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2Instituto Nacional de Investigación en Salud Pública de Ecuador

3Southwestern University
4Universidad Nacional de Colombia

5Arizona State University
6University of Alabama at Birmingham
7University of Wisconsin, Whitewater

Abstract

Infection of Herpes Simplex Virus type 2 (HSV–2) is a lifelong disease, which is
mainly sexually transmitted, causing genital lesions. According to the Center for
Disease Control (CDC), prevalence of HSV–2 in 2015-2016 was estimated at 11.9%
of the United States (US) population. The HSV–2 pathogen establishes latent
infections in neural cells and can reactivate causing lesions later in life. The la-
tent infection establishment mechanism involves a strategy that not only increases
pathogenicity of the disease, but also allows the virus to evade the immune sys-
tem. HSV–2 infections are treated by a standard therapeutic acyclovir, a synthetic
acyclic purine-nucleoside analogue typically prescribed to symptomatic chronic pa-
tients, typically referred to a non-constitutional stage. The non-constitutional
stage exhibits genital skin lesions and ulcers. The constitutional stage expresses
mild symptoms such as fever, skin-redness, itching, headache, and painful urina-
tion. In this study, we develop and analyze a mathematical model that considers
spread of HSV-2 among the population between the ages of 15-49 in the US and
used it to design an optimal treatment distribution strategy. The goal of this
research is to evaluate the cost effectiveness of (i) treating HSV–2 infected individ-
uals who are in both constitutional and non-constitutional stages versus (ii) the
current conventional treatment protocol for treating only the patients in the non-
constitutional stage. Our results distinguish model parameter regimes where each
of the two treatment strategy optimizes the available resources and consequently
gives the long-term reduced cost associated in effectively handling a patients treat-
ment, while reducing overall incidence. The public health cost of HSV–2 with the
newly implemented treatment would increase from $16 billion to $20 billion. By
considering the proposed strategy for treatment and comparing it with the conven-
tional treatment, it can be observed that early treatment reduces HSV–2 incidence
by 38% yearly. The estimated value of the reproductive number decreases by 40%
from 2.5 which is based on current conventional treatment protocol.
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1 Introduction

1.1 Epidemiology of HSV

Herpes simplex virus (HSV) is an incurable disease that persists during the lifetime
of the human host and produces mucocutaneous infections [17]. There are two types
of HSV: type 1 (referred to HSV-1) is less severe and usually transmitted from an
infected person to a susceptible person through direct contact with bodily fluids, such
as saliva, and type 2 (referred to HSV-2) is more severe than HSV-1 and is considered
a sexually transmitted disease. HSV-2 infection in a healthy and non-infected person
occurs through sexual contact and direct contact with bodily fluids with an infected
person [21]. The present study is focused on HSV-2 and attempts to understand the
impact of alternative treatment policy on its transmission dynamics.

Since the 1970s, the prevalence of HSV-2 has increased dramatically and is largely
attributed to increased sexual activity. These risk factors include an increase in popula-
tion with multiple sexual partners, presence of other sexually transmitted disease and a
non-systematic condom use [10,17]. HSV-2 also significantly increases the risk of acqui-
sition of human immunodeficiency virus (HIV) [3]. Approximately 417 million people
between the ages of 15 to 49 years of age were infected with HSV-2 worldwide, and
nearly 19.2 million of new infections occur each year worldwide [7]. Recent global esti-
mations show that the prevalence of HSV-2 varies depending on the geographic region
and is approximately 2-fold higher in women (14.8%) than in men (8%) [7]. Over 10%
of the population in European, Eastern Mediterranean, Southeast Asian, and Western
Pacific regions are living with HSV-2. The highest prevalence of HSV-2 was found in
Africa with estimations of more than 30% of the population being infected [7]. In the
United States, the prevalence of HSV-2 is approximately 12% of the population between
15-49 years of age of sexually active people according to the National Center for Health
Statistics (NCHS) [8].

Structure and Behavior of HSV-2 Pathogen: HSV is a member of the herpesviri-
dae family, that contains a linear double-stranded DNA [6, 13, 17]. The stages of the
progression of HSV-2 infection are as follows. The initial exposure of HSV leads to a
viral invasion of epithelial cells. Following the invasion, the virus begins intracellular
replication at the site of exposure. In severe cases, the virus continues to replicate until
it causes a cellular rupture leading to the formation of lesions in the genital areas. In
the final stage of the infection period, the virus ascends through the periaxonal sheath
of sensory nerves arriving to the trigeminal, cervical, lumbosacral or autonomic ganglia
of the host nervous system, remaining out of reach of the immune system [13].It may
be possible to stop virus establishment if treated appropriately before it reaches sensory
nerves and evade immune response. However, this window period before virus successful
introduction in an individual is small (24 hours) and its length may depends on health
condition of an individual [22]. HSV remains in a dormant state until the viral replica-
tion process is activated again, known as “viral reactivation” [6, 13].

