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Abstract

It is generally accepted among scientists that cellular aging is an irreversible process
that is poorly understood. Several theories, including telomere shortening, mitotic misreg-
ulation, free radical theory and many others, have been proposed as possible explanations
for this phenomenon. Recently, Bennett-Baker et al [3], observed a correlation between the
reactivation of genes on inactive X-chromosomes and age in female mice. Motivated by
these studies, we propose two mathematical models to investigate the progression of aging
at the cellular level. In the first approach, we study the dynamics of aging using a discrete
time dynamical system based on competition between “noisy” and “noise-free” cells. Our
preliminary results suggest the existence of three different qualitative outcomes. These
outcomes are best described by exclusion and coexistence, where coexistence occurs under
two dynamically distinct scenarios. In order to incorporate a more biologically accurate
framework, we also consider a stage-structured model that incorporates stage dependent
vital rates. These are important as the rates change with the accumulation of “noise”.

1 Introduction

Aging has been a topic of great interest to scientists for many years. The definition of aging is
rarely agreed upon by researchers but includes all time-dependent processes that occur within
an organism whether adverse or not. Often, in biological literature, aging is more narrowly
referred to as the gradual and irreversible decrease in function of a system of cells with time
[1]. Over the years, many theories on aging have been developed and tested in an effort to
better understand this process. These theories include the telomere shortening theory [12], the
predetermined life span theory [2], the cross linking theory [14], and the free radical theory [13].
Two closely related theories of aging are the predetermined life span theory and the telomere
shortening theory. The predetermined life span theory claims that an organism has a given
amount of time to live which is predetermined in the embryonic cell. Furthermore, this theory
says that the amount of time for an organism to live is based on the number of cell divisions the
organism’s cells undergo [2]. The telomere shortening theory suggests that the shortening of
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telomeres, which occurs at each cell division (mitosis), may be responsible for aging. This grad-
ual change in length of the telomeric DNA causes changes in the proteins around the telomere,
which can lead to a change in the gene expression of the entire chromosome [10]. Altered gene
expression will cause altered and potentially non-functional cells, which will, in turn, lead to
aging. As a result, some scientists now view telomeres as cellular timers that trigger cells to
cease function when time runs out [11].

Other related aging theories are the cross linking and the free radical theories. The free
radical theory [13] was developed in 1956 and suggests that highly unstable molecules, called
free radicals (denoted by f.r.’s) are produced as a by product of metabolic processes [3]. These
free radicals can sometimes escape their neutralization processes and cause cellular damage [5].
Since the mitochondria are the primary sites for free radical production, mitochondrial DNA
(mtDNA), which is not readily repaired, is most subject to f.r. damage. As a result, mtDNA
damage accumulates and cell energy production declines, thus causing cell death and aging
[6]. The cross linking theory claims that aging is due to two or more large molecules becoming
bound together. These large, nonfunctional molecules, in theory, will accumulate in the cell and
cause cellular and tissue damage in numerous ways including decreasing tissue elasticity and
impeding intra- and inter-cellular transport [8]. Also, some cross-linked molecules have been
shown to reduce the degradation of proteins (which is necessary to eliminate nonfunctional
proteins) [7] and increase the number of free radicals produced by 50 times the normal rate
[12]. Thus, one can infer that the free radical theory of aging picks up where the cross linking
theory leaves off.

The common themes in the above mentioned theories are DNA and gene expression. Recent
studies by Ly et al., [12] and Bennett-Baker et al., [3] suggest a possible explanation for all of
the previously mentioned theories. Both studies show that as age increases, gene expression
patterns change. These changes could be the source of the theories discussed above. Ly et al
[12] suggest that as age increases, the genes whose products regulate the cell cycle and aging
tend to become expressed in a way that promotes aging [13]. Bennett-Baker et al [3] show that
as age increases, certain genes that were initially inactivated start to become expressed [3].

