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Abstract

The World Wide Web has proven useful in disseminating information. How-
ever, it is extremely difficult to track its spread in such a complex network. One
simplification is to model it as a small Local Area Network. Previous work has
shown that a gossip-based multicast can be an effective tool for modeling the
flow of information on a local area network. We examine the effect of different
networks within this mathematical framework. We propose a general math-
ematical model that incorporates the susceptibility and infectivity of a given
machine in a local area network. We also use the concept of proportionate mix-
ing to model the spread of information among heterogeneous patches, where
each patch consists of users and non-users of an information router.
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1 Introduction

Before the World Wide Web, the spread of information through phones, word of
mouth, and letters was difficult to quantify as well as to model. If we receive in-
formation that we find interesting, we can choose to pass the information on to our
circle of friends and family. Once they receive it, they can also make a decision on
whether or not to pass it on. This process continues over time and can be tracked for
small populations. This tracking will look into how far the information has traveled
over time. It will also be possible to see how many people are ”infected” with the
information over time. This process is very similar to that of tracking a virus in a
population. Information spreads in ways that resemble the transmission dynamics of
viruses. The literature on this latter topic includes [3], [2], [1], [4].

Now, the spread of information is a more complex process. With the help of the
World Wide Web, an individual’s circle of friends has greatly increased. Information
can be spread across the world in a matter of seconds. However, before we can
pursue the study of the global spread of information, we proceed to study it on
smaller networks.

A very interesting idea to model the flow of information is to use a gossip protocol
for a subgroup multicast [12]. An example of a multicast process is when someone
sends out a mass e-mail to everyone in his or her address book. This framework
may be helpful in the study of the spread of information in a small network. The
gossip protocol represents the process that information is spread through a system.
The protocol idea is to pay close attention to each node in the system and monitor
the connections that node makes. This is done so you can have reliable and scalable
results for the entire system based on each node. There is a system here in which a
person generates some information (the gossip) and sends this gossip via the router to
machines registered to receive messages in the local area network. This total group is
broken up into patches based on different parameters which are explained in Section
2.1. The process by which the gossip is sent by a machine to multiple machines
is known as the gossip-based multicast process. Other references about protocols
include [8], [9], [10], [11], [13], [14].

In this paper, we review the Jenkins (et al.) [12] model and improve upon their
work. In Section 2.1.1, we explain the results and add to the framework on gossip
protocols for subgroup multicast. In Section 2.2, we introduce a new multigroup
model. We first discuss this continuous-time model for m-patches based on subgroup
multicast. We analyze the new model when only one patch is involved (with all users
of the router) in Section 2.2.2 and 2.2.3. In Sections 2.2.4 and 2.2.5 we focus on a
two-patch of users model. In Section 3 we summarize our results and in section 4 we
outline future work.
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2 Gravitational Gossip in Multi-patches

2.1 Discrete-Time Proportional Mixing Model

Jenkins (et al.)(2001) discussed a gossip-based protocol for a subgroup multicast [12].
The local area network consists of users that are broken up into subgroups. The
subgroup is determined by two parameters: rating and timeout. The members set
these parameters based on their personal preferences. The rating is between 0 and
1. A member with rating r wants to only receive a fraction r of the gossip being
sent out over the whole system. The timeout is a fixed time in which the member
is willing to receive gossip. For instance, a member who has set his timeout to 5
minutes and rating to .5 will only receive about 50 percent of the gossip overhead
that is 5 minutes old or newer. Thus, members with extra time on their hands might
set their parameters higher to receive more information. Likewise, a member who is
busy might not have that much time to read gossip, so they set their parameters low
in order to receive a small amount of the gossip overhead. Gossip overhead is the
expected number of gossip messages initiated and received by a machine in a gossip
round. We have included a figure based on the flow of gossip between subgroups in
Figure 1.

Figure 1: Flow of Gossip through the Router
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Parameters Description
xi(t) Proportion of susceptible machine at rating ri at time t

1 − xi(t) The fraction of infective machines at rating ri and time t
Si Susceptibility for each machine in subgroup ri

Ii Infectivity for each machine in subgroup ri

Ni Number of machines with rating ri

NiSiIjNj(1 − xj(t)) Total number of infections in neighborhood
ri due to contacts with subgroup rj∑

j NiSiIjNj(1 − xj(t)) Total number of infections in ri

due to contacts with all neighborhoods rj including ri

Table 1: Definitions of parameters for the model

With the understanding of the division of the network into subgroups, we can
examine two parameters of each subgroup. Every machine in the subgroup has an
infectivity (I) and susceptibility (S). These two parameters are based on the ma-
chines ability to send and receive gossip. Since every machine in the subgroup has
the same rating and timeout, they will also have the same I and S. Let Ii and Si

denote the infectivity and susceptibility for subgroup i, which has rating ri. Where
ri is the rating of subgroup i. The sequence of ratings is assumed to be ordered as
follows:

0 ≤ r1 < r2 < r3... < rm−1... < rm = 1 (1)

In this model, we refer to a machine that has not received the gossip update
as being susceptible and a machine that has received the update as infected. In
epidemic modeling, this is known as an SI model ([3],[15]). First, let us assume there
is a large number of machines in each subgroup. Second, let us assume the fraction of
machines infected by each round of gossip is very close to the expected value. Given
these assumptions, we create deterministic recurrence relations for the fraction of
susceptible machines in each subgroup as a function of time (measured in rounds).
In Table 1 we have included definitions for the parameters used in the equations.
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xi(t + 1) = P(machine u at rating ri is susceptible at time (t + 1))

xi(t + 1) = P(u was susceptible at time t)P(no infected machines gossiped to u at time t + 1)

xi(t + 1) = xi(t)P(each machine that gossiped to machines of rating ri at time t + 1 missed u)

xi(t + 1) = xi(t)
(
1 − 1

Ni

)(number of gossips to rating ri at time t + 1)

xi(t + 1) ≈ xi(t)
(
1 − 1

Ni

)NiSi
∑m

j=1 IjNj(1−xj(t))

xi(t + 1) ≈ xi(t) exp(−Siα(t)), for Ni large

(2)
where

α(t) =
m∑

j=1

IjNj(1 − xj(t))

.
α(t) function is often, in the epidemiology literature, referred to as the force of

infection. Notice that in the model (2), all subgroups have the same force of infection.
We propose the following force of infection for subgroup i:

αi(t) =
m∑

j=1,j �=i

IjNj(1 − xj(t)), i = 1, 2, 3...,m

In words, the force of infection αi(t) excludes intra-neighborhood infectivities, unlike,
α(t), where all intra- and inter-neighborhood infectivities contribute to the spread of
infection.

2.1.1 Numerical Simulations

Figure 2 displays the fraction of infected machines at each of the three quality ratings
as a function of time. This plot was generated for one subgroup containing 100
machines at rating 1, 100 at rating 0.5, and 200 at rating 0.25, with a timeout value
of 15. We used δ = 0.01, and set each machine’s infectivity proportional to its rating.
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Figure 2: Plot of the fraction of infected machines vs. number of gossip rounds

In the numerical simulations, we also considered two other cases for the local area
network. For both cases, we calculate the fraction of infections with different values
for α(t) and αi(t). α(t) is the force of infection of the local area network including
the patch where the gossip originated. When a gossip is sent by a machine, it goes
through the router and then it is filtered to all subgroups including the subgroup
where the gossip originated. in αi(t) is the force of infection of the local area network
that excludes the patch where the gossip originated. In the latter example, when
a gossip is sent by a machine it goes through the router but doesn’t return to the
original subgroup. A machine can not infect machines in their own neighborhood.
For case 1 we assume the infection rate Im = 1 for both α1 and αi . Im is the highest
infectivity in the local area network from subgroup m. In Figure 3 we can see that the
fraction of infections with rating 1 can be reduced by 90 percent with αi(t) getting
less infective members in the local area network. This is due to the fact that we have
a small number of subgroups. There is a big change if a machine can not spread
gossip to machines in its own patch.
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Figure 3: Plot of fraction of infected nodes with δ = 0.01, Nj = 100 for j ∈ {1, 2, 3}

In the next simulation we calculate the infection rate in each patch for α(t) and
αi(t) assuming the same fraction of infected nodes in each patch. Figure 4 shows that
it takes a higher infection rate when a gossip is not sent to the patch where the gossip
originated. We calculate Ij = rjIm.
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Figure 4: Shows the Im needed to have the desired fraction of infected nodes for a
given timeout

The numerical results in Figure 5 show that the infection rate Im is a non-linear
term that decay exponentially with increasing timeouts. This result indicates that
for a given timeout the infection rate for αi(t) needs to be stronger if it is to infect
the same amount of members as in the case of α(t). Also we can see that for a large
timeout, it is not necessary to have a high infection rate to infect most of the members
in the Local Area Network.
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Figure 5: Plot of infection rate for a given timeout

2.2 Continuous-Time Proportional Mixing Model

Since the beginning of our history people have always communicated with other peo-
ple. Now we use more communication ways such as phones, internet, tv, newspaper,
magazine, etc. Today the computer is a very useful tool for communication. We are
able to use the internet to communicate to other computers (i.e. to other people.)
To access this structure of communication, computers need to be connected to some
internet server provider (i.e MSN, AOL, Verizon, etc.) called the information router.
Also computers can communicate each other just by being connected with each other
without using the router. From this communication structure we can use the of pro-
portional mixing from [6] Castillo-Chavez and Song, B. The idea of this model is
having a N population of computers where each computer can communicate with
each other in the same neighborhood being a user or non-user of the router. Com-
puters can also communicate to other computers in different neighborhoods while
accessing the router.
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2.2.1 Framework: Model for m-Patches

