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Abstract

COVID dynamics are influenced by vaccination rates. In the United
States, a county’s vaccination proportions are closely associated with that
county’s political leanings. Generally, Democratic counties tend to have
higher vaccination proportions, and Republican counties tend to have
lower vaccination proportions. We hypothesized that adjusting for varia-
tions in vaccination proportions between different types of counties would
more accurately reflect COVID dynamics based on reported data. To
test this, we classified counties into five categories, a1 through a5, using
the percentage of Trump votes in a county during the 2020 presidential
election as an indicator of that county’s political leanings. a1 represented
counties with the lowest percentage of Trump votes (<25%), and a5 rep-
resented counties with the highest percentage of Trump votes (>75%).
Each category had a corresponding vaccination proportion. We created
a county-based SEIAVR (Susceptible, Exposed, Infected, Asymptomatic,
Vaccinated, and Recovered) model to represent the dynamics of each of
those five types of counties between March 1st, 2021 and September 1st,
2021. We also hypothesized that daily movement would influence COVID
dynamics, since people interact with individuals from other counties with
different vaccination rates. We therefore proposed an SEIAVR model
with Lagrangian mobility to simulate inter-county mobility. Our initial
results indicate that a model incorporating politically-associated vaccina-
tion proportions accurately represents the dynamics of COVID based on
existing cases and deaths data. This approach highlights the importance
of considering political factors in epidemiological modeling.
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1 Introduction

The COVID pandemic quickly spread worldwide in 2020 and still persists today.
Symptoms of the first strain of COVID include cough, fever, fatigue, shortness
of breath, and loss of taste or smell (Çalıca Utku et al., 2020). The disease is
spread by infected particles emitted from an infected person’s mouth or nose.
These particles can vary in size from larger droplets to smaller aerosol particles.
The best mitigation strategies are vaccination, masking, and social distancing
(World Health Organization, 2024). The World Health Organization estimates
that COVID may have caused upwards of 3 million excess deaths in 2020 alone
(World Health Organization, 2021).

Various models have been formulated to model COVID, but none have been
particularly successful in terms of data fitting or future predictions (Colonna et
al., 2022).

This paper will begin with the literature review, which will cover relevant ter-
minology, the relationships between politics and COVID, and existing COVID
models. This will be followed by a methodology section outlining how we con-
structed our models. The models’ results and implications will be addressed in
the discussion. Future directions and limitations will be covered in the analysis
section. Our findings will be summarized in the conclusion.

2 Literature Review

This literature review explores the relationship between political leaning and
COVID trends in terms of cases, deaths, and mitigation strategies. It begins
with an overview of relevant terminology in American politics. This is followed
by an overview of existing research on how demographics affect COVID trends
and shape Americans’ willingness to adopt of mitigation strategies. Specific
analyses of various COVID mathematical models will follow. Finally, the liter-
ature review will conclude with the gap analysis, which highlights the fact that
no known research combines the qualitative political differences with a quanti-
tative COVID model.

2.1 Relevant Terminology

The American political system is currently defined by its two main political
parties, the Democratic party and the Republican party. Democrats tend to
be more liberal, favoring larger government and higher taxes in exchange for
government-funded social welfare programs. On social issues, Democrats favor
greater freedoms and less government control. Republicans tend to be more
conservative, prioritizing smaller government and lower taxation. They gener-
ally support military expenditure. With respect to social liberties, Republicans
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tend to have more traditional, conservative views (The Editors of Encyclopaedia
Britannica, 2022). The color most associated with the Democratic party is blue,
and the color tied to the Republican party is red. For the purposes of this pa-
per, terms including Democratic, liberal, and blue or, conversely, Republican,
conservative, and red may be used interchangeably to classify the respective
general political leanings of a subpopulation.

2.2 Politics and COVID Mitigation Strategies

In early 2020, near the beginning of the COVID pandemic, Desmet andWacziarg
observed a pattern where (largely due to population density) Democratic areas
tended to have higher COVID mortality cases than predominantly Republican
areas. This correlated with higher approval rates for lockdown and control
measures in blue areas, whereas in red areas, these measures were deemed less
necessary. There was also more support for Trump in those red, low death ar-
eas than in the high death, mainly blue areas. However, Desmet and Wacziarg
also noted that once they added control measures to account for minority pop-
ulations (Latino, Black, and other racial minorities in particular), regions with
high support for Trump tended to be more heavily affected by COVID. The
authors argued that “these results may help explain the observed political fault
lines over the desirability of lockdown policies, with Republican-leaning loca-
tions seemingly much more eager to reopen early and suspend the lockdowns as
compared to Democratic-leaning locations” (Desmet & Wacziarg, 2020, p. 14).

2.2.1 Vaccination

Once COVID vaccinations became widely available in the U.S., the correlation
between political leaning and COVID cases began to shift. Albrecht’s research
attempted to explain differences in political views in terms of “race/ethnicity,
educational attainment, and poverty” (Albrecht, 2022, p. 3). He compared data
on COVID cases and deaths per 100,000 residents per county from 3112 coun-
ties from March 1, 2021 to September 1, 2021, a time frame in which vaccines
were widely available. Data on dependent variables in the study were resourced
from New York Times information on cumulative cases and deaths. Albrecht
used values published in September 2020, March 2021, and September 2021.
Albrecht noted that after “March 1, 2021 when vaccines were readily avail-
able,” vaccination rates became less dependent on supply disparities and more
closely associated with political leanings. He observed that “COVID19 deaths
increased by 26.1 per 100,000 residents in counties where Trump received less
than 25% of the votes, while the rate of increase was more than twice as great
(54.8 per 100,000 residents) in counties where Trump received more than 75%
of the vote” (Albrecht, 2022, p. 7). Moreover, “as vaccination rates increased,
COVID-19 cases and deaths per 100,000 tended to decline. Most significantly,
not only were political views strongly related to vaccination rates, but they also
had important implications for COVID-19 cases and deaths. In Trump lean-
ing counties, COVID19 cases and deaths were more extensive than in counties
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where Trump received a lower percent of the vote” (Albrecht, 2022, p. 9).

Using statistics from the CDC’s COVID data tracker, Brown et al. analyzed
counties based on “the U.S. COVID-19 Community Vulnerability Index” which
focuses on the following: “socioeconomic status (SES); minority status and
language; housing type, transportation, household composition, and disability;
epidemiological factors; healthcare system factors; high risk environments; and
population density” (Brown et al., 2021, p. 4246). Generally, they concluded
that “housing type, transportation, household composition, and disability” were
associated with the greatest disparity in vaccination rates (Brown et al., 2021,
p. 4245).

