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Abstract

Paclitaxel is shown to be antiangiogenic at low doses, but the extent of
these effects is not known. A mathematical model that describes tumor growth
and response to treatment with a continuous, low dose treatment of the anti-
mitotic drug Paclitaxel is considered. The model considers three populations:
system cells, proliferating tumor cells, and tumor cells in a resting phase. A
delay differential equation model accounts for the time it takes for tumor cells
to complete one cycle in the proliferation phase. The system is first analyzed
without drug administration, and then analyzed numerically under different
levels of drug administration. Finally, sensitivity analysis is performed on
certain parameters to determine what the likely consequences of antiangiogenic
effects.

1 Introduction

Studies have suggested that well-tolerated chemotherapy can exert a better antitu-
mor effect than conventional high-dose, temporarily spaced-out chemotherapy [4].
Moreover, at lower doses the anti-mitotic drug Paclitaxel has been shown to have
antiangiogenic effects. Since it is very hard to show the exact extent of those ef-
fects in clinical testing, we are creating a mathematical model of tumor growth with
only the antimitotic effects. We can then do sensitivity analysis to determine the
response of the stability of the equilibria to the antiangiogenic effects of Paclitaxel
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at low doses. Therefore, we consider a model that describes tumor growth with a
continuous, low dose treatment of the anti-mitotic drug Paclitaxel.

Figure 1: Cell Cycle.

To understand the dynamics of the drug we must understand the cell cycle.
Interphase and mitosis are the two main components of a cell cycle. Interphase first
involves the synthesis of proteins and cellular molecules, which is known as G1. After
cells leave G1, their DNA starts to replicate, in what is known as the S phase. Cells
then enter the last stage of interphase, G2, which involves the production of more
proteins. Finally, cells enter mitosis, where a cell divides into two identical daughter
cells. It is important to note that 80% of cells are not in the cell cycle; instead, they
are in the resting phase, G0 [1]. During G0 cells carry out functions normally, but
do not replicate DNA and divide. Thus, G0 phase of cells plays an important role in
the dynamics of cell growth.

A delay differential equation model has been used in previous studies to analyze
the role of the conventional chemotherapy treatment, and we see the delay necessary
in understanding the full dynamics of tumor growth [8]. It was shown that the
stability of a fixed point, representing an amount of tumor that is invariant under
the growth model, can be affected by the delay [8]. That model, however, did
not include a population that represented the quiescent, or G0 phase, cells. This
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assumption skews the dynamics of tumor growth away from a biologically correct
representation since a large proportion of tumor cells are in the G0 phase. For
example, in bone marrow cancer, it has been shown that 90% of tumor cells are in
G0 [5]. The importance of the inclusion of this population can be seen in previous
work [2]. Therefore, our mathematical model incorporates both TG0 and delay to
better understand the dynamics of tumor growth under low-dose Paclitaxel and the
possible antiangiogenic effects of the drug.

2 Model Description

Figure 2: A three-compartment model of the cell cycle that includes cells in quiescent
phase (TG0), interphase (TI), and mitosis (TM).

The model was made under the assumption of unbounded exponential growth.
We therefore chose not to incorporate Gompertz or logarithmic growth because we
were only interested in the portion of the growth that exhibited exponential growth.
Usually by the time a tumor nears or reaches its carrying capacity the patient is
either dead or in a state where treatment is of limited use.

Three compartments of cells model the dynamics of that population: quiescent
(TG0), interphase (TI), and mitosis (TM). They allow for movement between subse-
quent and previous phases, natural cell death in the quiescent phase and drug-induced
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death in the mitosis phase

⎧⎪⎨
⎪⎩

ṪG0 = μTI − νTG0 −
n1T 2

G0

α+TG0

ṪI = νTG0 + 2a2TM − a1TI(t − τ)e−μτ − μTI

ṪM = a1TI(t − τ)e−μτ − a2TM − kTM

(1)