The motivation of this study is to answer the following question: How do these gene ex-
pression patterns change with time? In particular, we propose to add to the body of work
that may eventually corroborate the work of Bennett-Baker et al [3] using both a discrete time
competition model and a stage structured model. Through analytical and numerical analyses
of these models we hope to suggest gene expression patterns for cohorts for which no data was
collected, while fitting the existing data of the work carried out by Bennett-Baker et al [3] (See
illustration A). Furthermore, we show the possibility of coexistence of cells of different types,
under conditions that would be impossible in classical competition systems.

This study is structured as follows. Section 2 explains the methods used in the work of
Bennett-Baker and her team [3]. Section 3 introduces the general Leslie-Gower competition
model and Section 4 applies the general Leslie-Gower model to a population of cells character-
ized by error and error-free classes; Section 5 carries out the analysis of this specific case model
while Section 6 explores the sensitivity of the parameter values that are found to be necessary
for the existence of multiple equilibria and the corresponding stability discussed in the analysis.

2



Finally, Section 7 summarizes our results and provides a discussion of current and future work.

2 Experimental Methods

In their report, “Age-associated activation of epigenetically repressed genes in the mouse,”
Bennett-Baker et al.[3] quantitatively describe changes in epigenetic regulation in animals. To
do this, they track the gene Atp7a, a gene that is subject to X chromosome inactivation in female
mice. X chromosome inactivation is a well-studied mammalian epigenetic system. Quantitative
measurements of RNA transcripts from different alleles were made in mice whose ages ranged
form two to twenty four months. The quantity measured in this study was Xi/Xa, the ratio of
genes expressed from the inactive chromosome to genes expressed from the active chromosome.
The results showed that for some cohorts, the mean increase of this ratio was up to 2.2%. A
more detailed description of the experimental methods can be found in [3].

3 General Leslie-Gower Model

Interaction between similar species can lead to competition for a limited resource. Depending
on the strength between species interaction (interspecific competition), competitive exclusion is
a possible stable asymptotic dynamic outcome (deterministically). However, if the competition
between species is sufficiently weak, then the long term competitive outcome may be best
described by species coexistence. These notions stem from classical competition theory, which
are based on the Lotka-Volterra differential equations. Similar competitive predictions have
been determined for discrete systems. One such system, the Leslie-Gower model, was used to
understand the dynamics of competing species of flour beetles (Tribolium). This model is a 2D
system of difference equations (a modification of the Beverton-Holt equation) given by:

xt+1 =
xtbx

1 + c11xt + c12yt

,

yt+1 =
ytby

1 + c21xt + c22yt

.

(1)

The parameter values bx and by denote the average number of births per generation for
species x and y respectively. The parameter cij represents the competition coefficient (effect)
of species j on species i for i, j = 1, 2. For example, c11 describes the competition species
x exerts on itself. Competition with i = j is termed intraspecific competition, while that
with i �= j is interspecific competition. The global dynamics have been fully studied for the
Leslie-Gower model and the results can be found in [5]. Interestingly, similar to Lotka-Volterra
competitive outcomes, a necessary condition for species coexistence is c11c22 > c12c21 as depicted
in Illustration 1.
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Figure 1: One stable positive equilibrium (E3) exists and is globally stable while, E0, E1, E2

are all unstable.

4 Discrete Cell-Aging Model

In this section the framework of the Leslie-Gower model is modified to study the competitive dy-
namics of a system in which the populations are the results of either error-free (P ) reproduction
or not(Q). The modified model is:

Pt+1 =
amPt

1 + c11Pt + c12Qt

,

Qt+1 =
a(1 − m)Pt + bQt

1 + c21Pt + c22Qt

.

(2)

In this model it is assumed that a = α(1−μa) is the product of the average number of births per
generation for cells born into class Pt and the probability of survival for class Pt (0 < a ≤ 2).
b = β(1 − μb) is the product of the average number of births per generation for cells born into
class Qt and probability of survival for class Qt (0 < b ≤ 2). The parameters cij describe the
competition factors in the general case (0 < cij < 1) and m is the probability that a cell in
class Pt will produce a cell in class Pt (0 < m < 1).