Alemi and Lee used vaccination rate data from 3109 counties with available
data in the U.S. as of April 2022. They analyzed 36 possible explanations for
hesitancy towards vaccination, “including demographic, social, economic, envi-
ronmental, and medical variables known to affect vaccine hesitancy” (Alemi &
Lee, 2023, p. 1). They found “a statistically significant relationship between the
percentage of Republican supporters and rates of vaccine hesitancy” in which
higher levels of Republican support were associated with lower vaccination rates
(Alemi & Lee, 2023, p. 1). Moreover, they found that political leaning was not
only closely correlated with vaccination rates, but it also functioned as “a me-
diator of the effects of other variables” (Alemi & Lee, 2023, p. 5).

Monrad et al. used a least-squares regression model to compare how early
supply patterns and long-term demand factors affected vaccination rates during
the first nine months of 2021. They concluded that both affected vaccination
rates, but supply issues were mostly an issue during early 2021, and after that,
other factors had greater impact. They discovered associations between COVID
vaccination rates and other factors including “health expenditure, vaccine hesi-
tancy, cost obstacles to care, Democratic voting, and elderly population share”
(Monrad et al., 2022, p. 6528).

Sun and Monnat sourced data from a CDC report on vaccination rates for
adults (aged 18 and older) as of August 11, 2020 from 2,869 counties. They
then synthesized this data with “county-level data on demographic and socioe-
conomic composition, health care infrastructure, 2020 Trump vote share, and
USDA labor market type” (Sun & Monnat, 2022, p. 916). Using regression
models, they found that while 59.8 percent of adults in urban counties had
been vaccinated fully, only 45.8 percent of those in rural counties had been fully
vaccinated. Moreover, they found that average vaccination rates decreased as
rurality increased. They explained this difference through “a combination of
lower educational attainment and higher Trump vote share” and poorer health
care infrastructure (Sun & Monnat, 2022, p. 916). They recommend that leaders
in rural communities where the vaccine is accessible combat vaccine misinfor-
mation and promote vaccination (Sun & Monnat, 2022, p. 920).
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Cole examines potential causes for vaccine hesitancy on both sides of the po-
litical spectrum. He argues that anti-vaccine beliefs on the right wing of the
political spectrum are “often motivated by antipathy toward governmental au-
thority and scientific expertise” (Cole, 2023, p. 286). They often view “vaccina-
tion requirements as government overreach, an infringement of individual civil
liberties, bodily integrity, and parental rights” (Cole, 2023, p. 286). He also
notes that there exist left-wing vaccine skepticists, but these tend to be over-
looked in big data compilations because they tend to cluster in small “pockets
of homogeneity” (Cole, 2023, p. 287). These concerns tend to be related more to
the concerns regarding the overlooking of women’s health issues in medication
and vaccine production, whereas right-wing hesitancies lie more along the lines
of reluctance to relinquish personal rights and freedoms.

Through these studies, it is clear that there is an association between political
leaning and vaccination. And it is not just COVID vaccines that reflect these
political differences. Rates of vaccination generally tend to be influenced by po-
litical ideology. Through an online survey, Rabinowitz et al. asked participants
to rate on a scale from one to four how strongly they agreed or disagreed with
twenty statements, ten of which were facts, such as “The earth revolves around
the sun,” the other ten of which were beliefs like “Sleeping with the windows
open is good for you” (Rabinowitz et al., 2016, p. 6). Next, the participants were
assigned twenty statements in random order, half of them anti-vaccination, half
pro-vaccination. Respondents were then asked to rate how much they agreed
with each statement, how strongly they believed the average American would
agree with each statement, how strongly they believed the average conservative
would agree with each statement, how strongly they believed the average liberal
would agree with each statement, and if they regarded each statement as true
or false. The survey concluded by asking if the participants had children and if
they fully vaccinated their children before the age of two. They found that “lib-
erals were significantly more likely to endorse pro-vaccination statements and to
regard them as ‘facts’ (rather than ‘beliefs’), in comparison with moderates and
conservatives” (Rabinowitz et al., 2016, p. 1). Additionally, conservatives were
more likely to overestimate the number of people who shared their opposition
to vaccines, whereas liberals were more likely to underestimate the number of
people who shared their support for vaccines.

Overall, political association is clearly correlated with attitudes toward vac-
cinations. The following subsection will review similar associations between
political affiliation and masking.

2.2.2 Masking

In addition to vaccination, another mitigation measure for COVID was mask-
ing. Masking levels also tended to be influenced by political orientation.

Cunningham and Nite used public health data and self-reported masking rates
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from a NYT poll by county. Counties were measured in terms of rates of mask
wearing, health behaviors, clinical care, socioeconomic factors, and physical
environment. They found no association between socioeconomic factors or ac-
cess to clinical care and mask wearing. They did observe that “people who
lived in counties marked by pollution, severe housing, and long commutes likely
to be taken alone, are all more likely to wear a mask than their colleagues”
(Cunningham & Nite, 2021, p. 6). Cunningham and Nite inferred that high
population density and pollution led to “people in these counties [being] acutely
aware of the need for and value of wearing a mask” (Cunningham & Nite, 2021,
p. 6).

Young et al. used data from a national survey asking American adults to report
their mask wearing behavior. Demographic data was weighted to reflect the
overall U.S. population. They found that “mask-wearing was negatively asso-
ciated with Republican party membership, conservatism (in the 50+ sample),
Trump favorability, and positively associated with Biden favorability” (Young
et al., 2022, p. 6).

Haischer et al. visited 36 retail locations in five counties in Wisconsin. Stores
(grocery or large retail chains) were categorized as being in urban, suburban,
or rural areas. Shoppers were observed over the course of several days in June,
July, and August by the researchers, and their masking status (wearing, wear-
ing incorrectly, or not wearing), gender, age, and location were recorded. The
authors then performed a multiple logistic regression analysis. Haischer et al.
found that roughly “41% of the June sample wore a mask,” however, the pro-
portion rose to roughly 90% in July and August as mask mandates were imple-
mented. (Haischer et al., 2020, p. 1). Additionally, the probability of a shopper
masking was “1.5x greater for females than males” four times greater in urban
than rural areas (Haischer et al., 2020, p. 1).

