportion in a 5-patch metapopulation using a patch graph.
Follows the same extinction observation as the previous figure. The resident dispersal rate has been set to
0.8. The breaks in the graph designate the proportion being undefined as random extinction occurs. This
graph is also interesting because a mutant is not taking over any of the other mutants or resident.
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