We feel this new model is relevant because it makes sense if everyone does not have
access to the router. One example of the model would be if it is expensive to access
the router. We assume there are users (U) and non-users (NU) of the router in each of
the m different neighborhoods. Divide each group of machines into m neighborhoods
according to different rating ri 1 ≤ i ≤ m. Each neighborhood population is divided
into subgroups of users and non-users. Assume users and non-users have contact
within their own neighborhood. Also, users can also have contacts with other users
of another neighborhood. A user from another neighborhood can send a message to
the router and the router sends it to users from the m different neighborhoods. The
newly infected users can leave the router and infect their own neighborhood, both
users and non-users. The subgroups fall into one of two classes according to their
epidemiological status. Si and Ii denote the population of users and non-users in the
neighborhood i which are susceptible and infectious, respectively; Xi and Yi denote
the corresponding ”epidemiological” classes for users. The total population of the two
groups is Qi=Si + Ii and Ti=Xi + Yi. The constants ai and bi denote the per-capita
contact rates of users and non-users in neighborhood i. In addition, ωi=

ρi

σi+ρi
and

τi=
σi

σi+ρi
, where ρi and σi denote the rates at which users get on and off the router.

Figure 6: The rate ρi is the rate at which users get on the router. σi is the rate at
which users get off the router.

In the discrete-time proportional mixing model, we stated that:

0 < r1 < r2 < r3... < ri... < rm (3)
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Figure 7: ωi = ρi

σi+ρi
which is the proportion of time users spent on the router.

ρi = σi

σi+ρi
which is the proportion of time users spent off the router.

Where the rating of machines in subgroup m is equal to one. One is the highest
rating a machine can have. Machines in subgroup m on average will receive the
highest amount of gossip overhead.

Similarly, assume:
ω1 < ω2 < ω3... < ωi... < ωm (4)

Where ωm corresponds to the rate at which machines in subgroup m access the
router. This assumption states that machines in the m subgroup have the highest
proportion of time on the router.

These assumptions are a main part of the motivation to connect the discrete
and continuous-time proportional mixing models. Here are the proportional mixing
parameters and description:

1. Paiai
=P̃ai

= aiQi

aiQi+biτiTi
is the mixing probability between NU from the same neigh-

borhood i.

2. Paibi
=P̃bi

= biτiTi

aiQi+biτiTi
is the mixing probability of NU and U from the same

neighborhood i.

3. Pbiai
=P̄ai

=( aiQi

aiQi+biτiTi
)τi is the mixing probability of U and NU from the same

neighborhood i.
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4. Pbibi
=P̄bi

=( biτiTi

aiQi+biτiTi
)τi is the mixing probability between U from the same

neighborhood i.

5. Pbibj
=P̄bi

j
=(

bjωjTj∑m
k=1 bkωkTk

)ωi is the mixing probability between U from neighbor-

hoods i and j.

6. Paiaj
= 0 means NU from neighborhoods i and j do not have contacts assuming

i �= j.

7. Paibj
= 0 means NU from neighborhood i and U from neighborhood j have no

contacts assuming i �= j.

For each neighborhood, the following two ”conditional probability” identities hold:

P̃ai
+ P̃bi

= 1, i = 1, 2, ..., m, (5)

P̄ai
+ P̄bi

+
m∑

j=1

P̄bj
= τi + ωi = 1, i = 1, 2, ..., m. (6)
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Parameters Description
Λi recruitment rate of U
Ai recruitment rate of NU
μ rate at which NU and U leave the system
σi the rate at which a U leaves the router
ρi the rate at which a U enters the router
ai average number of contacts of NU per unit time
bi average number of contacts of U per unit time
βi transmission rate per contact
1
ρi

the average time spent on the router

τi=
σi

σi+ρi
the proportion of time spent off the router (U)

ωi=
ρi

σi+ρi
the proportion of time spent on the router (U)

Table 2: Definitions of parameters. i refers to the index of a neighborhood.

where the (force of) infection rate for NU is

Bi(t) = βiaiSi

[
P̃ai

Ii

Tiτi + Qi

+ P̃bi

Yiτi

Tiτi + Qi

]
(7)

and the (force of) infection rate for U is

Vi(t) = βibiXi

[
P̄ai

Ii

Tiτi + Qi

+ P̄bi

Yiτi

Tiτi + Qi

+
m∑

j=1

P̄bi
j

Yjωj

Tjωj

]
(8)

2.2.2 Numerical Simulation for m-Patches

The simulation were carried out using the software Berkeley Madonna. The graphs
represent the iteration between users and non-users of the router using two patches
of subgroups, under the proportional mixing model. In figures 8-9 we can see that an
endemic equilibrium exists. From both figures show that the dynamics of infection
are logistic, that is they seem to read a carrying capacity in each patch and the level
of total infection is different for each class.
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Figure 8: Dynamics of Users and non-Users in the first patch.
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Figure 9: More dynamics of Users and non-Users in the second patch.