In addition to the correlation between party allegiance and masking measures,
there is also an association between masking behavior and the perception of oth-
ers and their political leanings. Carey et al. conducted a multi-wave panel study
in summer 2020 with 2982 participants. Participants were randomly assigned
to one of four groups: a control group, the American norms treatment con-
dition, the Democratic norms treatment condition, and the Republican norms
treatment condition. Participants in the American norms treatment condition
were informed of “the percentage of Americans (74%) who reported wearing
masks ‘all of the time’ or ‘most of the time’”(Carey et al., 2023, p. 380). Par-
ticipants in the Democratic norms treatment were provided with “the figure
for self identified Democrats and Democratic-leaning independents (89%)”, and
the Republican norms treatment were given “the figure for self-identified Re-
publicans and Republican-leaning independents (56%)” who mask (Carey et al.,
2023, p. 380). After the random treatment condition phase, participants were
asked about their personal willingness to wear masks, mask effectiveness, and
their attitudes toward Democratic and Republican voters. Using linear regres-
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sion, they concluded that “learning that a majority of Americans report wearing
masks regularly increases mask-wearing intentions and perceived effectiveness,
though the effects of this information are not distinguishable from other treat-
ments” (Carey et al., 2023, p. 377).

Additionally, it seems that Americans are more likely to be swayed in their
mitigation strategies if a trusted political elite recommends a mitigation mea-
sure to them. In Pink et al.’s study, 1480 self-identified Republicans were ran-
domly assigned to one of three groups: Republicans endorse, Democrats endorse,
and control. The first group watched a speech in which prominent Republi-
cans (among them Donald Trump) promoted the COVID vaccine. The second
watched videos of prominent Democrats (including Joseph Biden) endorsed the
vaccine. The third watched nothing. Overall, they found that endorsements
from Republican elites had positive effects and Democratic elites’ endorsements
had negative effects on participants’ attitudes toward the vaccine and their will-
ingness to recommend vaccination to others (Pink et al., 2021, p. 1).

2.3 Analysis of Existing COVID Models

This literature review will examine other existing COVID models. Our model
was developed with consideration for the strengths and weaknesses of these
models in helping to answer our research question.

Among the various inputs for our model, one of the most useful was Colonna et
al.’s 2022 retrospective assessment of COVID-19 model performance in the USA.
They assessed 23 models, all of which were chosen based on inclusion criteria
based on sufficient data reporting. Models were assessed based on a cumulative
score from multiple assessments, including a calibration score of precision and
accuracy for distributions of predicted versus observed values and an informa-
tiveness score based on the width of confidence interval versus overall range of
observations. The baseline model outperformed 18/22 other models (Colonna
et al., 2022).

In late 2021, Jayatilaka et al. compared the SIR Kermack-McKendrick, SIRmp,
SEIR, and SEIRpqr models and discussed how 1918 pandemic models could
have potential for COVID modeling.

The SIR Kermack-McKendrick model assumed a fixed population size, no in-
cubation period, no social distancing, and a natural immunity parameter based
on vaccination rates. The SIRmp model included interaction with public health
measures, assumed infection rate and reproductive number varied with time,
and incorporated a time mixing factor to reflect social distancing practices in
different time periods. The SEIR model assumed an exposed population with
an incubation rate parameter. It also referenced the Lambert W function and
assumed each person had an average number of contacts. The SEIRpqr model
used m, p, q, and r as mixing coefficients based on social distancing practices

7



where p, q, and r represented scale incubation, infection, and removal rates.

Jayatilaka et al. found that parameters had to be fit for multiple time win-
dows within each wave of COVID in Canada. They concluded that level of
adherence to prevention methods was a limiting factor in accuracy of SIR and
SEIR models. Mixing coefficients had strong influence on disease spread pro-
jections. Generally, all models failed to account for unidentified asymptomatic
cases (Jayatilaka et al., 2022).

In August 2020, Mollalo et al. constructed a GIS-based spatial modeling of
COVID-19 incidence rate in the continental United States. They collected and
grouped data based on socioeconomic, behavioral, environmental, topographic,
and demographic factors. The authors generated and compared SLM (spa-
tial lag), SEM (spatial error), GWR (geographically weighted regression), and
MGWR (multiscale geographically weighted regression).

The SLM model featured a spatial lag parameter and a spacial weight vec-
tor of weight matrix that considers neighboring counties. The SEM model had
two error terms, one spatially-dependent and the other not. The GWR used pa-
rameters derived for individual locations rather than global ones. The MGWR
varied bandwidth by county and used county-level regression. The collinearity
analysis narrowed from 35 to 4 parameters: income inequality, median house-
hold income, percentage of nurse practitioners, and proportion of Black women
in the total female population.

The GWR and MGWR models significantly outperformed the SLM and SEM
in explaining COVID occurrences in U.S. by county; however, the GWR and
MGWR performed poorly in the central and southern U.S. The authors acknowl-
edged that limited data availability was an obstacle in these regions (Mollalo et
al., 2020).

Maged et al. proposed an SEIR model in 2022 that included masking and
vaccinations. They split the population into individual compartments for sub-
groups of mask wearers versus non-maskers. They tracked death count as a
separate compartment. They modeled the effects of more masking as cases rise
and attitudes change. Their mask to non-mask rate was determined by sigmoid
function with a threshold number of infectious individuals (Maged et al., 2023).

Yang andWang’s 2020 research considered an SEIHRV (susceptible, exposed, in-
fected non-hospitalized, infected hospitalized, concentration of COVID) model.
They based their model off of Hamilton County, Tennessee, since it has de-
mographic similarities to the U.S. as a whole and geographic diversity with
different-sized towns and cities. Their base assumptions were that the rate of
change of concentration of COVID depends on the E, I, H, and V compartments
and deaths come from the H compartment only (Yang & Wang, 2021).
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Pathak et al.’s model incorporated an incubation period parameter. There was a
lack of data on vaccinations at the time, so values were determined through data
fitting. The study used different time intervals for stay-at-home orders, transi-
tion to pre-COVID activity, and stable public activities to determine transmis-
sion rates. Overall, the data fitting wasn’t ideal, especially for future predictions
(Pathak et al., 2021).

Wynants et. al. compared COVID models from around the world. Out of
the 606 selected models, 80 focused on the U.S. They found that these models
were rushed and built on misleading data and assumptions. These models were
found to be all very similar and none of them particularly accurate. This trend
was explained by saying, “Prediction models for covid-19 entered the academic
literature to support medical decision making at unprecedented speed and in
large numbers. Most published prediction model studies were poorly reported
and at high risk of bias such that their reported predictive performances are
probably optimistic” (Wynants et al., 2020, p. 1).

Generally, these models were helpful in influencing our own model through their
strengths and weaknesses. We strived to correct flawed assumptions, but we also
drew inspiration from the various aspects of the models that succeeded.

2.4 Gap Analysis

Overall, there is a clear association between political ideology and vaccination
rate in a county. Political leaning is not only the most influential factor on
vaccination rates, but it is also closely associated with other demographic factors
that influence vaccination rates. Politics also affect masking rates. Moreover,
political leaning is also associated with level of belief in vaccine science and the
effectiveness of masking mitigation measures. However, we failed to discover
an existing mathematical model that synthesizes political vaccination patterns
with epidemiology dynamics. Our model attempts to do this.