In our model, TG0 represents the portion of tumor cells in G0 phase. TI represents
the tumor cells in interphase. TM represents the tumor cells in mitosis. n1 is the
death rate from necrosis in TG0 , k is the kill rates due to chemotherapy, and τ is
the average time that the tumor cells spend in interphase. a1 is the rate at which
cells leave interphase, while a2 is the rate at which cells leave the mitosis phase. ν is
rate at which cells leave the quiescent phase while μ is the rate at which cells leave
interface into the quiescent phase. α is the rate at which necrosis rate approaches
the maximum rate, n1.
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Figure 3: A linear necrosis rate vs. a non-linear necrosis rate for α = 1, 000, 000.

n1 is not in a linear relationship with TG0 because necrosis is much more prominent
when there are higher numbers of cells. As TG0 gets large the death rate approaches
the linear death rate. Poor vasculature and hypoxia, which lead to quiescent cell
death, both increase as tumor size increases. See Figure 3 for a comparison between
a linear death rate and the non-linear death rate in our model.
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3 Parameter Estimation

Parameter Definition Value
a1 rate at which cells leave interface 0.8470
a2 rate at which cells leave mitosis 0.9159
n1 death rate from necrosis 0.477
α rate at which necrosis rate approaches maximum 104 to 106

k kill rate due to chemotherapy 0 to 1
μ rate cells leave the quiescent phase into mitosis 0.218
ν rate cells leave mitosis into the quiescent phase 0.050
τ time delay in days 0.9167

Table 1.

Values for a1, a2 and τ are taken from the values estimated in [8]. The death
rate from necrosis,n1, is taken from [3].

4 Analysis

4.1 Non-Delay Analysis

Both with the drug and without the drug, the system has two equilibria.

4.1.1 Analysis without drug

Without the drug, the equilibria are

(TG0 , TI , TM) = (0, 0, 0)

and

(TG0 , TI , TM) = (
−ανa1

νa1 + n1a1 − n1μ
,

αν2a1

νa2
1 + n1a2

1 + n1μ2 − νa1μ − 2n1a1μ
,

αν2a2
1

νa2a2
1 + n1a2

1a2 + n1μ2a2 − νa2a1μ − 2n1a1a2μ
)

However, for the second equilibrium to make sense biologically, all three values for
(TG0 , TI , TM) must be greater than or equal to zero. If α is chosen between the values
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given in Table 1, then it is necessary that

{
n1μ > a1(ν + n1)
n1μ

2 + a2
1(n1 + ν) > a1(2n1 + μν)

(2)

Let us first consider the stability of the drug free, tumor free non-delay case.
First we must compute the characteristic equation of the linearization of the

system around the tumor free equilibrium

0 = λ3 + (a1 + a2 + μ + ν)λ2 + (−a1a2 + μa2 + a2ν + νa1)λ − νa1a2 (3)

For this equilibrium to be stable under the Routh-Hurwitz criteria, it is necessary
that

c1 > 0, c1c2 > c3, c3 > 0 (4)

where
0 = λ3 + c1λ

2 + c2λ + c3 (5)

At this equilibrium
c3 = −νa1a2 < 0 (6)

Since ν, a1, and a2 are all transition values, they must always be between 0 and 1.
Therefore, at least one eigenvalue has a positive real part, making the tumor free
equilibrium unstable. This leads to the following proposition:

Proposition 1 The drug free, tumor free equilibrium is never stable.

The analysis of the drug free, tumor present equilibrium will be covered in the
next subsection after the analysis of the stability of the drug present, tumor present
is performed.

4.1.2 Analysis with drug

When the drug is added into the system, the equilibria are

(TG0 , TI , TM) = (0, 0, 0)

and

(TG0 , TI , TM ) = (
(k − a2)νa1α

νa1a2 + n1a1a2 − νa1k − n1a1k − n1μa2 − n1μk
,

ν2αa1(a2 − k)(a2 + k)
P

,
ν2αa2

1(a2 − k)
P

)
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where

P = νa2
1a

2
2 + νa2

1k
2 + n1a

2
1a

2
2 + n1a

2
1k

2 + n1μ
2a2

2 + n1μ
2k2 − 2νa2

1a2k − νa1a
2
2μ

+νa1k
2μ − 2n1a

2
1a2k − 2n1a

2
1a2μ + 2n1a1k

2μ + 2n1μ
2a2k

We can calculate the stability of the tumor free, drug present equilibrium by first
computing the characteristic equation of the linearized matrix

0 = λ3 + (a2 + μ + a1 + k + ν)λ2 + ((k + a2)(μ + ν) + a1(ν − a2 + k))λ − (a1a2ν − ka1ν) (7)

This equation satisfies the Routh-Hurwitz criteria for stability stated in equation
(4) if

a2 < k (8)

Thus if k is greater than the mitosis rate, then the tumor size will tend to zero.