Pathology of HSV-2: Episodes of recurrences can occur throughout the life of the
infected individual. Recurrence of both mild and severe symptoms following viral reacti-
vation can exacerbate the transmission and disease dynamics of HSV-2. It is important
to note that an HSV recurrence is not a reinfection. Once the virus is reactivated, the
virus travels through sensory neurons to the mucocutaneous site, infects the cells, un-
dergoes replication and generates clusters of vesicles in the initial site of infection [6,13].
Internal and external factors could trigger the recurrence of HSV-2 causing the virus to
transition from a dormant to a replicating state. Several factors trigger viral reactivation

45



including: stress, fatigue, exposure to heat or sunlight, menstruation, fever, immuno-
suppression, corticosteroid administration, laser surgery and nerve damage [6, 13, 17].
Periodic recurrences of HSV-2 are common in infected individuals. While recurrence
rates may vary based on the region and health of an individual, the median number of
recurrences is five in the first year after a primary infection. During the second year of
infection, the recurrence rate for HSV-2 decreases to a median of two recurrences per
year [6]. Moreover, prior studies suggest that, on average, 47% of infected people present
less than two recurrences per year, 36% of infected people two to five recurrences per
year, and 16% of the patients presents more than five recurrences per year [14, 17].

The clinical manifestation of HSV-2 infections are described in two broad categories:
constitutional and non-constitutional symptoms. Constitutional are mild symptoms,
such as localized pain, tingling, burning sensation, headache, fever, dysuria, and inguinal
lymphadenopathy who are often confused with symptoms of another infection or disease,
and thus make it difficult to detect HSV-2 with high accuracy. Non-constitutional are
severe symptoms such as lesions and ulcers who both vary in size and severity and are,
in contrast, easily detected because. As the infection progresses, papules and vesicles of
varying sizes and erosions appear. These vesicles gradually rupture to form irregular ul-
cers and erosions of lesions usually crust, re-epithelialize, and heal without scarring. This
process can occur within two to six weeks in the absence of antiviral therapy [1,6,13,17].
A summary of constitutional and non-constitutional symptoms are shown in Table 1.

Constitutional Non-Constitutional
Skin redness Genital lesions

Dysuria Development of the lesions
Itching Ulcerations
Fever

Headache
Swollen lymph nodes

Muscles aches and pain in the groin

Table 1: Typical of Constitutional and Non-constitutional Stage Symptoms

Treatment of HSV-2: One of the most widely used interventions to control the
transmission of the disease is antiviral therapy and the recommended treatment for HSV-
2 is Acyclovir. Acyclovir is a guanosine analogue that is monophosphorylated by the
HSV-2 mechanism encoding for thymidine kinase, with the second and third phosphate
groups being added by cellular kinases. The triphosphorylated nucleotide inhibits the
viral DNA polymerase producing chain termination. Acyclovir becomes active only
in infected cells, which contributes to keep a safety profile of the treatment and has
demonstrated efficacy against mild to severe infections caused by HSV-2 in normal and
immunocompromised patients [7].

The suggested formulation of the HSV-2 treatment of Acyclovir depends on whether
it is a first infection or recurrent infection. Treatment of the first episode of HSV-2 in-
cludes an oral dose of 200 mg of Acyclovir five times per day for 7 to 10 days, or 400 mg
of Acyclovir orally three times per day for 7 to 10 days. Higher doses of oral acyclovir do
not provide any additional benefits. A treatment with Acyclovir in a first HSV episode
reduces the duration of the symptoms by about a week and the healing time of lesions
by six days [19]. For the recurrences of HSV-2, the recommended treatment is 200 mg
orally five times per day, or 800 mg orally two times per day, administered for 5 days.
Topical acyclovir does not provide any additional benefits [19]. A recent study indicates
that 800 mg three times per day administered for two days is also effective for treating
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HSV recurrences if taken within 24 hours of the onset of genital herpes symptoms [19].
Treatment is currently only applied to patients who exhibit non-constitutional symp-
toms. While treatment is effective for those who are truly infected with HSV- 2, it
does not allow for much control over the spread of the infection since individuals do not
recover.

Economics of the Treatment of HSV-2 Patient: In 1996, the average economic
burden of medical care associated with HSV-2 was an estimated $984 million. Approx-
imately $470 million is attributed to lab testing and consultations, while $489 million
is attributed to treatment. Hospitalization of HSV-2 only attributes $25 million to the
public health cost [14]. While this is a large burden, current prevalence rates demon-
strate that current control strategies do not effectively reduce the spread of the disease.