3 Methodology

We began with a simple SIR (susceptible, infectious, recovered) model and ex-
panded into an SEIAVR (susceptible, exposed, infectious, asymptomatic, vacci-
nated, and recovered) model based on important characteristics of COVID we
needed to incorporate.

We knew there would be an E compartment because there is an incubation pe-
riod between exposure and infection of 2.8 days (Cortés Mart́ınez et al., 2022).
There needed to be an asymptomatic compartment as well as a symptomatic
compartment because not all COVID cases were symptomatic (Buitrago-Garcia
et al., 2020). Because we wanted to focus on COVID dynamics during a time
frame in which vaccinations were first widely available, we needed to include a

9



vaccinated compartment.

We selected the time period of March 1st, 2021 to September 1st, 2021 be-
cause COVID vaccinations first became widely available to the public during
this time frame (Albrecht, 2022). We limited our time window to six months
to focus on the initial roll out of the vaccine and limit the number of COVID
variants to consider.

The Johnson & Johnson vaccine is 76 percent effective after the first (only)
dose (2 weeks until effective) (Lamb et al., 2023). The Pfizer vaccine is 91.3
percent effective 7 days after the second dose (Pfizer, 2021). The Moderna vac-
cine is 94.5 percent effective two weeks after the second dose (Moderna, 2020).

The time from vaccination to vaccine activation, 10.17 days, we calculated as
a weighted average of the three vaccines (Mathieu et al., 2021). The average
COVID recovery time is 9 days (Tamiru et al., 2023). The weighted average of
vaccine efficacy is 0.92 (Mathieu et al., 2021). We defined vaccination rates by
county as bi (Albrecht, 2022). The rate of infection, β is

1

tincubation
.

The rate of susceptibles exposed by infected individuals, γI was calculated
through data fitting to be

ρi
Ni

.

The rate of susceptibles exposed by asymptomatic individuals, γA, is 0.8 · γI
(Peter et al., 2023). The probability of a symptomatic COVID case resulting in
death in the U.S. from March 1st, 2021 to September 1st, 2021 is cumulative
deaths divided by cumulative cases, or 0.017395 (Mathieu et al., 2020). For
COVID death cases, the median time from symptom onset to death is 25 days
(Elezkurtaj, S., Greuel, S., Ihlow, J. et al., 2021). 0.017395 divided by 25 days
is 0.000696, the COVID death rate µC . Natural birth rate, is 11 births per
1,000 people, which was the 2021 natural birth rate (Korhonen, 2024). The
pre-COVID natural death rate was 715.2 deaths per 100,000 in the U.S. in
2019 (Murphy et al., 2021). Converted into daily rates, the birth rate, θ, is
0.00003014, and the death rate, µ is 0.00001959. The vaccination rate, ν is
0.0057 (Mathieu et al., 2020). The rate of asymptomatic to recovered, λA is

1

Average COVID Recovery Time

(Peter et al., 2023). The rate of infected to recovered, λI , is

1

Average COVID Recovery Time

(Peter et al., 2023). The rate of vaccine activation, φ, is

1

Vaccine Activation Time
.
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The ratio of asymptomatic cases to all COVID cases, σ is 0.35 (Buitrago-Garcia
et al., 2020).

We defined the symptomatic transmission rate, γI , as
ρi

Ni
. The asymptomatic

transmission rate, γA is 0.8 · γI . The transmission rate from symptomatic
to vaccinated individuals, γV I , is (1 − Vaccine Efficacy) · γI . The transmis-
sion rate from asymptomatic to vaccinated individuals, γV A, we defined as
(1−Vaccination Efficacy) ·γA. The a1 population vaccination proportion, b1, is
0.553, making the vaccination rate for a1 ν · 0.553, or 0.003152. We defined α,
the vaccine effectiveness proportion, as 0.92. We defined the infection rate, β, as
1
2.8 . The vaccine activation rate, φ, is 1

10.17 . The proportion of asymptomatic
individuals, σ, is 0.35. The symptomatic recovery rate, λI , and the asymp-
tomatic recovery rate, λA, are both 1

9 . The population size, N , we defined as
2.9 · 107.

The key distinguishing feature of our model is the use of county-classification-
based patches. Using data from Albrecht (2022), we created five county cate-
gories, denoted ai, to group counties by percentage of Trump vote in the 2020
presidential election.

Table 1
Percentage Trump Vote and Corresponding County Category and Vaccination
Proportion

Percentage Trump Vote County Classification Vaccination Proportion
<25% a1 55.3%
25-45% a2 53.1%
45-55% a3 49.0%
55-75% a4 42.2%
>75% a5 34.7%

We omitted Hawaii and Alaska because they are not part of the continental
United States, and there was not enough data for cases, deaths, and vaccina-
tions in either state.

The following maps show the continental United States shaded according to
various factors. Figure 1 is a map of U.S. counties colored by their ai category.
Figure 2 is a map of proportion of vaccinated individuals by county. White
counties are those with not enough data. Figure 3 maps COVID case rates by
county as cumulative cases from March 1st through September 1st, 2021 out of
total population. Figure 4 maps COVID death rates by county during the same
time period. There is a visible association between all four factors. a1 counties
tended to have higher vaccination proportions, while a5 counties tended to have
lower vaccination proportions. a1 counties tended to have lower COVID case
rates, while a5 counties tended to have higher COVID case rates. Similarly, a1
counties tended to have lower COVID death rates, while a5 counties tended to
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have higher COVID death rates.

Figure 1
United States by County Classification Type ai

Figure 2
US Counties by Vaccinated Proportion
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Figure 3
US Counties by Cumulative COVID Cases by Population

Figure 4
US Counties by Cumulative Deaths by Population

3.1 Model 1

For our initial model, we needed to data fit for values of γI for each of the five
subpopulations.
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The parameters estimated for this model were γI , γA, γV I , and γV A. We
assumed γA, γV I , and γV A are all proportional to γI , so only γI needed to be
generated directly from data fitting. Parameter estimation was done by system-
atically guessing a value for γI with proportional values for γA, γV I , and γV A to
minimize the sum-of-squares error between the reported cumulative number of
COVID-induced deaths and the model’s predicted number of COVID-induced
deaths. For the simple model, the transmission rate was estimated after be-
ing scaled to the size of each subpopulation, which allowed for more analytical
comparisons between the transmission rates of the five subpopulations. For the
mobility-considerate models, the transmission rate was estimated independent
of population size, as the mobility component already considered the size of
each subpopulation.

All other parameters were drawn from aforementioned data sources or were
scalar multiples of γI .