This leads to the following proposition:

Proposition 2 The tumor free, drug present equilibrium is stable if k > a2.

The tumor present, drug present equilibrium is positive, and therefore makes
sense biologically, if

a2(νa1 + n1a1 − n1μ)

νa1 + n1a1 + n1μ
< k < a2 (9)

Then by computing the corresponding linearized matrix of the system and then
by computing its characteristic equation, conditions can be found that satisfy the
Routh-Hurwitz criteria. After that, the equilibrium points are substituted back into
the conditions. The resulting equation is then solved for k. This leads to the following
proposition:

Proposition 3 The tumor present, drug present equilibrium is stable if

a2(
n1(μ2 − 2a1μ + a2

1) + ν(a2
1 − a1μ) + 2

q
n1a2

1μ2ν − νa1μ3n1 + n2
1a2

1μ2 − 2n2
1a1μ3 + n2

1μ4

−3n1μ2 + n1a2
1 + νa2

1 + 2n1a1μ − νa1μ
) < k < a2 (10)

As a consequence, a proposition of the drug free, tumor present equilibrium de-
scribed in 4.1.1 follows:

Proposition 4 The drug free, tumor present equilibrium is stable if conditions for
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its existence are met and the following is satisfied

n1(μ2 − 2a1μ + a2
1) + ν(a2

1 − a1μ) + 2
q

n1a2
1μ2ν − νa1μ3n1 + n2

1a2
1μ2 − 2n2

1a1μ3 + n2
1μ4

−3n1μ2 + n1a2
1 + νa2

1 + 2n1a1μ − νa1μ
≤ 0 (11)

This is easily shown because the tumor present, drug free equilibrium is simply
the tumor present, drug present equilibrium with k = 0.

4.2 Delay Analysis

4.2.1 Numerical Delay Analysis

To determine the stability of the equilibria, we calculate the characteristic polynomial
in the usual way. For the trivial fixed point, the characteristic polynomial is

C(λ) = P (λ) + Q(λ)e−τλ (12)

where the roots of this equation in λ are eigenvalues. Here we choose τ = 0.9167
based on data and we let k vary.

We define, using parameter estimates from [2] and [4] as described in Table 1,
{

P (λ) = (−1.183900000 − k)λ2 − (.2454612000 + .2680000000k)λ − λ3

Q(λ) = (−0.03467877475k + 0.03176228979) + (0.6005670211 − 0.6935754950k)λ − 0.6935754950λ3

(13)
To show the stability of the trivial equilibrium, it suffices to check that Re(λ) <

0 when λ satisfies C(λ) = 0. For this computation we use a perturbation argu-
ment (See Proposition 5 in the Appendix). We first consider λi for i=1,2,3; where
P(λi)+Q(λi)=0. Then we define λi,τ = λie

−ετ , where

ε = − Q(λi)
∂P
∂λ
|λi

+ ∂Q
∂λ
|λi

We will generalize τ for now, then consider the meaning of our specified time delay.
If Re(λi,τ ) < 0 for i=1,2,3 then this suggests that the tumor free equilibrium will
be stable. Using the formula for ε derived in the appendix and the parameters from
Table 1 except for k and τ , we find that we must have the following conditions:

In the above table, a particular k is specified then the requirement that Re(λi,τ ) < 0
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Table 1: For a specific k given in the first column, we can derive λi,τ using Proposition
5 of the appendix. We then set Re(λi,τ ) < 0 and solve for the inequality in τ . This
will give regions where the real part of the eigenvalues of C(λ) may be negative.
These regions are given in terms of τ with k increments of 0.01

k τ < (for λ1,τ ) τ < (for λ2,τ ) τ < (for λ3,τ )
.9 -6170997923 0.1964993751e11 0.2187282630e11

