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Abstract

Many models have been developed which illustrate the interaction
between the HIV virus and an adult’s immune system. However,
limited work has attempted to explain the interaction between HIV
and an infant’s immune system. In this study, we introduce a model
that considers the dynamics between CD4+ T cells, CD8+ T cells,
and the HIV virus. Analysis of the model gives rise to a threshold
parameter, Ncrit, which is the critical number of new viruses produced
by an actively infected CD4+ T cell. Numerical simulations are
carried out, and sensitivity analysis is performed on Ncrit to illustrate
the differences between the progression of HIV in infants as compared
to that in adults.
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1 Introduction

Since the Human Immunodeficiency Virus was discovered in 1983, there
have been about 60 million people infected worldwide, and over 4 million
children have been infected under the age of 15. In 2003, there were about
5 million newly infected individuals, of which 700,000 were children under
the age of 15. There are an estimated 40,000 new HIV infections per year
[4], and women consist of 47% of the HIV positive adults [5]. HIV continues
to be a threat to the world population, in part because of its harmful effect
on the immune system.

The immune system is our body’s defense against pathogens (bacteria
or viruses), which constantly invade the human body. Some components
of the immune system are the bone marrow, thymus, and red and white
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blood cells. The bone marrow produces leukocytes (red blood cells) and
lymphocytes (white blood cells). Then the immature lymphocytes move to
the thymus, which is the central organ in the immune system, and mature
into T-cells [6]. There are three types of T-cells that mature in the thymus,
T helper cells (CD4+), T cytotoxic cells (CD8+), and T suppressor cells [6].
The CD4+ T cells stimulate other cells to produce antibodies that bind to
a specific antigen in order to immobilize it, thereby assisting in infection
prevention [3]. Pathogens escaping detection by antibodies can enter and
infect different cells in the body. The surface of the infected cell changes
causing the T helper cells to signal the T cytotoxic cells which then regulate
the destruction of infected cells [3]. The T cytotoxic cells kill infected cells,
preventing them from producing more pathogens. Finally, T suppressor
cells signal the immune system to stop its attack against the pathogens. In
the case of HIV infection the communication between T helper cells and T
cytotoxic cells is disrupted, thus weakening the body’s response to invaders.
The virus attacks CD4+ T cells, which are depleted by the ongoing battle
to defeat HIV. This leads to the Acquired Immune Deficiency Syndrome
(AIDS) [1].

The HIV virus can bind to CD4+ T cells because of properties specific
to those cells (see Figure 1). Interaction of the virus with CD4+ T cells
allows the uncoating and the entry of the nucleocapsid into the cell. The
nucleocapsid of the virus contains the viral genome. HIV then uses reverse
trancriptase to copy the two single strands of RNA into double-stranded
DNA. This viral DNA then integrates into the DNA of the host cell, forever
changing the properties of the particular cell. The virus remains inactive
until the host cell is activated. Once the host cell is activated, the cell starts
to reproduce copies of the viral RNA. New viral proteins assemble at the
cell membrane and bud off to create new viruses. The process of budding
off kills the host cell [1]. In other words, this process creates more virus
particles, and at the same time destroys host cells of the immune system.
Once the CD8+ T cells are aware of the infection, they begin destroying
actively infected cells. After a certain period of time, the CD4+ T cell count
starts to decline, leaving the immune system in a state of disorder. When
CD4+ T cells fall below a certain level, the immune system cannot recognize
other pathogens entering the body, and opportunistic diseases normally end
up defeating the immune system.

Although HIV is more prevalent in young adults, infants can also contract
the virus from the infected mother. HIV is transmitted from a mother to her
child in three different ways: during pregnancy (5% of total cases), childbirth
(15% of total cases), and breastfeeding (10% of total cases)(ref). Overall, 25%
of HIV- infected pregnant females pass on the disease to their infant. Studies
have shown that children who were infected during pregnancy are more likely
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Figure 1: Life Cycle of the HIV virus

to progress faster to AIDS than children who were infected during childbirth
and breastfeeding. Women are the fastest growing population of new HIV
cases thus making more newborns vulnerable to the disease. However, the
progression of HIV in infants has not been the focus for mathematical models.