Consider the following table of parameters:

Parameter Value Parameter Definition
Ni Ni Subpopulation Size
γI ρi / Ni Rate of Infection (S Infected by I)
ρi ρi Transmission Rate Upon Encountering Infected Individual
γA 0.8 · γI Rate of Infection (S Infected by A)
γV I (1− α) · γI Rate of Infection (V Infected by I)
γV A (1− α) · γA Rate of Infection (V Infected by A)
ν 0.0057 Standardized Vaccination Rate
bi bi Proportion Vaccinated by County
α 0.92 Vaccine Effectiveness Proportion
β 1 / 2.8 Infection Rate
φ 1 / 10.17 Vaccine Activation Rate
σ 0.35 Proportion Asymptomatic
µC 0.0007 COVID Death Rate
µ 0.00001959 Natural Death Rate
θ 0.00003014 ·Ni Natural Birth Rate
λI 1 / 9 Symptomatic Recovery Rate
λA 1 / 9 Asymptomatic Recovery Rate
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Consider the following mathematical model:

dS
dt = θ − νbiS − γISI − γASA− µS

dE
dt = γISI + γASA+ γV IV I + γV AV A− βE − µE

dI
dt = (1− σ)βE − λII − µI − µCI

dA
dt = σβE − λAA− µA

dV
dt = νbiS − γV IV I − γV AV A− φV − µV

dR
dt = λAA+ λII + φV − µR

(1)

The following is a visualization of the model:
Figure 5
SEIAVR Model Visualization
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V

I

A
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γI : symptomatic transmission rate
γA : asymptomatic transmission rate
γV I : symptomatic transmission rate (I infecting V)
γV A : asymptomatic transmission rate (A infecting V)
ν : vaccination rate
bi : population vaccination proportion
α : vaccine effectiveness proportion
β : infection rate
φ : vaccine activation rate
σ : proportion asymptomatic
µC : infected death rate
µ : natural death rate
θ : natural birth rate
λI : symptomatic recovery rate
λA : asymptomatic recovery rate

Through simulations, we identified that the SEIAVR model had two equilibria:
the disease-free equilibrium and an endemic equilibrium. As can be seen in
Figure 5, the disease-free equilibrium is stable when R0 < 1 and is unstable
when R0 > 1. We were not able to solve for the endemic equilibrium, but the
simulations show that it exists and is stable when R0 > 1.

Figure 6
Bifurcation Diagram of R0 versus Infected
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The disease-free equilibrium exists when (S,E, I, A, V,R) is (Seq, 0, 0, 0, Veq, Req).
Consider the following equations for Seq, Veq, and Req:

Seq =
θ

νbi + µ

Veq =
θνbi

(µ+ φ)(νbi + µ)

Req =
φθνbi

µ(µ+ φ)(νbi + µ)

At the disease-free equilibrium, the following is the expression for R0:

R0 = (1− σ)
(
biν

γV I βθ
(β+µ)(λI+µc+µ)(µ+biν)(µ+φ) +

γI βθ
(β+µ)(λI+µc+µ)(µ+biν)

)
+ σ

(
biν

γV A βθ
(β+µ)(λA+µ)(µ+biν)(µ+φ) +

γA βθ
(β+µ)(λA+µ)(µ+biν)

)
The new infections due to symptomatic individuals are represented by (1 −
σ)

(
biν

γV I βθ
(β+µ)(λI+µc+µ)(µ+biν)(µ+φ) +

γI βθ
(β+µ)(λI+µc+µ)(µ+biν)

)
, and the new infec-

tions due to asymptomatic individuals are represented by

σ
(
biν

γV A βθ
(β+µ)(λA+µ)(µ+biν)(µ+φ) +

γA βθ
(β+µ)(λA+µ)(µ+biν)

)
.

3.1.1 Underreporting

Considering unreported COVID cases has made it more difficult to compre-
hend the dynamics of COVID spread. Our model accounts for case under-
reporting by fitting the transmission rate parameters to the reported number
of cumulative COVID deaths, then setting the initial conditions to reflect the
estimated present number of unreported cases. COVID deaths were also under-
reported by a factor of approximately 1.54 according to (Angulo et al., 2021),
with out-of-hospital deaths contributing as discussed by (Pathak et al., 2021),
but since cause-of-death is reported, and hospitals became more prepared to
handle COVID cases as time went on, COVID cases resulting in deaths are
more reliable to be tracked than those that did not require urgent treatment,
especially within our time frame of interest.

Seroprevalence tests are a reliable indicator of underreporting, as antibodies are
present in people who have been both symptomatically and asymptomatically
infected with COVID. Antibodies wane faster for asymptomatic cases, however,
suggesting that the number of unreported cases found through seroprevalence
testing may be even lower than the true number. The initial lockdown phase
of the U.S. pandemic contained the greatest current ratio of unreported cases,
according to (Irons & Raftery, 2021), which could be due to lack of accessible
testing at the time. Our time frame of interest starts with the largest period
of daily vaccinations in the U.S., but according to (Angulo et al., 2021) and
(Irons & Raftery, 2021), there were still roughly 2.3 times more COVID cases
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present at the time than were reported, implying a greater number of COVID
cases at the start of our time frame than the data suggests, and more accurately
reflecting the dynamics of reported COVID deaths when considered. Our model
suggests that subpopulations a2, a4, and a5 were especially prone to underre-
porting based on how the model fit to the data for those subpopulations.

Eutsler et al. used Benford’s Law to assess COVID case and death data for
underreporting. They found that reported cases and deaths violated Benford’s
Law, implying underreporting. They also classified counties’ political parties
based 2016 presidential voting majorities crossed with 2020 gubernatorial po-
litical party of each county’s state. For their sample period from January 21,
2020 to November 3, 2020, they found that “Democratic counties demonstrate
the smallest departures from Benford’s Law while Republican counties demon-
strate the greatest departures” (Eutsler et al., 2023, p. 1). They argued that
“public officials may have manipulated the reporting records in accounting for
COVID-19 infection cases and deaths to validate the effectiveness of political
party objectives” (Eutsler et al., 2023, p. 1).

3.1.2 Initial Conditions

Initial conditions for symptomatic cases were derived from incidence reporting
of the 10 days prior to the start of our time frame, with each prior day’s report
multiplied by a fraction with the COVID recovery time in the denominator to
reflect the probability of still having COVID during our initial time frame based
on the day of the incidence reporting.
For asymptomatic cases, the initial symptomatic case number was multiplied
by σ

1−σ to reflect the proportion of asymptomatic cases.
For exposed people, the initial sum of symptomatic and asymptomatic cases
was multiplied by the COVID incubation period.
For vaccinated people, the total subpopulation size was multiplied by 0.1, ob-
tained from (Centers for Disease Control and Prevention, 2024), to reflect the
proportion of that subpopulation fully vaccinated at the start of our time frame.
For recovered people, the cumulative number of deaths was subtracted from the
cumulative number of cases.
The initial number of susceptible people is obtained by subtracting the initial
number of people in the other compartments from the initial subpopulation size.