2.2.3 Model for One Single Patch of All Users

In this analysis, we use the Susceptible − Infective(SI) model. Let X(t) and Y (t)
denote the number of susceptible and infective machines at time t. Moreover, let
N(t) = X(t) + Y (t) denote the size of the total population at time t.
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Figure 10: One patch which consist of all users.

dX

dt
= Λ − βX

Y

N
− μX

dY

dt
= βX

Y

N
− μY

dN

dt
= Λ − μN

(9)

It follows from dN
dt

= Λ− μN that N → Λ
μ

as t → ∞, where β is the rate of infection
of each computer.

Let c = Λ
μ

and y ≈ Y
c
. Consider the asymptotic limiting system given by:

dy

dt
= (β − μ)y

[
1 − β

β − μ
y

]
(10)

Equation (10) is the well known logistic equation [4]. The two equilibria are y∗ = 0
(disease-free) and y∗ = β−μ

β
(endemic).

If β−μ > 0, then y∗ = 0 is unstable and y∗ = β−μ
β

is stable. Otherwise if β−μ < 0,

then y∗ = 0 is stable and y∗ = β−μ
β

is unstable.

2.2.4 One Patch R0 Analysis

Equation (9) has fixed points (X∗, Y ∗) = (Λ
μ
, 0) and (X∗, Y ∗) = (μT

β
, Λ

μ
− μT

β
). Since

T is constant, we have that the limit of T → Λ
μ

is constant which is considered the
asymptotic limit system. The previous equations can be reduced to:
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Ż = β(l − Z)Z
l
− μZ

Ż = β(1 − Z
l
)Z − μZ

V̇ = V [(β − μ) − βV ]

V̇ = (β − μ)V
[
1 − βV

βμ

]

V̇ = V [1 − dV ]

(11)

V implies two fixed points, V = 0 and V = β−μ
β

. The first is the disease free and
the second is the endemic equilibrium.

At β−μ, there is a transcritical bifurcation where the stability of two fixed points
inter changes. As you can see below we have an example of the bifurcation, where
the horizontal line is the zero fixed point.

Ro is equal to β
μ

where β is the average number of contacts leading to infection and
1
μ

is the average time spent on the router. Shows that when Ro is greater than one,
the fixed point is the endemic equilibrium. Figure 2.2.4, Ro less than one corresponds
to the disease free fixed point.
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Figure 11: Bifurcation Diagram.

2.2.5 Model for Two-Patches of All Users

This model is very similar to the discrete-time model. The only difference between the
two is that now users can interact with users in their own subgroup with out accessing
the router. We assume constant population for this model to simplify calculations.

Ẋ1 = μT̄1 − V1(t) − μX1 (12)

Ẏ1 = V1(t) − μY1 ≡ F1(X1, Y1, X2, Y2) (13)

Ẋ2 = μT̄2 − V2(t) − μX2 (14)

Ẏ2 = V2(t) − μY2 ≡ F2(X1, Y1, X2, Y2) (15)

Assuming constant population simplifies the system of equations. We can reduce
the system of four equations to two, by setting:

X1 = T̄1 − Y1 (16)
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Figure 12: Two patches which consist of all users.

X2 = T̄2 − Y2 (17)

We substitute equations (16) and (17) into our new Vi(t)

V1(t) = β1b1(T̄1 − Y1)

[
Y1τ1

T̄1

+
(b1ω

2
1Y1) + (b2ω2Y2ω1)

N

]
≡ F1 (18)

V2(t) = β2b2(T̄2 − Y2)

[
Y2τ2

T̄2

+
(b2ω

2
2Y2) + (b1ω1Y1ω2)

N

]
≡ F2 (19)

where N = b1ω1T̄1 + b2ω2T̄2

We find the partial derivatives of equations (14) and (16) for two subgroups eval-
uated at the Disease Free Equilibrium (DFE).
(X1, X2, Y1, Y2)
DFE → (T̄1, T̄2, 0, 0)

dF1

dY1

= −μ + β1b1T̄1

[
τ1

T̄1

+
(b1ω

2
1)

N

]
= −μ + K11 (20)

dF1

dY2

= β1b1T̄1
b2ω2ω1

N
= k12 (21)

dF2

dY1

= β2b2T̄2
b1ω1ω2

N
= k21 (22)
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dF2

dY2

= −μ + β2b2T̄2

[
τ2

T̄2

+
b2ω2

2

N

]
= −μ + k22 (23)

K11 and K22 stand for the local interactions that go on with-in the subgroup./
K12 and K21 stand for the global interactions that go on when users access the

router.
We use the Next Generation Approach (see Appendix) to solve for R0 by the

following Jacobian:

J =
(

ΔF1 ΔF2

)
(24)

J =

(
k11 − μ k21

k12 k22 − μ

)
(25)

J=M-D

J =

(
k11 k21

k12 k22

)
−

(
μ 0
0 μ

)
(26)

where

M =

(
k11 k21

k12 k22

)
(27)

and

D =

(
μ 0
0 μ

)
(28)

D−1 =

( 1
μ

0

0 1
μ

)
(29)

M2 = MD−1

M2 =

(
k11 k21

k12 k22

)( 1
μ

0

0 1
μ

)
(30)

M2 =

(
k11

μ
k21

μ
k12

μ
k22

μ

)
(31)
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σ(MD−1) = eigenvalues of MD−1

σ(MD−1) = {λ1, λ2} (32)

λ1 =
trace −√

trace2 − 4det

2
(33)

λ2 =
trace +

√
trace2 − 4det

2
(34)

where trace= k11+k22

μ

and

det= k11k22

μ2 − k12k21

μ2

We want max R0 ≡ max{|λ1||λ2|}

After some algebra we find λ2 to be the max so:

R0 ≡ k11+k22+
√

(k11+k22)2−4(k11k22−k12k21)

2μ

2.2.6 Two Patch R0 Analysis and Numerical Results

In order to analyze R0, we use the equivalent equation for (R1).

R1 = μ(k11+k22)−k11k22

μ2−k21k12

We found if R1 < 1 then R0 < 1

Rearranging R1 implies:

R1 =
(

˜k11
˜k22

˜k12
˜k21

) (
1

˜k11
˜k22

−1

1
˜k12

˜k21
−1

) (
1

˜k11
˜k22

)
< 1,

Where k̃y = k̃y

μ
.

We interpret R1 it can be said that k̃11 and k̃22 are the driving force for R1 to be
less than one.

Therefore, the interactions with users in the same neighborhood determine whether
or not our R0 will be less than one. If R0 < 1 than there is no epidemic and if R0 > 1
than an epidemic occurs where a vast majority of the population will be infected with
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the gossip.

Numerical Results
In the Figure 13 we see that there is an endemic equilibrium for a system for

all users. There is a rapid outbreak of the gossip from a small initial source, then
the gossip appears to be of epidemic proportions (for R0 > 1). In this graph, the
susceptibles start having interaction with infected users approximate at 10 minutes
and become infected users of the router.
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Figure 13: System of all users for 2 patches when R0 > 1

Figure 14 displays disease free behavior which corresponds to R0 < 1.
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Figure 14: System of all users for 2 patches when R0 < 1

3 Concluding Remarks

Does gravitational gossip weigh heavy on your local area network ? We have presented
a number of models to answer this question. Based on what we have shown in the
previous sections the answer is yes. The Local Area Network plays a major role
on how a machine receives and sends information through the router. Our results
show that if some gossip is started in the Local Area Network, then machines may
get infected in a short period of time (depending on the network they belong to).
Different networks produce very different outcomes.

A network that consists of only users seems to be a very effective way to spread
information. We found that when users interact with users inside their subgroup they
spread the gossip faster. make more contacts with users in their own group. These
assumptions are approximately correct for a small number of subgroups in the Local
Area Network.

In a network where there is a large number of subgroups, local interactions do
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not play a major role. In fact, comparison between a large Local Area Network that
does not allow local interactions and large Local Area Network that does show ”no”
difference. The number of infected machines over time are just about equal.

If you want to model the flow of information received by your machine. The
details of the local area network to which you belong are extremely important. You
have to play close attention how information spreads between machines.

4 Future Work

It would be a good idea to model a system where each machine can be a part of
multiple subgroups, which is a very realistic assumption. This is specially true for
laptops. Wireless technology allows a single user to access multiple networks. We
think this will be a great future direction for our paper.

We are very interested in the spread of computer viruses on networks. We plan
to model how computer viruses spread and attempt to quantify an ideal network. If
we show what networks can be the most susceptible, we can suggest plans to reduce
the chance of having an infected network.
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6 Appendix

A Next Generation Operator

R0 is often found through the study and computation of the eigenvalues of the Ja-
cobian at the disease- or infectious-free equilibrium. Diekmann et al. 1990 follow
a different approach: the next generation approach. They define R0 as the spectral
radius of the ”next generation operator”. The details of this approach are outlined
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in the rest of this section. First, we consider the case where heterogeneity is dis-
crete, that is, the case where heterogeneity is defined using groups defined by fixed
characteristics, that is, for epidemiology models that can be written in the form:

dX

dt
= f(X,Y, Z), (35)

dY

dt
= g(X, Y, Z), (36)

dZ

dt
= h(X, Y, Z), (37)

where X ∈ R
r, Y ∈ R

s, X ∈ R
n, r, s, ≥ 0, and h(X,0,0)=0. The components

of X denote the number of susceptibles, recovered, and other classes of non-infected
individuals. The components of Y represent the number of infected individuals who
do not transmit the disease (various latent or non-infectious stages). The components
of Z represent the number of infected individuals capable of transmitting the disease
(e.g., infectious and non-quarentined individuals).