There are numerous mathematical models which study the behavior of the
HIV virus at a cellular level in an adult’s immune system. These models ([11,
13]) focus on the interaction of HIV and the immune system in adults Both
models use a deterministic approach to help understand how HIV progresses
in the human body.

In our model, we compare the invasion of HIV in an adult’s immune
system to an infant’s immune system. In order to gain insight into the
difference between systems, we rely on numerical simulations and analysis of
the threshold parameter.

2 The Model

There are numerous features of the HIV life cycle, and its interaction with
CD4+ and CD8+ T cells we wish to account for in our model. To model
these events, we consider CD8+ T cells, uninfected CD4+ T cells, latently
infected CD4+ cells, actively infected CD4+ T cells, and the free HIV virus
particles. One should note that we are using a deterministic model, which
does not account for the very early stages of infection. The dynamics of the
early stages of the disease can be captured more accurately through the use
of a stochastic model.
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Figure 2: The Model

Let TK denote the concentration of CD8+ T cells, TH denote the concen-
tration of uninfected CD4+ T cells, TL denote the concentration of latently
infected CD4+ T cells, TI denote the concentration of actively infected CD4+

T cells, and V denote the concentration of free infectious virus particles. We
have derived the following system of nonlinear ODE’s to describe the dynam-
ics of our model.

ṪK = s1 − μKTK + rKTK

(
1 − TK

TKmax

)
(1)

ṪH = s2 − μHTH − kV TH + rHTH

(
1 − TH + TL + TI

THmax

)
(2)

ṪL = kV TH − μHTL − aTL (3)

ṪI = aTL − μITI − δTITK (4)

V̇ = NμHTI − kV TH − μV V (5)

In equations (1) and (2), s1 and s2 are source terms and represent the rate
of generation of new CD8+ and CD4+ T cells respectively, from precursors
in the thymus.

Furthermore, other terms in equations (2) and (3) deal with the dynamics
of HIV. For instance, the term kV TH is the rate at which free virus infects
CD4+ T cells. When a T cell is infected, it becomes latently infected, meaning
the T cell is not actively producing more virus particles or harming other
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Variables and Parameters Description
TH Uninfected CD4+ T cells
TK Uninfected CD8+ T cells
TL Latently infected CD4+ T cells
TI Actively infected CD4+ T cells
V Free virus
s1 Number of CD8+ T cells supplied by the thymus
s2 Number of CD4+ T cells supplied by the thymus
rK Replication rate of CD8+ T cells
rH Replication rate of CD4+ T cells

TKmax Maximum number of CD8+ T cells
THmax Maximum number of CD4+ T cells
μK Natural death rate of CD8+ T cells
μH Natural death rate of CD4+ T cells
μV Natural death rate of virus cells
k Rate at which CD4+ T cells become latently infected
a Rate at which latently infected CD4+ T cells become actively infected
N Average number of free virus produced by the death CD4+ T cells
δ Rate at which CD8+ T cells kill the actively infected CD4+ T cells

Table 1: Variables and Parameters.

cells. Therefore, kV TH is subtracted from equation (2) because equation
(2) corresponds to the dynamics of the CD4+ T cells, and added to (3),
which describes the behavior of the latently infected T cells. Equation (4)
models the actively infected T cells. This considers the term aTL which
is the rate that latently infected cells are becoming actively infected. On
the other hand, δ is the rate at which CD8+ T cells kill actively infected
CD4+ T cells. Equation (5) models the free infectious virus population. An
actively infected CD4+ T cell produces an average of N virus particles when
it dies from infection. In the absence of virus, the T-cell population has
the steady state value T0. Initial conditions for this system of equations are
TK(0) = TK0, TH(0) = TH0, TL(0) = 0, TI(0) = 0, and V (0) = V0 for virus
free infection.