The introduction of m gives rise to a new type of interaction that was not being considered
in the Leslie-Gower model. Note that in the equation for Qt+1 there is a probability that a cell
in class Pt will produce a cell in class Qt. This would be equivalent to a competition model
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between two species A and B, where species A has the capability of giving birth to a member
of species B. While this may not generally make biological sense, this is a unique feature of
cellular biology where error-free cells can produce cells that possess error.

5 Equilibria and Stability of the Cell-Aging Model

To gather insight as to the dynamics of (2), standard dynamical systems techniques will be
employed. This type of qualitative analysis entails finding equilibria (fixed points) and estab-
lishing their associated stability properties. Stability of the equilibria can be determined by
the magnitude of eigenvalues of the Jacobian matrix of the map evaluated at these fixed points
(each of which will be denoted by Ei).
The Jacobian of system (2) is given by:

J =

⎛
⎜⎜⎜⎜⎝

am(1 + c12Q)

(1 + c11P + c12Q)2

−amc12P

(1 + c11P + c12Q)2

a(1 − m)(1 + c22Q) − bc21Q

(1 + c21P + c22Q)2

b(1 + c21)P − ac22(1 − m)P

(1 + c21P + c22Q)2

⎞
⎟⎟⎟⎟⎠ (3)

For local asymptotic stability of Ei, all eigenvalues of the Jacobian at Ei (J∗) must lie inside
the unit disk (i.e. |λ1,2| < 1). Equivalently, necessary and sufficient conditions for |λ1,2| < 1 are
the Jury conditions (|trJ∗| < 1+detJ∗ < 2) [4]. To find the fixed points of (2), we seek ordered
pairs of the form (P̄ , Q̄) such that Pt+1 = Pt = P̄ and Qt+1 = Qt = Q̄. By inspection of (2),
one such equilibrium point is given by the trivial solution E0 = (0, 0). Similarly, substituting

P̄ = 0 and with Q̄ > 0 yields, Q̄ =
b − 1

c22

(i.e. E1 = (0,
b − 1

c22

)). Positive equilibria, P̄ > 0 and

Q̄ > 0, are also possible and their existence will be discussed later.
Stability of E0 = (0, 0)
Substituting E0 into (3) yields a triangular matrix with eigenvalues λ1 = am and λ2 = b. There-
fore, E0 is LAS when |am| < 1 and |b| < 1. Biologically, the trivial equilibrium corresponds to
the extinction of both P and Q and is stable when both of these classes are not reproducing
fast enough to replace themselves.

Stability of E1 = (0,
b − 1

c22

)

This fixed point lies on the Q-axis if b > 1 indicating the exclusion of P cells. Substi-
tuting E1 into the Jacobian, it is found that the eigenvalues of the Jacobian are given by

λ1 =
am

1 + c12
c22

(b − 1)
and λ2 =

1

b
. Therefore, the two conditions guaranteeing LAS of E1 are

b > 1,which also guarantees the existence of E1, and (am−1) < c12
c22

(b−1). That is, in order for
the Q cells to exclude the P cells, the average number of births per cell into class Q, given by
b, must be greater than 1. As a result, when b > 1, when E1 comes into existence, E0 becomes
unstable. The other condition for LAS of E1,
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(am − 1) <
c12

c22

(b − 1), (4)

will prove to be an important inequality which will reappear when determining the existence of
positive fixed points. The phase plane incorporating E0 and E1 is displayed in Illustration 2.