Let U0 = (X∗, 0, 0) ∈ R
r+s+n denote the disease-free equilibrium, that is,

f(X∗, 0, 0) = g(X∗, 0, 0) = h(X∗, 0, 0) = 0. (38)

Assume that the equation g(X∗, Y, Z) = 0 implicitly determines a function Y =
g̃(X∗, Z). Let A = Dzh(X∗, g̃(X∗, 0), 0) and further assume that A can be written in
the form A = M − D, with M ≥ 0 (that is, mij ≥ 0) and D > 0, a diagonal matrix.

The spectral bound of matrix B is denoted by m(B) = sup{
λ : λ ∈ σ(B)}, where

λ means the real part of λ, while ρ(B) = limn→∞ ‖Bn‖1/n denotes the spectral radius
of B. The proof of the following theorem involving matrix A found in Diekmann et
al., (1990):
Either

m(A) < 0 ⇐⇒ ρ(MD−1) < 1 (39)

or

m(A) > 0 ⇐⇒ ρ(MD−1) > 1 (40)

The basic reproductive number is defined as the spectral radius (dominant eigen-
value) of the matrix MD1, that is,

R0 = ρ(MD−1). (41)
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B MATLAB Code

***********************************************************************

MTBI 2004, Project: The Spread of Computer Information on Networks.

Authors: Reynaldo Castro; Anthony Billups ; Wilbert Fernandez

***********************************************************************

******************** Input by the user *****************************

***************** Computer Virus program ***************************

disp(’Note: If you do not want to enter each rating the program’);

disp(’ will generate equidistant rating for you. ’); disp(’ ’);

rb input(’Do you want to enter each rating ? [Y=1,N=0]: ’); if

rbr input(’Enter the ratings in accending between 0 and 1

(e.g.[r1;r2;..;rf] ): ’); else ri = input(’Enter rating interval

between 0 and 1 (e.g [r1, r2] ), r : ’); rs = input(’Enter the

number of partitions you want to have: ’); r = linspace

(ri(1),ri(2),rs); end delta = input(’Enter the value of \delta : ’);

N = input(’Enter the number of machines corresponding to each

subgroup (e.g. [N1; N2; ..; Nf] ): ’); tOut = input(’Enter the

TimeOuts (e.g.[tOut(1); ..; tOut(f)]: ’); disp(’ ************* SEE

THE PLOTS **********************************’ );

%************* Inital Values *******************************************

%C = [ strcat(’*’,’-’,’b’); strcat(’+’,’-’,’g’); strcat(’o’,’-’,’r’)];

rn = length(r); S=zeros(rn,1); I=zeros(rn,1);

Im=zeros(length(tOut),1); Im2=zeros(length(tOut),1); S(end) = 1;

I(end)= 1; Im(1) = 0.6; Im2(1) = 0.6; initIm=Im(1); initIm2=Im(1);

S(1:end-1) = log2(1-r(1:end-1))/log2(delta); S0 = S; I(1:end-1) =

r(1:end-1)*I(end);

%************************************************************************

for i = 1: length(tOut)

loop = 1;

loop2 = 1;

Im(i) = initIm;

inc=.001;

while(loop)

S=S0*Im(i);

x=[];

x(1:rn-1,1) = 1.0;

x(rn,1) = 0.99;

%******************Calculate The Fraction of Infections*******************
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[x1,y] = groupAlpha7(x,delta,I,N,S,r,rn,tOut(i),loop,Im(i),inc);

loop = y(1);

Im(i) = y(2);

inc=y(3);

end

% temp1 = Im(i);

Im2(i) = initIm2;

inc=.001;

while(loop2)

S2=S0*Im2(i);

x2=[];

x2(1:rn-1,1) = 1.0;

x2(rn,1) = 0.99;

%******************Calculate The Fraction of Infections******************

[x2,y2] = group2Alpha7(x2,delta,I,N,S2,r,rn,tOut(i),loop2,Im2(i),inc);

loop2 = y2(1);

Im2(i) = y2(2);

end

% temp2 = Im2(i);

%**************** Plotting the Results %******************************

figure(i);

subplot(2,2,1); plot(1-x1(3,:),’-*r’);

hold on

plot(1-x1(2,:),’-*g’);

hold on

plot(1-x1(1,:),’-*b’);

hold on

% for j = 1:rn

% plot(1:max(size(x1)),r(j),strcat(C(j,1),C(j,2),C(j,3)));