Also, it is known that there is a bound on the total number of T cells
in the body. The logistic type terms in (1) and (2) ’shut off’ the growth
of T cells as the maximum population level is approached. We assume the
rate at which CD8+ and CD4+ T cells replicate is larger than their death
rate, meaning rK > μK , and rH > μH . We also assume that every cell that
becomes infected must be latently infected before becoming actively infected.
The last assumption is the death, the replication, and the infection rates of
the cells whether they are CD8+ or CD4+ T cells are the same in the infant
population and in the adult population. The definitions of parameters and
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Variables and Parameters Infants Adults Units
TH 1500 1200 mm−3

TK 600 600 mm−3
TL 0 0 mm−3

TI 0 0 mm−3

V 0 0 mm−3

s1 0.05 0.02 day−1mm−1

s2 0.03 0.01 day−1mm−1

rK 0.228 0.228 day−1

rH 0.456 0.456 day−1

TKmax 1200 800 mm−3

THmax 2000 1600 mm−3

μK 0.03 0.03 day−1

μH 0.01 0.01 day−1

μV 0.05 0.05 day−1

k 0.0095 0.0095 mm3

a 0.06 0.06 mm3

N 100 500 Varies
δ 0.000095 0.000095 mm3

Table 2: Default Parameter and Initial Conditions

values are given in Table 1.
First, we wish to remark that our model is well posed in the sense that

the populations do not become negative, and the populations are bounded.
Also, the nonnegative orthant is positively invariant, that is, any trajectory
that starts in the nonnegative orthant remains there for all time. This result
states that on each hyperbolic plane bounding the nonnegative orthant the
vector fields point into R

5
+ = {x ∈ R

5|x ≥ 0}. For our model we have:

dTK

dt

∣∣∣
TK=0

= s1 ≥ 0

dTH

dt

∣∣∣
TH=0

= s2 ≥ 0

dTL

dt

∣∣∣
TL=0

= kV ∗T ∗
H ≥ 0

dTI

dt

∣∣∣
TI=0

= aT ∗
L ≥ 0

dV

dt

∣∣∣
V =0

= NμhT
∗
I ≥ 0
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Within the nonegative orthant, there exists two steady states. One when
there is no virus present, a virus free steady state, and another with a constant
level of virus, an endemically infected steady state.

The virus free steady state occurs at V ∗ = T ∗
L = T ∗

I = 0 and

T ∗
K =

1

2

(
1 − μk

rk

)
Tkmax

[
1 +

√
1 + 4

s1rk

(rk − μk)2Tkmax

]
(6)

T ∗
H =

1

2

(
1 − μh

rh

)
Thmax

[
1 +

√
1 + 4

s2rh

(rh − μh)2Thmax

]
(7)

If V �= 0 then we have an endemically infected steady state with the following
coordinates:

T ∗
K =

θ1 +
√
θ2
1 + 4s1p1

2p1

(8)

T ∗
H =

μvψπ

kη
(9)

T ∗
L =

μvπV
∗

η
(10)

T ∗
I =

aμvV
∗

η
(11)

V ∗ =
s2(kη)

2 + μvψπ[θ2kη − p2ψπμv]

kμvψπ[kη + (π + a)μv]
(12)

with

θ1,2 = rk,h − μk,h

p1,2 =
rk,h

Tkmax,hmax

ψ = a+ μh

π = μh + δT ∗
K

ρ = μv + kT ∗
H

η = aμh(N − ξ)

and where

ξ =
ψπ

aμh
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2.1 Stability of Virus Free Steady State

Linearizing our system around the virus free steady state gives the following
Jacobian matrix

J(V F ) =

⎛
⎜⎜⎜⎜⎝
θ1 − 2p1T

∗
K 0 0 0 0

0 θ2 − 2p2T
∗
H −p2T

∗
H −p2T

∗
H −kT ∗

H

0 0 −ψ 0 kT ∗
H

0 0 a −π 0
0 0 0 NμH −ρ

⎞
⎟⎟⎟⎟⎠

where the analysis only relies on the fact that T ∗
K , T

∗
H > 0. It follows

that the virus free steady state is asymptotically stable if and only if all of
the eigenvalues of J have negative real part. The eigenvalues are determined
with the characteristic equation p(λ) = det(λI − A) = 0. For J we have

p(λ) = (λ+ d1)(λ+ d2)(λ
3 + a1λ

2 + a2λ+ a3) = 0 (13)