3.1.3 Data Fitting

We strived to estimate through fitting to data as few parameters as possible,
using existing data whenever applicable. Our model only requires direct param-
eter estimation for one parameter, gammaI (symptomatic-to-susceptible trans-
mission rate), with gammaA, gammaV I , gammaV A (other transmission rates)
proportional to gammaI and all considered when minimizing sum-of-squares
error. All other parameter values were identified from existing literature.
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Each of the five subpopulations of interest, a1 to a5, has unique characteris-
tics that contribute to the likelihood of an individual person transmitting the
disease. The subpopulations were decided by their by-county 2020 Presidential
Election voting results, but they also possess differences in population density
and COVID response behavior that contribute to how likely an individual is
to transmit the disease. Rather than making arbitrary assumptions about be-
havior such as masking, social distancing, and self-enforced quarantining, we
decided it would be most representative of these factors to fit the transmission
rate for each subpopulation to the cumulative reported COVID death count of
each subpopulation. The transmission rate for each subpopulation was fitted
based on the cumulative number of COVID deaths reported in each respective
subpopulation as opposed to the cumulative number of COVID cases reported,
as COVID deaths were less likely to go unreported than COVID cases.

Our initial fitting of our simple SEIAVR model saw challenges with the ini-
tial conditions based solely on the cumulative cases data. When accounting for
underreporting with an initial present number of cases equaling 2.3x the re-
ported initial number of cases, a conservative estimate corroborated by (Angulo
et al., 2021), (Taylor et al., 2023), and (Irons & Raftery, 2021), the behavior
of cases and deaths predicted by the model much more strongly represents the
behavior of the cumulative reported number of cases and deaths. The model
further suggests that subpopulations a2, a4, and a5 show a greater proportion
of unreported present cases than subpopulations a1 and a3, which could result
from various subpopulation-specific factors such as population size, population
density, tendency for a person to self-report, tendency for the local government
to report cases, and possible proportion of asymptomatic cases.

3.2 Model with Eulerian Mobility

We can classify movement into two categories: migration and visitation. Mi-
gration is movement from one place to another permanently, without intent to
return. Visitation is temporary travel to another place with intent to return
to the original location (Sandip Mandal et al., 2011, p. 14). We will classify
movement between various patches, each with sub-models to reflect localized
COVID dynamics (Eikenberry & Gumel, 2018, p. 60).

We generated a matrix, K, to represent the average daily mobility between
different types of county. The data values used to calculate K are from Kang et
al.’s multiflow mobility project, which used SafeGraph’s data from millions of
anonymous cell phones’ weekly mobility (Kang et al., 2020). K is a square ma-
trix where Kij represents the average daily movement from a county of type i to
a county of type j. Notice the entries along the diagonal are all zero because we
are focusing on inter-county, not intra-county mobility, so the movement from
county i to county i is zero.
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
0 0.171 0.043 0.033 0.004

0.041 0 0.057 0.072 0.011
0.019 0.129 0 0.100 0.016
0.011 0.147 0.098 0 0.052
0.004 0.080 0.070 0.356 0




0 K12 K13 K14 K15

K21 0 K23 K24 K25

K31 K32 0 K34 K35

K41 K42 K43 0 K45

K51 K52 K53 K54 0


Consider the following mathematical model incorporating Eulerian mobility:

dS
dt = −γISI − νbiS − γASA+ θ − µS +

∑ϕ
j=1,j ̸=i KjiSj −

∑ϕ
j=1,j ̸=i KijSi

dE
dt = γISI + γASA+ γV IV I + γV AV A− βE − µE +

∑ϕ
j=1,j ̸=i KjiEj −

∑ϕ
j=1,j ̸=i KijEi

dI
dt = (1− σ)βE − µCI − λII − µI +

∑ϕ
j=1,j ̸=i KjiIj −

∑ϕ
j=1,j ̸=i KijIi

dA
dt = σβE − λAA− µA+

∑ϕ
j=1,j ̸=i KjiAj −

∑ϕ
j=1,j ̸=i KijAi

dV
dt = νbiS − γV IV I − γV AV A− φV − µV +

∑ϕ
j=1,j ̸=i KjiVj −

∑ϕ
j=1,j ̸=i KijVi

dR
dt = λAA+ λII + φV − µR+

∑ϕ
j=1,j ̸=i KjiRj −

∑ϕ
j=1,j ̸=i KijRi

(2)
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The following is a visualization of the model:
Figure 7
SEIAVR Model with Eulerian Mobility Visualization
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3.3 Model with Lagrangian Mobility

Consider the following mathematical model incorporating Lagrangian mobility:

dSi

dt = θi − νbiSi − SiδIi − SiδAi − µSi

dEi

dt = SiδIi + SiδAi + (1− α)ViδIi + (1− α)ViδAi − βEi − µEi

dIi
dt = (1− σ)βEi − λIIi − µIi − µCIi

dAi

dt = σβEi − λAAi − µAi

dVi

dt = νbiS − (1− α)ViδIi − (1− α)ViδAi − φVi − µVi

dRi

dt = λAAi + λIIi + φVi − µRi

(3)
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Where

δIi =
∑n

j=1 γIiPij

∑n
k=1 PkjIk∑n
n=1 PkjNk

δAi =
∑n

j=1 γAjPij

∑n
k=1 PkjAk∑n
k=1 PkjNk

(4)

Where γIj and γAj are the risk of a person who lives in patch i becoming
infected by infected or asymptomatic individuals in patch j, respectively. Pij is
the proportion of time that residents in patch i spend in patch j.

3.3.1 Calculating the Time Proportion Matrix P

Although the K matrix, representing daily mobility between county types, is
suitable for Eulerian mobility, finding a time proportion matrix for the model
with Lagrangian mobility is a more complicated matter. Ideally, the Lagrangian
model would use the proportion of time a person spends in each patch out of
their entire lifetime, but data about this is both unavailable and unrealistic
to obtain. Furthermore, there is no simple conversion from a K matrix about
daily mobility to this sort of matrix. To generate such a matrix, we chose to
use an agent-based model, for its ability to focus on individuals and assign
different attributes to them, which we could use to account for multiple types
of travel, such as work and vacations, as well as varying travel lengths. For this
simulation, we first created a matrix T from K, restoring the values along the
diagonal by subtracting the other values in each row from 1.