Existence of E2 and E3

We will now explore conditions for which positive equilibria exist (i.e. ordered pairs (P̄ , Q̄)
which lie in the positive cone). Assuming P̄ > 0, we have the following expression for P̄ in
terms of Q̄:

P̄ =
am − 1 − c12Q̄

c11

. (5)

Substituting (5) into the equation for Q̄ yields a quadratic in Q̄ given by:

AQ̄2 + BQ̄ + C = 0. (6)

Solutions of (6) are given by:

Q̄+,− =
−B ±√

B2 − 4AC

2A
,
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where A, B, and C are defined by:

A = c11c22 − c12c21,

B = −c11(b − 1) + c12a(1 − m) + c21(am − 1),

C = −a(1 − m)(am − 1).

Biologically, only real, positive equilibria are considered, (P̄ , Q̄ ∈ R
+). Inspecting (5), we

require (am−1) > 0 for the possibility of positive equilibria. Since m represents a ”probability”,
we have m ∈ [0, 1] (or (1 − m) > 0). These conditions force C < 0 for the existence of
positive equilibria. Thus, for existence, satisfying C < 0 and B2 − 4AC > 0 (to avoid complex
conjugate solutions will be considered). A geometric argument is used to outline conditions for
the existence of zero, one and two positive fixed points as below.

Case 1: Exactly One Positive Fixed Point (E2) Using the Illustration 3a, it is apparent
from the graph that:

A > 0

C < 0.

The only positive solution is given by Q̄1 = −B+
√

B2−4AC
2A

. To obtain a corresponding positive
P̄1 we have:

P̄1 =
am − 1 − c12Q̄1

c11

> 0 ⇐⇒ Q̄1 <
am − 1

c12

.
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This algebraically simplifies to

(am − 1) <
c12

c22

(b − 1).

When this condition holds, E2 exists in the first quadrant. This condition contradicts the
stability condition for E1. If we apply the same biological argument as we did for E1, we must
have c22 < c12, which says that intra-specific competition must be greater than the inter specific
competition to have coexistence. This result agrees with the results of the Leslie-Gower model.
When analyzing the stability of E2, we find that the determinant of the Jacobian evaluated
at E2, is intractable, thus we look for numerical solutions. Upon doing this, we find that all
eigenvalues are less than one in modulus for every set of biologically plausible parameters. This
leads us to believe that E2 is locally stable, although we do not attempt to prove this result.
Case 2: Two Positive Fixed Points (E2) and (E3) Using Illustration 3b, we see that we

must have:

A < 0

B > 0

C < 0.

Since both Q̄1 and Q̄2 are positive, each is substituted into (5). Doing this, we find that both
of the corresponding values of P̄ are positive whenever

(am − 1) <
c12

c22

(b − 1).
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When this is satisfied E1 is LAS. Thus, we have that whenever E2 and E3 exist simultaneously
in the first quadrant, E1 is locally stable. When examining the stability of E2 and E3, a
Jacobian with an intractable determinant is obtained. So again, we replace the parameters
with biologically appropriate values to make the determinant of the Jacobian manageable.
After doing this, we find that for E2, one eigenvalue is greater than one, while the other is less
than one for each set of biologically plausible parameters. This proves that E2 is a saddle node.
Using this same process for E3, we find that both eigenvalues are both less than one for every
case that we tested. From this we suspect that E3 is locally asymptotically stable. Again, we
do not attempt to prove the local dynamics of E2 or E3. The local dynamics of this situation
are shown in Illustration 4.

Case 3: Coalescence of the Two Fixed Points (E2) and (E3)
Examining Illustration 3c, one notices that the fixed points coalesce when there is one positive
root as a double root. Conditions for this occurrence are as follows:

A < 0

B > 0

C < 0

B2 − 4AC = 0.

These conditions are identical to the conditions of Case 2, with the additional constraint that
the discriminant of the quadratic solution Q̄ is zero. This reduces the two fixed point solutions
to Q̄ = −B

2A
.
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If the parameter values are perturbed slightly, a sense of the movement of the nodes is ob-
tained by inspecting the eigenvalues. We notice that for E3, λ1 < 1 and λ2 > 1. λ2 approaches
one from above. For E4, λ1 < 1 and λ2 < 1. λ2 approaches one from below, while λ1 stays
significantly less than 1. As E3 approaches a state of stability, λ1λ2 < 1, and E4 approaches
a state of instability, λ2 = 1, the two nodes collide giving way to the last case of equilibria
B2 = 4AC which we will call E�. This is the dividing point, bifurcation between two positive
real roots, and two imaginary roots.