The first two solutions are

λ1 = −d1 = −
√

(rK − μK)2 + 4
4s1rK

TKmax

< 0

and

λ2 = −d2 = −
√

(rH − μH)2 + 4
4s2rH

THmax

< 0

It is clear that λ1 and λ2 have negative real part. Finally, we are left to verify
that

λ3 + a1λ
2 + a2λ+ a3 (14)

has roots whose real portion is negative, where

a1 = 2μH + a+ μV + δT ∗
K + kT ∗

H (15)

a2 = T ∗
Kδ(μH +KT ∗

H + a+ μV ) + μH(a+

2μV + 2KT ∗
H + μH) + akT ∗

H + aμV

(16)

a3 =
(a+ μH)(μV + kT ∗

H)(μH + δT ∗
K)

aμHkT ∗
H

−N (17)

To verify that the real parts of the roots of (14) are negative, we use the
Routh-Hurwitz criteria. which states that if (18)-(20) hold then (14) has
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roots with negative real parts.

a1 > 0 (18)

a3 > 0 (19)

a1a2 > a3 (20)

Clearly, (18) holds since all of the parameters are positive. Also, it is easily
shown that (20) holds, but the resulting equation is long (see appendix).
Hence, we are left to verify (19), which holds when

N <
(a+ μH)(μV + kT ∗

H)(μH + δT ∗
K)

aμHkT ∗
H

= Ncrit (21)

Thus, the virus free steady state is locally asymptotically stable when N <
Ncrit.

2.2 Global Stability of Virus Free Steady State

The above analysis only deals with the local stability of the virus free steady
state. When N < Ncrit there exists only one steady state in the nonnegative
orthant and, through the method of Lyapunov, we will show that this steady
state is globally stable. To do this, we construct a scalar function L(t), such
that

L(x∗) = 0

dL

dt
< 0

and for x �= x∗

L(x) > 0

where x∗ is the equilibrium in question.
Let us consider the following function, which we will see is a Lyapunov

function

L(t) = TL +NTI + V (22)

Observe, in the nonnegative orthant L(t) ≥ 0

By substituting equations (3) and (4) into L(t) we obtain,

dL

dt
= TL[a(N − 1) − μH ] −NδTITK − μV V (23)

we can clearly see that if the term in brackets is negative, then dL
dt

will be
negative definite.
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Thus, when

N <
μH

a
+ 1

dL
dt
< 0. Furthermore, as t→ ∞, L(t) → 0, TL, TI and V all approach 0.

Hence, the solution is globally stable.

2.3 Existence and Stability of Endemically Infected
Steady State

At N = Ncrit, the virus free steady state and the infected steady state
coincide. Furthermore, there is a transcritical bifurcation at N = Ncrit,
and the infected state emerges when N > Ncrit as a new steady state in R

5
+.

When N < Ncrit the infected steady state does not lie in R
5
+ and hence

does not make sense biologically. Thus, it is only necessary to analyze the
stability of the infected steady state for

N > Ncrit > ξ

Linearizing our system around the infected steady state gives the following
Jacobian Matrix, where the first row is zeros except for the one of the
eigenvalues

J(EI) =

⎛
⎜⎜⎝

−β −p2T
∗
H −p2T

∗
H −kT ∗

H

kV ∗ −ψ 0 kT ∗
H

0 a −α 0
−kV ∗ 0 Nμh −ρ

⎞
⎟⎟⎠ (24)

where

β = φ2 + rh

(
1 − T ∗

H + T ∗
L + T ∗

I

THmax

)
ρ = μv + kT ∗

H

and T ∗
K , T

∗
H , T

∗
L, T

∗
I and V ∗ are given in (8)-(12).