0.749 0.171 0.043 0.033 0.004
0.041 0.820 0.057 0.072 0.011
0.019 0.129 0.736 0.100 0.016
0.011 0.147 0.098 0.691 0.052
0.004 0.080 0.070 0.356 0.489



T11 T12 T13 T14 T15

T21 T22 T23 T24 T25

T31 T32 T33 T34 T35

T41 T42 T43 T44 T45

T51 T52 T53 T54 T55


Each row, summing to 1, represents the proportion of individuals in patch ai
who either stayed in their county or traveled to another patch, with the diag-
onal representing the proportion of individuals who remained in their county.
Because T shows the proportions of each type of travel, T can be treated as the
probabilities of an individual in a patch travelling to another patch or staying
put. Using this, we simulated movement for 100,000 individuals, distributed
according to the population sizes of each patch, over the span of 4 years, which
is the average length of employment (U.S. Bureau of Labor Statistics, 2022).
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Ideally, we would have been able to simulate movement for the entire U.S. pop-
ulation over 76.1 years, the average life expectancy for an American (Arias, E.,
Tejada-Vera, Betzaida, Kochanek, K. D., and Ahmad, F., 2022). However, due
to our limited computational power, this was not possible. To compensate for
this, we ran our smaller simulation 20 times.

We assigned the following behavior to each individual in our simulation: Every
individual begins in their home patch and continues to have the same home
patch over the entire simulation. Every day, they either travel once to another
patch, or choose to stay within their current patch, with probability Tij . Each
agent is assigned a value x ∈ [1, 10], representing the number of days that the
agent is away from home, which accounts for different types of travel such as
work or vacation. After day x, the agent is assigned a random probability be-
tween 0.51 and 1 of returning home. After running this simulation 20 times for
a total of 2,000,000 agents, we calculated the proportion of time spent in each
patch, creating the matrix P below:

0.505 0.292 0.096 0.092 0.015
0.073 0.634 0.124 0.144 0.024
0.046 0.253 0.513 0.161 0.027
0.038 0.266 0.152 0.495 0.049
0.025 0.195 0.124 0.304 0.352


4 Results

4.1 Simple Model - No Subpopulations

Our simple model without subpopulations with parameters universal to the U.S.
as a whole produces the following simulations:
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Figure 7:
Compartment Simulations

Figure 8:
Model vs. Data

Cumulative Deaths r2 = 0.99
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4.2 Simple Model - Subpopulations

Our simple model with our a1, a2, a3, a4, a5 subpopulations and parameters
specific to each one produces the following simulations:

Figure 9:
a1 Compartment Simulations
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Figure 10:
a1 Model vs. Data

Cumulative Deaths r2 = 0.95

Figure 11:
a2 Compartment Simulations
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Figure 12:
a2 Model vs. Data

Cumulative Deaths r2 = 0.99

Figure 13:
a3 Compartment Simulations
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Figure 14:
a3 Model vs. Data

Cumulative Deaths r2 = 0.97

Figure 15:
a4 Compartment Simulations
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Figure 16:
a4 Model vs. Data

Cumulative Deaths r2 = 0.99

Figure 17:
a5 Compartment Simulations
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Figure 18:
a5 Model vs. Data

Cumulative Deaths r2 = 0.98

Figure 19:
U.S. Model vs. Data

Cumulative Deaths r2 = 0.99
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4.3 Simple Model - Delta Variant

Consider the following table of updated parameters for the Delta Variant:

Parameter Value Parameter Definition
γI ρi / Ni Rate of Infection (S Infected by I)
ρi ρi Transmission Rate Upon Encountering Infected Individual
γA 0.8 · γI Rate of Infection (S Infected by A)
γV I (1− α) · γI Rate of Infection (V Infected by I)
γV A (1− α) · γA Rate of Infection (V Infected by A)
ν 0.0024 Standardized Vaccination Rate
bi bi Proportion Vaccinated by County
α 0.8 Vaccine Effectiveness Proportion
β 1 / 5 Infection Rate
µC 0.0005 COVID Case Fatality Rate
λI 1 / 14 Symptomatic Recovery Rate
λA 1 / 14 Asymptomatic Recovery Rate

The parameter ν comes from (Mathieu et al., 2020). µC is derived as a pro-
portion of the case fatality rate of the original time frame of interest, a pro-
portion obtained from (Xia et al., 2024). α is estimated based on data from
(Pormohammad, A., Zarei, M., Ghorbani, S., Mohammadi, M., Aghayari Sheikh
Neshin, S., Khatami, A., Turner, D. L., Djalalinia, S., Mousavi, S. A., Mardani-
Fard, H. A., Kasaeian, A., & Turner, R. J., (2021)). β is the reciprocal of the
incubation period of the Delta variant, obtained from (Li et al., 2024). λI and
λA are the reciprocal of the Delta variant recovery time, estimated from (Kumar
et al., 2022) due to lack of specific data available. γI , γA, γV I , and γV A are
again obtained through data fitting. bi is unchanged.
Initial conditions were also updated from the same sources, but now reflecting
the conditions of August 1 with Delta variant parameters.
Our simple model with our a1, a2, a3, a4, a5 subpopulations and updated pa-
rameters specific to each one produces the following simulations over the time
frame of August 1-January 1:
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Figure 20:
a1 Model vs. Data

Cumulative Deaths r2 = 0.94

Figure 21:
a2 Model vs. Data

Cumulative Deaths r2 = 0.98
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Figure 22:
a3 Model vs. Data

Cumulative Deaths r2 = 0.99

Figure 23:
a4 Model vs. Data

Cumulative Deaths r2 = 0.99
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Figure 24:
a5 Model vs. Data

Cumulative Deaths r2 = 0.99

Figure 25:
U.S. Model vs. Data

Cumulative Deaths r2 = 0.99
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4.4 Model with Eulerian Mobility

Figure 26
Data Modeling Simulations of Patch a1 with Eulerian Mobility

Figure 27
Data Modeling Simulations of Patch a2 with Eulerian Mobility
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Figure 28
Data Modeling Simulations of Patch a3 with Eulerian Mobility

Figure 29
Data Modeling Simulations of Patch a4 with Eulerian Mobility
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Figure 30
Data Modeling Simulations of Patch a5 with Eulerian Mobility

4.5 Model with Lagrangian Mobility

In order to better understand Lagrangian mobility between patches, we first
created simulations using two hypothetical patches. Patch 1 is similar to an a1
county. It has a large population and high vaccination proportion. Patch 2 is
similar to an a5 county with a small population and low vaccination proportion.