This is a special case when E� becomes a saddle node bifurcation. In order to study the

sensitivity of the occurrence of the saddle node bifurcation, sensitivity analysis is performed to
determine which parameter(s) have the greatest impact in the change of stability of the existing
equilibrium points.

6 Sensitivity Analysis

The sensitivity of the existence of the saddle-node bifurcation is explored by studying the
possible scenarios for which the parabola described in Illustration 7 gives either two steady
states (one stable and one unstable) or a single steady state in which the previous steady state
coalesce to create a saddle-node bifurcation. In particular, the sensitivity to the occurrence of
the saddle-node bifurcation can be used to describe the function h (where h is the maximum
value attained by the parabola).
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Let

h = F

(−B

2A

)
=

4AC − B2

4A

be the quadratic function in Illustration 7 evaluated at the vertex −B
2A

. To explore the sensitivity
of h to the variability of the parameters in the proposed models, let ξ represent any of the
seven parameters (a, b, m, cij for i, j = 1, 2). Consider a small perturbation to ξ by Δξ.
A perturbation in ξ suggests that a perturbation will affect h (ξh) as well. The normalized
sensitivity index Sξ is the ratio of the corresponding normalized changes. The sensitivity index
for parameter ξ is defined as

Sξ :=
Δh

h
/
Δξ

ξ
=

ξ

h

∂h

∂ξ

The indices Sξ were calculated for the parameters in our model. Considering h and calculating
the sensitivity for each of its seven parameters, the following normalized sensitivity indices are
obtained:

Sensitivity of Parameters

1

F Sa Sb Sm Sc11 Sc12 Sc21 Sc22
B2−4AC

A2 -6.7692 4.9230 214.6741 0.01 0.12 0.1 0.01

4AC−B2
4A

-6.7692 4.9230 0.6386 0.01 0.12 0.1 0.01
−B
2A

2.1458 -0.2083 -1.6806 0.01 0.12 0.1 0.01

am − 1 − c11(b−1)
c22

-5.6666 6.6666 2 0.01 0.12 0.1 0.01

−B−
q

B2−4AC

2A
1.7142 − 1.4833i −4.8194 × 10−12 + 0.7161i −1.6806 − 22.8675i 0.01 0.12 0.1 0.01

−B+
q

B2−4AC

2A
1.7142 + 1.4833i −4.8194 × 10−12 − 0.7161i −1.6806 + 22.8675i 0.01 0.12 0.1 0.01

Case I:

h = F

(−B

2A

)
=

4AC − B2

4A
.

When F ′ < 0, we have the vertex of the parabola approaching F (Q) = 0 and thus B2 = 4AC.

Case II: Another way to create B2 = 4AC is to consider

G(Q) = |Q2 − Q1| =
B2 − 4AC

A2

When G′ < 0, we have the two roots colliding to create one root. Now we must consider that
when F ′ < 0 does not guarantee G′ < 0 simultaneously, i.e. just because the vertex is decreasing
does not strictly imply that the distance between the two roots is decreasing and vice versa.
However, we are only concerned with Q2 − Q1 = 0 and G. G contains seven parameters, a, b,
m, c11, c12, c21, c22. If we analyze the sensitivity of G to the variability of each parameter, we
find the parameters that affect G the most. Our results show that G is most sensitive to the
variability of m (214.7). The sensitivity of F with respect to m is relatively small in comparison
to the sensitivity of G with respect to m. Possible table results show that the value of m has
the most influence in bringing about the coalescence of E3 and E4.