Once more, we wish to determine the eigenvalues of (24). Examining the
characteristic polynomial det(A − λI), we find it has the form:

p(λ) = (λ+ d1)(λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4)

where the first root is

λ1 = −d1 = −
√

(rK − μK)2 + 4
s1rK

TKmax

< 0
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whose real part is clearly negative. For

(λ4 + a1λ
3 + a2λ

2 + a3λ+ a4) (25)

we have

a1 = ρ+ ψ + β + α (26)

a2 = KV ∗T ∗
H(p2 −K) + ψ(a+ ρ+ β) + α(β + ρ) (27)

a3 = KV p2T
∗
H(α+ ρ+ a− T ∗

HK) −K2V ∗T ∗
H(α+ ψ)−

KT ∗
H(aNμh +KV ∗α+KV ∗ψ) + βρ(α+ ψ) + ψαρ

(28)

a4 = KV T ∗
H(ap2ρ+KaNμH − p2T

∗
Hkψα− ap2T

∗
HK)+

KT ∗
H(V ∗p2αρ− βμHaN) + βψαρ

(29)

To establish the stability of the infected steady state it is necessary to verify
that all of the roots of (25) have negative real part. To this end, we use the
Routh-Hurwitz criteria, which in this case states that if

a1 > 0 (30)

a2 > 0 (31)

a1a2 > a3 > 0 (32)

a1a2a3 − a2
3

a2
1

> a4 > 0 (33)

hold then the real parts of the roots are negative. Analyzing the coefficients,
it is clear that (30) holds. For N > Ncrit, a4 > 0. However, we are still left
to verify (31)-(33). For certain parameter regimes all the conditions are met
and the infected steady state is stable. On the other hand, there are certain
parameter regimes where the infected steady state is unstable (Table 5).

2.4 Sensitivity Analysis

Next, a local sensitivity analysis is performed on the parameters relevant to
the critical number of viruses produced by each dying CD4+ T cell, that is,
a, μh,k, μv, k, δ, rh,k, and Thmax,kmax. The parameter with the sensitivity
index of the greatest magnitude is the most effective in increasing Ncrit when
parameters are varied locally, where the sensitivity index is given by

S =
λ

Ncrit

∂Ncrit

∂λ

where λ represents a parameter. For our model we take into consideration
two critical values for N , one calculated for infants and one calculated for
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Parameter Sensitivity Index

δ 0.9900
TKmax 0.9898

μV 0.9267
K −0.9267

Table 3: Parameters with Greatest Sensitivity Index(Infants)

Parameter Sensitivity Index

μK −1.0908
μV 0.98864
K −0.98864
δ 0.95162

Table 4: Parameters with Greatest Sensitivity Index (Adults)

adults. In other words, we calculate one Ncrit using the parameters used for
infants and another using the parameter values for adults (Table 2) Ḟrom
this we obtain the sensitivity indices contained in Table 3 and 4
For infants the greatest sensitivity index is obtained by the parameter δ. In
biological terms, this implies that by increasing the rate at which CD8+ T
cells kill off the infected CD4+ T cells, Ncrit will increase most efficiently
compared to changes in other parameters. In adults, increasing the death
rate of the virus μv most effectively increases Ncrit compared to the other
parameters [10] [22].

3 Numerical Simulations

Numerical simulations were carried out to gain a better understanding of the
dynamics of our system and to verify the results from our analysis. Also,
simulations were used to differentiate between dynamics of HIV in an adult’s
immune system and an infant’s immune system.

The parameters for the first simulation are chosen to model an HIV in-
fected infant with N < Ncrit. The virus-free equilibrium is reached in about
3500 days (∼10 years) after infection (Figure 3). A CD4+ T cell count of
almost 1996 is reached after 20 days of infection, while a CD8+ T cell count
of 1042 is reached after 30 days of infection. The viral count rapidly declines
to 0 free virions after only 20 days, but the latently and actively infected
CD4+ T cells take over 3000 days to clear out of the body.

The second simulation parameter values are for an infected infant with
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Parameters V alues

s1 0.03
s2 0.01
rK 0.228
rH 0.456

TKmax 1200
THmax 2000

μK 0.03
μH 0.001
μV 2.4
k 0.0095
a 0.006
N 500
δ 9.5 × 10−5

T ∗
K 1042.3

T ∗
H 1995.6

Ncrit 131.4547

Table 5: Parameters for Unstable Infected Steady State

N > Ncrit. The stable endemic equilibrium is obtained about 550 days (∼1.5
years) after infection (Figure 4). After an initial rise in the amount of CD4+

T cells, they steadily decline to their steady state of about 150 cells. The
CD8+ T cells increase and stabilize to 1042 cells after approximately 50 days.
There is a dramatic increase in the number of latently infected cells and free
virus. After 500 days of infection (∼1.4 years), latently infected cells, actively
infected cells, and free virus reach their steady state, which we calculated be-
forehand.