Figure 31 shows a scenario in which there is low mobility from Patch 1 to Patch
2 and varying mobility from Patch 2 to Patch 1. The mobility from Patch 1
to Patch 2 remains low because urban counties are less likely to spend a higher
proportion of time in rural counties.
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Figure 31
Data Modeling Simulations of Two-Patch Mobility Scenario 1

Figure 32 displays a scenario in which mobility from Patch 1 to patch 2 varies,
but mobility from Patch 2 remains high. The mobility from Patch 2 to Patch
1 remains high because a rural county is more likely to have high mobility into
an urban county than the inverse scenario.
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Figure 32
Data Modeling Simulations of Two-Patch Mobility Scenario 2

Using the proportion of time matrix P, we data modeled patches ai with La-
grangian mobility. Figure 33 models patch a1, Figure 34 patch a2, Figure 35
patch a3, Figure 36 patch a4, and Figure 37 patch a5.

Figure 33
Data Modeling Simulations of Patch a1 with Lagrangian Mobility
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Figure 34
Data Modeling Simulations of Patch a2 with Lagrangian Mobility

Figure 35
Data Modeling Simulations of Patch a3 with Lagrangian Mobility
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Figure 36
Data Modeling Simulations of Patch a4 with Lagrangian Mobility

Figure 37
Data Modeling Simulations of Patch a5 with Lagrangian Mobility

5 Discussion

5.1 Simple Model

The simple model performed well in fitting to cumulative deaths both by sub-
population and in the United States as a whole.
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The r2 of the one-population model is 0.990, while the r2 of the sum-of-five-
subpopulations model is 0.989. Given the individual subpopulations could
have had higher or lower proportions of underreporting and symptomatic cases,
more specific initial conditions could improve the fitting of the sum-of-five-
subpopulations model to surpass the fitting of the one-population model. Re-
gardless, we are encouraged by the strength of the fitting of the individual
subpopulations and believe we can draw more thorough interpretations of how
COVID dynamics in the United States through subpopulation modeling.

Table 2 shows the R0 values for each patch ai.

Table 2:

Subpopulation R0

a1 0.011
a2 0.011
a3 0.012
a4 0.015
a5 0.020

We see theseR0 results as conservative due to assumptions about the longevity
of vaccine effectiveness and antibodies that are applicable to only the time pe-
riod we modeled. These R0 numbers also do not factor in COVID variants that
could change the rate of disease spread and vaccine efficacy. Mobility could also
impact the R0 of the U.S. beyond the R0 of each subpopulation.

In most of the data plots, there are upticks in cases and deaths between August
and September. We attribute this to the emergence of the Delta variant during
this time. (Mathieu et al., 2021).

5.2 Simple Model - Delta Variant

The r2 of the sum-of-five-subpopulations model for the Delta variant is 0.993.
As a result, we are encouraged by our model’s ability to model different time
frames and COVID variants by changing parameters and initial conditions to
reflect the data on each time frame and variant.

Table 3 shows R0 values for each subpopulation ai.

Table 3:

Subpopulation R0

a1 0.052
a2 0.061
a3 0.071
a4 0.076
a5 0.084
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We also see these R0 results as conservative due to initial assumptions, but
the difference between the R0 values for the Delta variant time period and the
original time period of interest shows that the Delta variant did impact COVID
dynamics. Subsequently, we see initial spikes with each variant resulting from
the different characteristics of each variant. Mobility could also impact the R0

of the U.S. beyond the R0 of each subpopulation.

5.3 Model with Eulerian Mobility

The model with Eulerian mobility performed poorly compared to the simple
SEIAVR model. This is likely due to the K matrix we used to estimate mobility.
The data we used from Kang et al. was daily mobility data. We used this to
simulate migration between county patches. It seems unlikely that such high
proportions of people are migrating between patches over a six-month time span.
While the model with Eulerian mobility was not particularly successful, it does
reinforce our assumption for the simple model that there was no immigration
or emigration over this time period. Eulerian mobility might be more valuable
over a longer time frame or on a national rather than county level, but it was
not ideal for our modeling conditions.

5.4 Model with Lagrangian Mobility

To illustrate how Lagrangian Mobility impacts COVID dynamics, a two-patch
model with Lagrangian mobility was derived. Higher mobility of the smaller
patch members into the larger patch corresponds with fewer cases among the
members of the smaller patch, while the number of cases among the members
of the large population increases only slightly in comparison.

The full-scale, nationwide model performed very well for a2 and a3, and fairly
well for a1, a4 and a5. We feel the strong performance of the model indicates
that incorporating Lagrangian mobility is useful in fine-tuning a U.S. epidemi-
ology model.

As with the simple model and model with Eulerian mobility, the uptick in
deaths between August and September 2021 is likely due to the emergence of
the Delta variant.

5.5 Limitations

Our model is constrained by the six-month time window from March 1st, 2021
to September 1st, 2021. Future adaptations of this model would need to account
for new variants of COVID, different transmission rates, decreasing vaccination
effectiveness over time, and the addition of booster shots. This unfortunately
means our model is not suitable for forecasting purposes. However, the core
structure of the model and the county-based patches remain useful. Future
COVID models can update which counties belong in each category ai based on

43



the upcoming 2024 presidential election results to reflect ever-shifting political
leanings in the U.S.

6 Conclusion

Altogether, we have created a county-based SEIAVR model that is good at mod-
eling deaths for all subpopulations. Our model suggests underreporting factor of
30-100% for cases within our time frame across all subpopulations. Our model
with Eulerian Mobility performs strongly for a2 and a4 but struggles with a1 and
a5. The model with Eulerian mobility also performs more poorly than the sim-
ple model. We attribute this to flawed mobility assumptions given the data we
had to work with. The model with Lagrangian Mobility generally performs well.
It also illustrates how Lagrangian movement impacts COVID dynamics. The
two-patch model is especially illuminating. Future models using a this structure
will likely need to update initial parameters to account for decreasing vaccine
effectiveness, booster shots, and new variants. Nevertheless, the county-based
model provides a useful tool for analyzing subpopulation COVID dynamics in
the U.S. and the impacts of politics on COVID dynamics.

Acknowledgement

We would like to thank Dr. Fabio Milner, Director of the Simon A. Levin Mathemat-
ical, Computational and Modeling Sciences Center (Levin Center), and Co-Director
Dr. John Nagy for giving us the opportunity to participate in the Quantitative Re-
search in the Life and Social Sciences program. We also recognize the work of the
many administrative staff and tutors who supported this effort. This research was
conducted as part of 2024 QRLSSP at the Levin Center (MCMSC) at Arizona State
University (ASU) and has been partially supported by a grant from the National Sci-
ence Foundation (NSF Grant FAIN-2150492), and by the Office of the President of
ASU, and the Office of the Provost of ASU.

7 Code
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