.91 −0.1347340274e11 −0.1074434525e11 0.1032543640e11

.92 -5702807894 −0.1169206199e11 −0.2575471146e11

.93 −0.1522625963e11 0.2553130717e11 −0.1712817406e11

.94 -7419221435 0.3453057356e11 −0.1781915082e11

.95 -4551659579 −0.1806366601e11 −0.2428789777e11

.96 -4264983866 0.2374235953e11 −0.2541766121e11

.97 -7866578609 −0.1158930896e11 −0.2440033751e11

.98 -3230423581 −0.3539375471e11 −0.1126279423e11

.99 -3861664507 −0.1880599737e11 −0.3614801809e11

is reduced to an inequality for τ .

For the tumor present equilibrium, the characteristic equation takes on the same
form as equation (13), with

P (λ) = −0.9687328679e − 2(3909829536.k+6191954450λ − 0.2349966074e11λk+0.7851600276e11λ2+
0.7551516350e11λ3 − 0.2235616088e12λ2k+2591150838k2 + 4948330000.λ2k2−
4254394243λk2 + 0.4778263600e11λk3 + 0.2580690800e12λ2k3 − 0.2791997763e12λ3k+
0.2580690800e12λ3k2 − 4660813282k3 − 2173645985)/(−27047 + 50000.k)2

(14)

Q(λ) = −2(0.2418789695e12λk−0.3634624607e12λk2 + 0.1789903900e12λ2k2 + 4517004898+
0.5237546690e11λ2 − 0.1605355707e11k−0.5290245658e11λ + 0.2011878167e11k2 − 0.1936461231e12λ2k+
0.1789903900e12λk3 − 5879039580k3)/(−27047 + 50000k)2

(15)
We can calculate a similar table as above for the tumor present equilibrium:
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Table 2: Just as in Table 1, a particular k is specified then the requirement that
Re(λi,τ ) < 0 is reduced to an inequality for τ .

k τ < (forλ1,τ ) τ < (forλ2,τ ) τ < (forλ3,τ )
0 3467763.606 -33546072.63 3449046.970
.1 4179306.901 -118995816.8 3981478.998
.2 4386145.268 -70775929.44 4359440.263
.3 262976.0216 -56400824.45 253272.6320
.4 -506.6082611 8167377.113 -506.6955460
.5 -2.724158048 -104.3191532 -2.231667304
.6 0.1614817874 -1506285.697 .1121648851
.7 -18.10645400 610055770.3 -18.49967397
.8 -16.49011685 97362820.85 -16.47601960
.9 30.83018841 -35132018.38 30.97699415