The third simulation uses parameter values that model an infected adult
with N > Ncrit. It takes 1800 days (∼5 years) after infection for the stable
endemic equilibrium to be obtained (Figure 5). This result agrees with lit-
erature that states that HIV progresses faster into AIDS in infants than in
adults.

The parameter values for the final simulation model an infected infant
with N > Ncrit. These parameters values result in oscillations, meaning the
endemic equilibrium is unstable (Figure 6). Both uninfected CD4+ T cells
and CD8+ T cells have an initial increase. After about 100 days of infection,
the CD4+ T cell count starts to decrease before oscillating. Surprisingly,
the virus count stays very low although the CD4+ T cell count drops al-
most to zero before oscillations occur. The latently infected cells increase
dramatically before oscillations take place.
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Figure 3: Virus Free Equilibrium for Infants

4 Discussion

Beginning with an understanding of the T cell dynamics in a healthy person,
we have developed a model to describe the dynamics of T helper cells in a
person infected with HIV including immune response, whether they be adult
or infant. Although our model is quite simple, in the sense that it does not
take into account for activated immune response, it does demonstrate that
HIV can cause depletion of CD4+ T cells. Numerical simulations with our
model demonstrate that the loss of CD4+ T cells can take place on a time
scale of years, as is characteristic of CD4+ T cells dynamics in a person af-
fected with HIV.

An important result of our paper is the determination of N , which is
the average number of free virus produced by each dying CD4+ T cell, as a
threshold parameter. When N < Ncrit it follows that the virus free steady
state is locally asymptotically stale. When N > Ncrit the endemic equilib-
rium comes into existence, and is stable in certain parameter regimes, in
others it is unstable (Figure 6). Also, for N < μh

a
+ 1 the virus free steady

state is globally stable.
The main focus of our paper was to compare and contrast the impact of

HIV on an infants immune system with that of adults. From our model, it
can be seen that the depletion of CD4+ T cells in an infant occurs much more
rapidly in infants compared to adults, which is consistent with our current
knowledge of HIV. Sensitivity analysis was carried out on Ncrit using param-
eters for adults, as well as for infants. The results of this indicate which
parameter is most effective in increasing Ncrit. This result is important as
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Figure 4: Stable Endemic for Infants

well. Increasing the value of Ncrit allows the virus to reproduce more effec-
tively, while still maintaining N < Ncrit, meaning the virus will die out (the
virus free steady state will be locally asymptotically stable).

In the case of adults, the parameter with the greatest sensitivity index is
μk, which is the death rate of the CD8+ T cells. For children, the parameter
with the greatest sensitivity index is δ the rate at which the CD8+ T cells
kill off the actively infected CD4+ T cells. Biologically, this implies that if
one were treating an adult infected with HIV one would prescribe a drug or
treatment that decreases the death rate of the CD8+ T cells. However, if
one were treating an infant infected with HIV one would prescribe a drug
or treatment that increases the ability of CD8+ T cells to kill of actively
infected CD4+ T cells. From our model, we can better understand why the
progression of HIV to AIDS occurs more rapidly in infants than in adults.
The way to combat this progression in children is to target and increase the
rate at which the CD8+ T cells kill of the HIV virus.

5 Future Work

The way we captured the effects of HIV on an infant’s immune system was by
finding parameter values specific for infants and using that in our numerical
simulations. However, our long-term goal is to develop an age structured
model which would be a more accurate tool to measure the differences be-
tween an HIV infected adult and an HIV infected infant. We would also
incorporate an active immune response, meaning we would include a term
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Figure 5: Stable Endemic for Adults

for CD8+ T cells that would stimulate them to grow depending on how much
virus is present.
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