% end

axis([0 tOut(i) 0 1])

ylabel(’Fraction of Infected Nodes’);

xlabel(’time’);

title(strcat(’gravitational-gossip with \alpha for I_m = ’, num2str(Im(i))));

hold off

subplot(2,2,2); plot(x1’);

axis([0 tOut(i) 0 1])

ylabel(’Fraction of Susceptibles Nodes’);
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xlabel(’time’);

title(strcat(’gravitational-gossip with \alpha for I_m = ’, num2str(Im(i))));

hold off

%----------------------------------------------------------------------

subplot(2,2,3); plot(1-x2’);

axis([0 tOut(i) 0 1])

hold on

% for j = 1:rn

% plot(1:max(size(x2)),r(j),strcat(C(j,1),C(j,2),C(j,3)));

% end

ylabel(’Fraction of Infected Nodes’);

xlabel(’time’);

title(strcat(’gravitational-gossip with \alpha_i for I_m = ’, num2str(Im2(i))

hold off

subplot(2,2,4); plot(x2’);

axis([0 tOut(i) 0 1]) ylabel(’Fraction of Susceptibles Nodes’);

xlabel(’time’); title(strcat(’gravitational-gossip with \alpha_i

for I_m = ’, num2str(Im2(i))));

hold off

end figure(i+1) plot(tOut, Im, ’+-r’) hold on plot(tOut, Im2,

’*-b’); hold off legend(’Infections for the same \alpha’,

’Infections for diferent \alpha’); xlabel(’\tau’); ylabel(’I_m’);

function [g,y] = groupAlpha7(x,delta,I,N,S,r,rn,tOut,loop,Im,inc)

% This function Calculates the Fraction of susceptibles, with the total

% of infections including the group where virus was originate.

j=1; y(1) = loop; y(2) = Im; while(x(end,j) > delta)

alpha=y(2)*dot(r.*N,1-x(:,j));

x(:,j+1)=x(:,j).*exp(-S.*alpha);

j=j+1;

end

%*********************************

j if j==tOut

x(end,tOut)

if x(end,tOut) < delta

y(1)=0;

end

y(2) = y(2) - inc/10

elseif j>tOut
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y(2) = y(2) +.1

inc=inc/10

else

y(2) = y(2) - inc end

%*********************************

g = x; y(3)=inc;

%******* End of the Function ******

function [g2,y2]=group2Alpha7(x2,delta,I,N,S,r,rn,tOut,loop2,Im2,inc

)

% This function Calculates the Fraction of susceptibles, with the total

% of infections excluding the group where virus was originate.

j=1; y2(1) = loop2; y2(2) = Im2; while(x2(end,j) > delta) for i =

1:rn

switch i

case 1

alphai = y2(2)*dot(r(2:end).*N(2:end),1-x2(2:end,j));

case rn

alphai = y2(2)*dot(r(1:end-1).*N(1:end-1),1-x2(1:end-1,j));

otherwise

alphai = y2(2)*dot(r.*N,1-x2(:,j))-Im2*r(i)*N(i)*(1-x2(i,j));

end

x2(i,j+1)=x2(i,j).*exp(-S(i)*alphai);

end j=j+1; end

%*********************************

j if j==tOut

x2(end,tOut)

if x2(end,tOut) < delta

y2(1)=0;

end

y2(2)=y2(2) - inc/10;

elseif j>tOut

y2(2) = y2(2)+.1

inc=inc/10

disp(’oops’)

else

y2(2)=y2(2)- inc

end

%*********************************

g2 = x2; y(3)=inc;
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% ******** End of the Function ******************************

C Berkeley Madonna Code

METHOD RK4

STARTTIME = 0 STOPTIME=50 DT = 1

;----------------------------------------------------------------------------------

1st Group Non Users

-----------------------------------------------------------------------------------

d/dt(S1) = At1 - Bt1 - mu*S1 d/dt(I1) = Bt1 - mu*I1

;----------------------------------------------------------------------------------

Users

-----------------------------------------------------------------------------------

d/dt(X1) = Lambda1 - V1 - mu*X1 d/dt(Y1) = V1 - mu*Y1

;----------------------------------------------------------------------------------

2nd Group Non-Users

-----------------------------------------------------------------------------------

d/dt(S2) = At2 - Bt2 - mu*S2 d/dt(I2) = Bt2 - mu*I2

;----------------------------------------------------------------------------------

Users

-----------------------------------------------------------------------------------

d/dt(X2) = Lambda2 - V2 - mu*X2 d/dt(Y2) = V2 - mu*Y2

;----------------------------------------------------------------------------------

Conditions-------------------------------------------------------------------------

init S1 = 2*10^6 init I1 = 3 init X1 = 3*10^6 init Y1 = 3 init S2 =

10^6 init I2 = 3 init X2 = 3*10^6 init Y2 = 3

;----------------------------------------------------------------------------------