We can see that the rate of drug administration, k, changes the dynamics of the
system with respect to the value of the delay. For each equilibrium point, there cor-
responds a discrete table of values which outline three continuous graphs where τ is a
function of k. We can assume continuity because we calculated the implicit equation
that shows τ continuously depends on k(it is a rational function of exponentials and
polynomials that does not blow up in finite time.) Therefore the intersection of the
region below these three graphs represents the region where the roots of the charac-
teristic equation have negative real parts, i.e. the equilibrium is stable. Because τ
is fixed, namely at 0.9167 days, we can use the graphs to propose the optimal rate
of drug administration to drive the tumor to either equilibrium. Note that this can
only happen if there is some positive region bounded by all three curves that lies
below τ=0.9167 (See figures 4,5,6).
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Figure 4: This figure represents the analysis with the perturbation algorithm on the
trivial equilibrium. Again we note that positive regions bounded by all three curves
represent regions of stability of the trivial equilibrium. Each curve corresponds to a
different λi,τ and we use the calculated values in Table 1 for the discrete points on
each curve. We see that in this case one of the curves is never positive. Because the
time delay can never be negative, this equilibrium is always unstable.
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Figure 5: Similar to figure 4, this figure represents the analysis with the perturbation
algorithm on the nontrivial equilibrium. We plot discrete points on each curve using
the values in Table 2.
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Figure 6: Figure 5 with a rescaled τ axis.
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The above analysis with a k increment of 0.1 between 0 and .9 for the tumor
present case and .01 between .9 and .99 for the tumor free case suggests neither of
the equilibria will be stable in the delay case with the fixed parameters. However,
one can show that there is a region of stability for either equilibria when the system
is reduced to a non-delay case. When τ = 0, there are values of k that cause either
equilibria to be stable; these values of k correspond to values found in the non-delay
analysis. If the delay analysis is done with increments on the order of 1/10000,
we expect to find that there does exist some positive region bounded by all three
approximated curves. For the k increments of 0.1 and 0.01, we found that neither
tumor state represented by the equilibria will have invariant growth under the flow
time. Although these results are hardly optimistic, we note that for different tumors
there will be different parameter values which can change the characteristic poly-
nomial and hence the stability. Here we have considered highly specific parameters
estimated from clinical studies on breast carcinoma. For different types of cancer,
this analysis will produce different regions of stability in the k-τ plane. From the
figures below we can interpret the effect of the delay. Given a fixed delay, τ=τ0, we
can then correspond to it a horizontal line, τ=τ0, in a continuously approximated
discrete graph such as those illustrated in figures 5 and 6. This horizontal line will
intersect a region of stability defined by the characteristic equation and perturbation
analysis. This intersection determines the plausible values of k that will cause the
equilibrium to be stable. For the case with no delay, the horizontal line will be the
k-axis. For the case with a delay, the horizontal line will be shifted upward, possibly
decreasing the plausible values for k. Essentially, this is interpreted to mean that
the delay can decrease the amount of plausible drug rates for a given type of cancer.

However, this type of numerical analysis has its limitations. The results here do
not agree with the delay case bifurcation results and the numerical simulations done
in Section 5. This is because the ε function does not work for τ = 0 and may be too
large a perturbation for other τ values. Therefore, we have decided to also analyze
the delay equation analytically.

4.2.2 Analytical Delay Analysis

We conducted analytical delay analysis on the tumor free equilibrium. A similar
analysis can be found in Xiao and Chen [9].

With the delay the chacteristic equation can be written as

P (λ) + Q(λ)e−λτ = 0 (16)
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For the tumor free equilibium, the characteristic equation can be decomposed into

P (λ, τ) = −[λ(νa2 + νk + μa2 + μk) + λ2(ν + μ + a2 + k) + λ3]
Q(λ, τ) = −[νa1a2e

−μτ + νa1ke−μτ + λ(νa1e
−μτ − a1a2e

−μτ + a1ke−μτ ) + λ2(a1e
−μτ )]

(17)
Our objective is to show that all eigenvalues have negative real part. To do that

we will introduce two lemmas and then construct a bounded region of stability.

Lemma 5 All roots of (16) with Re(λ) ≥ 0 lie in a bounded domain.

Proof: From equation (16) we have

| λ−3P (λ, τ) |=| λ−3Q(λ, τ)e−λτ |=| λ−3Q(λ, τ) | e−Re(λ)τ (18)

We can then choose ρ1 such that | λ−3P (λ, τ |) > 0.5 for | λ |≥ ρ1. We can then
choose ρ2 such that | λ−3Q(λ, τ) | e−λ,τ < 0.5 for | λ |> ρ2. Since Q(λ, τ) is of degree
2, there is a ρ2 > 0 that satisfies the previous inequalities. Thus Re(λ) ≥ 0. The
equation (16) cannot hold for | λ |≥ max{ρ1, ρ2}. Therefore, the conclusion of this
lemma is true.

Lemma 6 The tumor free characteristic equation has no purely imaginary roots for
any τ ≥ 0 when

k > a2 (19)

Proof: Let λ = iω, ω > 0. We can then substitute into equation (16) for λ and
separate the real parts from the imaginary parts.