1ξ = [a,b,m,c11,c12,c21,c22]
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7 Stage-Structured Model

A stage structured model is introduced as an alternative to the discrete competition model.
For this model, the continuous variable mean expression ratio χi/χa is partitioned into a set
of four classes where χi and χa represent genes on the inactive and active χ chromosomes of
the female mice respectively. This classification, while arbitrary, is important as it allows the
various stages to possess different vital rates. The four stages (classes) for this model are:

1. Stage 0 Cells: Stem cells, χi

χa
= 0

2. Stage 1 Cells: χi

χa
< 0.5%

3. Stage 2 Cells: 0.5% < χi

χa
< 2%

4. Stage 3 Cells: χi

χa
> 2%

Due to spatial constraints, the exact implementation of this model is given in the appendix
but a few general comments will be provided. This stage structured model, once again, is a
discrete time model where the number of cells in stage i at time t + 1 depends on the number
of cells in stages i − 1 and i at time t. The projection interval, [t, t + 1], is taken to be one
week. This structured model cannot be implemented as a simple projection matrix of the form
Ni,t+1 = ANi,t where A is a projection matrix (e.g. Leslie matrix) as cells can remain in a single
class for many generations. In particular, cells in class i for i = 1, 2 have a certain probability of
a transition into the next class. This transition is dependent on an increase in mean expression
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ratio. This ratio increases in time during the process of mitosis. This increase is assumed to
be a nonlinear process as the probability of creating further error, given a certain amount of
initial error, increases with an increase in initial error due to the decrease in the amount of
telomeric DNA occurring during mitotic events [7]. This creates an age distribution within the
classes which may or may not be stable. Assuming that it is stable, progression of an expected
number of cells into the next class is only a reasonable approximation for an initial vector near
the stable age distribution. It cannot be assumed that this vector is known.
Since there are only four stages, the possibility of cells skipping classes upon transition is not
considered. It is also assumed that all cells divide one time in the projection interval and that
each division produces two new cells. In the case of the two cells produced by stem cells, one
of the cells produced is a stem cell (exact replication with telomerase) while the other is a
first generation differentiated cell in class 1 (nearly identical daughter cell). As a result of this
process, the number of cells in each class (aside from the stem cells) grows exponentially in
time. The number of stem cells within the organism is assumed to be a constant. Despite
this unrealistic sustained exponential growth, the stage distribution or frequency of each stage
within the total population is examined as it evolves in time. Lastly, cells in the last class must
remain in this class or be removed from the system with increasing probability due to death (e.g.
apoptosis). To run a sample of this model, functions, gi, are chose to dictate how differentiated
cells in class i will transition. The choice of gi is arbitrary with the only constraint being that
it be monotonically decreasing. After running a simulation for 100 generations (approximately
two years) with an initial vector of the form (100, 1000, 0, 0)T , it is observed that from generation
1 to generation 20, a 3% decrease (100-97%) in the frequency of class 1 within the population
occurs. By generation 36, only 73% of the population in class 1, while 26% of the population
is in class 2. At generation 59, only 27% of the population remains in class 1, while 70% is in
class 2. An accumulation of cells in class 3 begins to occur with almost 2% of the population
residing there. By the time the last generation of the simulation is reached, 90% and 9% of the
population are in classes 2 and 3 respectively while less than 1% of the population remains in
classes 0 and 1.
These results are relatively consistent with the data obtained in the experiments of Bennett-
Baker et al. [3] in the sense that it takes many generations for cells with comparatively high
amounts of error to accumulate. Since the functions gi can be any monotonically decreasing
functions, it may be possible to fit the data with more precision as these functions are altered.
In particular, the strength of the nonlinear decrease is crucial in determining the evolution of
stage transitions. Since this stage structured model is a work in progress it may be prudent to
switch to a more manageable PDE model where age is a continuous variable. The algorithm
used to create basic simulations is highly recursive and cannot be easily extrapolated to higher
dimensional systems. Furthermore, this model is also biologically deficient in that there is no
density or time dependence. Specifically, for future work, we would like to introduce density
dependent births and time dependent births associated with stem cells. This time dependence
would incorporate the idea that stem cells progressively produce first generation differentiated
cells with more error (i.e. cells in higher classes). This time dependent process may create
different transient dynamics than those discovered in the basic simulation used in this study.
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8 Discussion