Parameters

-----------------------------------------------------------------------------------

mu = 2 a1 = 2/3 a2 = 1/6 rho1 =8 rho2 = 20 sigma1 =52 sigma2 = 40 T1

= 25.204*10^6 T2 = 5.8286*10^6 Q1 = 31.4352*10^6 Q2 = 7.26939*10^6

beta1 = 10 ;beta2 = 2 beta2 = 5 b1 = 2 b2 = 1/2 Lambda1 = 3.7*10^6

Lambda2 = .87429*10^6 At2 = 12.22371*10^6 At1 = 52.85928*10^6 ;

--------------------------------------------------------- Force of

infection for the two groups
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----------------------------------------------------------------------------

;%%%%%%%%%%%%%%%%%%%% Force of the infections for USERS %%%%%%%%%%%%%%%%%%%%%%%%%

V1 = beta1*b1*X1*(barPa1*(I1/(T1*tau1+Q1)) +

barPb1*(Y1*tau1/(T1*tau1+Q1)) + barPb11*Y1/T1 + barPb12*Y2/T2)

barPa1 = (a1*Q1/(a1*Q1+b1*tau1*T1))*tau1 barPb1 =

(b1*tau1*T1/(a1*Q1+b1*tau1*T1))*tau1 barPb11 = (b1*w1*T1/( b1*w1*T1

+ b2*w2*T2 ))*w1 barPb12 = (b2*w2*T2/( b1*w1*T1 + b2*w2*T2 ))*w1 w1

= sigma1/( rho1 + sigma1)

V2 = beta2*b2*X2*(barPa2*(I2/(T2*tau2+Q2)) +

barPb2*(Y2*tau2/(T2*tau2+Q2)) + barPb21*Y1/T1 + barPb22*Y2/T2)

barPa2 = (a2*Q2/(a2*Q2+b2*tau2*T2))*tau2 barPb2 =

(b2*tau2*T2/(a2*Q2+b2*tau2*T2))*tau2 barPb21 = (b1*w1*T1/( b1*w1*T1

+ b2*w2*T2 ))*w2 barPb22 = (b2*w2*T2/( b1*w1*T1 + b2*w2*T2 ))*w2 w2

= sigma2/( rho2 + sigma2)

;%%%%%%%%%%%%%%%%%%% Force of the infection for Non-Users %%%%%%%%%%%%%%%%%%%%%%%

Bt1 =

beta1*a1*S1*(tildePa1*(I1/(T1*tau1+Q1))+tildePb1*(Y1*tau1/(T1*tau1+Q1)))

tildePa1 = a1*Q1/(a1*Q1+b1*tau1*T1) tildePb1 =

b1*tau1*T1/(a1*Q1+b1*tau1*T1) tau1 = rho1/(sigma1+rho1)

Bt2 =

beta2*a2*S2*(tildePa2*(I2/(T2*tau2+Q2))+tildePb2*(Y2*tau2/(T2*tau2+Q2)))

tildePa2 = a2*Q2/(a2*Q2+b2*tau2*T2) tildePb2 =

b2*tau2*T2/(a2*Q2+b2*tau2*T2) tau2 = rho2/(sigma2+rho2)

METHOD RK4

STARTTIME = 0 STOPTIME=1 DT = 0.02 ; R0 < 1 -----------------

;-------------------------------- Parameters ----------------------

mu = 10 beta1 = 1 beta2 = 1 b1 = 1 b2 = 1 w1 = .99 w2 = abs(w1^2 -

w1) barT1 = 100 barT2 = 100 tau1 = abs(1 - w1) tau2 =abs(1 - w2) N

=b1*w1*barT1+b2*w2*barT2

;---------------------------------------------------------
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;V1t = beta1*b1*X1*(Y1*tau1/barT1 + (b1*w1*Y1*w1 + b2*w2*Y2*w1)/N)

;V2t = beta2*b2*X2*(Y2*tau2/barT2 + (b1*w1*Y1*w2 + b2*w2*Y2*w2)/N)

d/dt(X1) = mu*barT1 - beta1*b1*X1*(Y1*tau1/barT1 + (b1*w1*Y1*w1 +

b2*w2*Y2*w1)/N) - mu*X1 init X1 = 3*10

d/dt(Y1) = beta1*b1*X1*(Y1*tau1/barT1 + (b1*w1*Y1*w1 +

b2*w2*Y2*w1)/N) - mu*Y1 init Y1 = 3

d/dt(X2) = mu*barT2 - beta2*b2*X2*(Y2*tau2/barT2 + (b1*w1*Y1*w2 +

b2*w2*Y2*w2)/N) - mu*X2 init X2 = 3*10 d/dt(Y2) =

beta2*b2*X2*(Y2*tau2/barT2 + (b1*w1*Y1*w2 + b2*w2*Y2*w2)/N) - mu*Y2

init Y2 = 3
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[3] Brauer, F., and Castillo-Chávez, C. (2001). Mathematical Models in Population
Biology and Epidemiology. Springer-Verlag, New York.
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