−ω2(μ + a2 + k + ν) = (−ωa1e
−μτ + A) cos ωτ + Bω sin ωτ

−ω3 + ω(ν + μ)(a2 + k) = Bω cos ωτ − (−ω2a1e
−μτ + A) sin ωτ

(20)

where
A = νa1e

−μτ (k − a2)

and
B = a1e

−μτ (ν + k − a2)

When both sides are squared and added, we get

ω6 + m1ω
4 + m2ω

2 + m3 = 0 (21)
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where
m1 = a2

2 + μ2 + k2 + ν2 + 2a2k + 2μk
m2 = (ν + μ)2(a2 + k)2

m3 = 0
(22)

Let w be a root of (21). Since m1 > 0, m2 > 0, and m3 = 0, no non-zero w can satisfy
equation (21). If w = 0, the characteristic equation equalling zero is not satisfied for
k > a2. Thus equation (17) has no imaginary roots when the condition is satisfied.

Now we want to find the region of stability. Let us choose k and τ as parameters and
fix values for a1, a2, μ, ν, and n1. We know that the tumor free equilibrium always
exists and that its characteristic equation never has purely imaginary roots. So let
us then consider the region

S =
{
(k, τ) ∈ R2

+ : a2 < k, 0 ≤ τ
}

Theorem 7 The tumor free equilibrium is asymtotically stable if (k, τ) ∈ S.

Proof: By the Routh-Hurwitz criteria, we know that all roots of (17) have negative
real parts, and the equilibrium is therefore stable for τ = 0. Since the characteristic
equation never has purely imaginary roots and all roots with Re(λ) > 0 are bounded,
we know that the roots of this equation never cross the y-axis in the real-imaginary
plane. Therefore the equation will always have roots with Re(λ) < 0 and the equi-
librium will therefore be stable for any τ .

A similar analysis can be done for the tumor present equilibrium to determine the
region of (k, τ) ∈ R2

+ where the equilibrium is stable.

4.3 Sensitivity Analysis

Since Paclitaxel is antiangiogenic at low doses, we expect both n1 and μ to increase
because decreased vasculature would cause more cells to shift from cycling to quies-
cent and a higher death rate for those that are quiescent. Therefore, we would like to
consider how a small shift in the parameters would change the stability of the tumor
free equilibrium. We care only about the tumor free equilibrium because in a tumor
present equilibrium that tumor itself will not grow, but it can metastasize to other
areas. To find the effects of a small perturbation, we perform sensitivity analysis on
the characteristic equation of the non-delay system with the drug. Sensitivity anal-
ysis involves taking partial derivatives of the equation with respect to the parameter
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we want to test.
The characteristic equation of of the non-delay case with drug administration is

0 = λ3 + (a2 + μ + a1 + k + ν)λ2 + ((k + a2)(μ + ν) + a1(ν − a2 + k))λ − (a1a2ν − ka1ν) (23)

Therefore, we want to find the sensitivity of these equations with respect to n1 and
μ ⎧⎨

⎩
c1 = (a2 + μ + a1 + k + ν
c2 = (k + a2)(μ + ν) + a1(ν − a2 + k)
c3 = −(a1a2ν − ka1ν)

(24)

The sensitivity index of each parameter, ξi, is given by

Sξi
=

ξi

cj

∂cj

∂ξi

(25)

for i = 1, 2 and j = 1, 2, 3.

4.3.1 Sensitivity of n1

Since none of these equations depend on n1 the partial derivatives are all zero and
sensitivity index of n1 is

Sn1 = 0 (26)

Thus, any changes in n1 will not cause any changes in the stability of the tumor free
equilibrium.

4.3.2 Sensitivity of μ

In order to compute the sensitivity index of μ, we need to find the partial derivatives
with respect to μ : ⎧⎪⎨

⎪⎩
μ
c1

∂c1
∂μ

= μ
a2+μ+a1+k+ν

μ
c2

∂c2
∂μ

= μ(k+a2)
(k+a2)(μ+ν)+a1(ν−a2+k)

μ
c3

∂c3
∂μ

= 0

(27)

In order for the non-trivial equilibrium to be biologically feasible, then k > a2 which
in turn implies that −a2 + k > 0, since μ, a2, a1, ν, k > 0. Since μ

c1

∂c1
∂μ

and μ
c2

∂c2
∂μ

are
always positive, which means there is a positive correlation between μ, c1, and c2.
When we let μ = 0 the Routh-Hurwitz criteria are satisfied, and because the partial
derivatives of c1 and c2 with respect to μ are strictly increasing, the Routh-Hurwitz
criteria are satisfied for small μ perturbations. Therefore the stability of the tumor
free equilibrium is not sensitive to small μ−perturbations.
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4.4 Bifurcation Analysis

We observe that all the six graphs exhibit transcritical bifurcation, in which an
unstable and stable orbit collide and exchange stability [6].