The initial purpose of this study was to develop a mathematical model that would accurately
describe the work of Bennett-Baker et. al [3] as well as to understand the process of aging
as a function of time with more accuracy. To do this, two discrete time models were con-
structed. The analysis of the competition model gave rise to some interesting mathematical
dynamics. However this model was constructed on simple biological foundations with compe-
tition as the main interaction between cells. In particular, only two classes were used and the
exact definitions of these classes is not altogether clear. Aside from this insufficiency, biological
assumptions proposed may be inaccurate for the process of aging. First, we had to assume that
error-free cells that produced errored cells competed in the same way as the errored cells. This
assumption produced a tractable model but also indicates the need for a higher dimensional
model where error-free cells that produce error-free versus errored cells are biologically distinct
and thus belong in different classes governed by different interactions of varying strengths. Sec-
ond, it is also important to incorporate demographic stochasticity in the model as there are
variations within individuals in the two classes. Depending on the magnitude and placement of
stochastic events within the model, the long term dynamics may be variable and resemble the
distributions seen in the data. Despite these shortcomings, the model was instructive through
the mathematical analysis. We feel confident that we have completely described all of the non-
linear phenomena predicted by this model for various parameter values. Although we have no
proof of this, both analytical and numerical results strongly suggest this. If such a complete
characterization is true, this model may be of future use to mathematical modelers.
The stage structured model we constructed was more biologically accurate than the competition
model because of the addition of more classes. This allowed for the differentiation of the vital
rates of cells in different stages. This, in turn, made the system much more complicated and
analysis was possible only through numerical simulations. These simulations did provide a view
of the frequency of cells within the stages throughout time (as conducted in the experiment).
These results match the findings of the experiments of Bennett-Baker et al. [3] qualitatively;
the expression of inactivated genes stays extremely low for an extended period of time, and
then begins to increase at an increasing rate. This is due to the fact that we used a nonlinear
function to dictate how cells transition from class to class. The choice of the function was arbi-
trary, so it is possible to fit the data more accurately with a more appropriate choices. Due to
the fact that there is so little data, interpolation may vary widely. Demographic effects should
also be added as variations in individuals arise in the data.
During the process of analyzing these two models, ideas for future studies of this topic arose
naturally. First, evidence suggests that the equilibria of the two-dimensional model may be
globally stable. Proving this may be possible using monotone map theory and would further
enhance the existing results. Stage structure seems to be important to understand the aging
process. Therefore, developing a PDE model may be the next natural step. Introducing time,
density and demographic effects individually and in combination will also contribute to a more
realistic future model.
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9 Appendix

Figure 2: Inactivation of maternal and paternal X-Chromosomes.

Figure 3: Atp7a gene expression in mouse spleen RNA.
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Figure 4: Bistability. Red (P) and pink (Q) time series shows the asymptotic state (coexistence)
for the initial condition (15,5). Blue (P) and cyan (Q) time series shows the asymptotic state
(exclusion) for the initial condition (14,6). These time series collectively show the effect of the
nearby saddle node acting as a separatrix for the basins of attraction of the multiple equilibria.
Parameter values used were m = .85, c11 = .01, c12 = .1, c21 = .12, c22 = .01.
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Figure 5: Time series showing the effect of the saddle node bifurcation just following criticality.
The red (P) and pink (Q) transient dynamics are influenced by the remaining ”ghost” of the
saddle node bifurcation for the initial condition (10,3). The transient dynamics for blue (P)
and cyan (Q) are not affected by this ghost for initial condition (20,20). Parameter values used
were m = .7, c11 = .01, c12 = .20185, c21 = .5, c22 = .01.
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Figure 6: Attractors.

Figure 7: Impact of natural selection on reproductive potential.
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