Figure 7: Transcritical bifurcation produced when k is graphed against the number
of cells in TG0 when there is no delay. Bold lines indicate stable equilibria, dashed
lines unstable.

Figure 8: Transcritical bifurcation produced when k is graphed against the number
of cells in TG0 when there is delay.

The graphs of delay and non-delay of TG0 are exactly the same as expected since
there is no delay for cells in the quiescent phase.
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Figure 9: Transcritical bifurcation produced when k is graphed against the number
of cells in mitosis when there is no delay. Bold lines indicate stable equilibria, dashed
lines unstable.

Figure 10: Transcritical bifurcation produced when k is graphed against the number
of cells in mitosis when there is delay. Bold lines indicate stable equilibria, dashed
lines unstable.

For the mitosis cell present case, the two graphs differ for the range of k for cells
in mitosis and the range of k is narrower in nondelay than in delay. However, in the
mitosis-cell free case, k = .9159 for both delay and nondelay.

18



Figure 11: Transcritical bifurcation produced when k is graphed against the number
of cells in interphase when there is no delay. Bold lines indicate stable equilibria,
dashed lines unstable.

Figure 12: Transcritical bifurcation produced when k is graphed against the number
of cells in interphase when there is delay. Bold lines indicate stable equilibria, dashed
lines unstable.

We observe similar trends for interphase.
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5 Simulations
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Figure 13: Pulsed chemotherapy with kill rates, k, ranging from 0.25 to 1. Drug
given 13 days on, 1 day off after 100 days. α is fixed at 1,000,000. This produces
periods of either decay or retarded growth, with short bursts of exponential growth
between.
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Figure 14: Non-Pulsed chemotherapy with kill rates, k, ranging from 0.25 to 1.
Drug given continuously after 100 days. α is fixed at 1,000,000. This produces either
steady growth or decay, depending on the value of k.
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We ran simulations of tumor growth for the model with a delay under different
regimes of drug treatment. For all simulations we let the tumor grow for one hundred
days after starting with 10 cells in TG0 , 20 cells in TI , and 1 cell in TM . After 100
days, one of two treatments was administered: either thirteen days on with one day
off(Figure 8), or continual dosage(Figure 9).

We have shown that even with very small gaps in dosage administration can lead
to tumor growth when the tumor would otherwise be controlled under a continuous
treatment. This is because even in very small no-dosage gaps there is exponential
growth, which can surpass the effect of the drug if the treatment gap is large enough.
This suggests that even for higher dose treatment that the shorter the amount of time
between treatments, the greater the chances of driving a tumor into either complete
or partial remission.

6 Results and Discussions

In the non-delay case we computed the effect of different chemotherapy regimes on
the presence and stability of equilibria. We found that the tumor free equilibrium
was stable only when the drug was present and was at a level higher than the mitosis
rate. The tumor free equilibrium was present and stable only under possibly a
narrow range of certain conditions, presented above. Sensitivity analysis suggested
that the most plausible effects of antiangiogenesis had no effect on the presence or
stability of the tumor free equilibrium. However, because we know antiangiogenic
drugs effectively reduce tumor growth, our findings suggest that they might reduce
the rate of cells leaving the mitotic phase via mitosis.

For the delay case we computed the effect of different chemotherapy controls, i.e.
different drug rates, on the stability of the equilibria numerically. One can carry out
similar analysis by finding the equilibrium and stability thresholds in terms of other
parameters. Analysis was done on varying k values because in practice this is the
only parameter over which one has biological control. With numerical analysis, we
see that different values of k may alter stability regions and that the same methods
could be used to carry out very rough approximations for stability for models of
different types of cancer. However, we found the inherent errors in such method for
τ not being a small enough number. Thus, we calculated the stability of the delay
case analytically, and found that time delay does not affect the stability of the tumor
free equilibrium for k > a2.

We would like to know how much chemotherapy is enough. At the tumors present
equilibrium, tumors do not grow, but may metastasize to other parts of the body.
Therefore, we are only interested to know the amount of chemotherapy enough to
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reach the tumor-free equilibrium. Based on our analysis with delay and non-delay,
we found that the kill rate of the chemotherapy greater than the mitosis rate is
sufficient to make the tumor-free equilibrium stable..

Simulations showed that continual administration of drugs is preferable to pulsed
administration, even when it consists of long pulses with short periods without the
drug. This finding is expected because in the absence of chemotherapy the tumor
grows at an exponential rate, which can quickly eliminate any benefits of chemother-
apy. This finding has been supported by clinical research, where shorter periods
between doses of chemotherapy have been shown to be more effective than the stan-
dard three weeks [7].

7 Conclusions and Future Work

The delay analysis includes a rough perturbation algorithm for calculating the real
parts of the eigenvalues of the transcendental characteristic equation. This process
itself is a rough approximation and has an inherent error; the continuous graph was
approximated with large increments of k, namely 0.1. For future work, one can
decrease the size of the increments to gain a more accurate portrait of the regions of
stability. Also, there exist more efficient and more accurate perturbation algorithms.
In our approximation we truncated to first order in the Taylor expansions in the
proof of Proposition 5 in the appendix. If one uses a second order truncation in the
proof of Proposition 5, greater accuracy can be achieved in the calculations. For
future work we would want to compute under what circumstances the perturbation
algorithm is valid and consider a new perturbation method.

The delay analysis also incorporated a continuous chemotherapy regiment in the
model. Instead, one can analyze the effect of a periodic regiment of chemotherapy
by considering a heavyside function in place of the linear drug term. This would
provide more accurate models of more widely used chemotherapy practices and one
can then compare them to the numerical results found in this paper.

A future model can incorporate different transition functions between the inter-
phase and resting phase tumor cells. In this paper we assume linear, or nearly linear,
transition rates. If one assumes Gompertz growth on the entire tumor cell popula-
tion, a transition function can be calculated(See Kozusko and Bajzer, 2003). The
parameters for the linear transition rates were approximated, but different functions
would provide different dynamics, including the creation of a second tumor present
equilibrium. The assumption of Gompertz growth on the entire system is more re-
alistic because a tumor has a limited supply of resources from a host body, and
therefore cannot grow exponentially for a long period.
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It would also be of use to research the effects of combining Paclitaxel or any other
anti-mitotic drug with another drug that retards the exit from the mitotic stage by
mitosis. Our model shows that this would be the most effective target to reduce the
level of chemotherapy needed.
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9 Appendix

Proposition 8

Suppose
P (λi) + Q(λi) = 0

Then
P (λi,τ ) + Q(λi,τ )e

−λi,τ τ = 0

where

λi,τ = λie
−ετ and ε = − Q(λi)

∂P
∂λ
|λi

+ ∂Q
∂λ
|λi

Proof: Let our solution have the form:

λi,τ = λie
−ετ

Then, if τ = 0, we have λi,τ = λi, i.e. P (λi)+Q(λi) = 0; and if τ is very small, we
can use Taylor expansion to estimate λi,τ ≈ λi(1−ετ) and e−λi,τ τ = e−λie

−ετ τ ≈ e−λiτ .
Using a Taylor expansion again, we have that:

P (λi,τ ) = P (λi − λiετ) ≈ P (λi) − Pλ(λi)λiετ
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Q(λi,τ )e
−λiτ = Q(λi − λiετ) ≈ Q(λi) − Qλ(λi)λiετ − λiτQ(λi)

Hence,
P (λi,τ ) + Q(λi,τ )e

−λτ = P (λi − λiετ) + Q(λi − λiετ)

P (λτ ) + Q(λτ )e
−λτ ≈ P (λi) + Q(λi) − ε(Pλ(λi) + Qλ(λi)) − Q(λi) = 0

Therefore,
P (λi,τ ) + Q(λi,τ )e

−λi,τ τ = 0

where

λi,τ = λie
−ετ andε =

−Q(λi)

Pλ(λi) + Qλ(λi)
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