Review of Modeling Structures: Previous mathematical models of Herpes have
studied the role of various factors on its transmission dynamics. Tudor [15] proposed
a SILI population level model (Susceptible-Infective-Latent-Infective) to evaluate the
spread of HSV infection both in humans and animals. In 2005, Blower and Schwartz [13]
proposed a model incorporating the impact of a vaccine in controlling the prevalence
of HSV–2 suggesting that after a decade of the introduction of a vaccine program, 11
million infections would be prevented in the United States. Podder and Gumel [11] ana-
lyzed the qualitative dynamics of HSV–2 with and without vaccination in 2009. In 2005,
Acosta, Bar-Zohar, Blanco, Luli, and Gao, performed an epidemic model of HSV-1 with
Vaccination, the model formulated a simple SVID model studying the disease trans-
mission dynamics with treatment and vaccination [23]. Also Mubayi 2005, develop and
analyze a vector-borne epidemic model to study the dynamics of Cutaneous Leishmania
in two ecologically distinct affected regions [24]. They showed that the introduction of
a vaccine program could lead to improve disease control or eradication if the vaccine
efficacy is high.

In this work, we build on the previous studies to evaluate disease transmission and
control of HSV–2. We study the impact of a novel treatment that targets patients with
HSV-2 at the constitutional stage, in addition to the non-constitutional stage, and per-
form a cost-effectiveness analysis.

Research Focus: In this work, we study the impact of implementing treatment
to those who present constitutional symptoms, as well as those who represent non-
constitu-tional symptoms. The proposed approach will be effective in controlling the
disease, but the implementation of the new treatment strategy must be modeled to see
the practicality of this approach. The cost-effectiveness of the newly implemented treat-
ment will be mathematically analyzed to see if the proposed program is practical and
cost effective in comparison with current methods to control the spread of the disease. In
other words, Would the novel treatment, that is treating in both constitutional and non-
constitutional stage, be more cost-effective in comparison to the conventional treatment?

2 Methods

2.1 Model Description

In this work, we incorporate early treatment of HSV–2 via a transmission dynamic model
and aim to compare cost-effectiveness of non-conventional treatment with conventional
treatment strategies. The conventional treatment consists of prescribing Acyclovir pills
when a person infected with HSV–2 presents non-constitutional symptoms, i.e. geni-
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tal lesions. To treat HSV–2 infection early on, we propose the treatment of patients
who present constitutional symptoms (that includes a combination of fever, headache,
dysuria, skin irritation, etc.). These symptoms are general and may be confused with
other diseases (see Section 1.3); hence, leading to many misclassification of the disease.
We proposed that, in order to give treatment to a patient, a medical practitioner should
identify at least five constitutional symptoms (shown in Table 1) and a risk factor. A
risk factor is any characteristic or exposure of an individual that will increase their
likelihood of becoming infected with a disease. Risk factors for HSV-2 include having
multiple sexual partners, inmuno-depressive patients, frequency of sexual contacts, or
unprotected sex. A mathematical model is develop that includes a class for the conven-
tional treatment (when non-constitutional symptoms are only recognized in patients)
and two classes for the proposed treatment (when constitutional symptoms appear and
a risk factor is identified in a patient; those who present non-constitutional symptoms
and access treatment care). During the early phase of an infection, when they present
only constitutional symptoms, the likelihood of determining whether an individual is in-
fected with HSV-2 is low. Therefore, this leads to the inclusion of a treatment class for
the non-infected population who present similar (but not infected with HSV–2) symp-
toms and receive treatment, because of incorrect diagnosis. Hence, this extra class for
treatment is to keep track of those who receive treatment, but are not infected (false
negative).

The flowchart of the proposed model, shown in Figure 1, captures the dynamics
of the disease, where the S class represents susceptible individuals, which includes a
sexually active population between the ages of 15 and 49 years in the United States
who are not infected with HSV–2. If an individual in the S class presents at least five
of the constitutional symptoms presented in Table 1 and a risky behavior (detailed in
the previous paragraph), but is not infected with HSV—2, a doctor can send him/her
to HSV—2 treatment in the X–class at a rate σp; this stage, X, captures false positive
individuals. Once the period for the treatment ends, the individual returns to the
S class at a rate φ1. If a person is infected with HSV—2, he/she progresses to the
I1 class through the force of infection Ω; an individual in I1 presents constitutional
symptoms and is infectious. If a doctor identifies five constitutional symptoms and a
risky behavior, the individual progresses to the T1 class (HSV—2 treatment) at a rate
η1. If no treatment is applied during the constitutional stage, the individual proceeds
to present non-constitutional symptoms at the I2 class at a rate γ1; population in this
class is infectious. A doctor can send an individual in I2 to treatment at a rate η2; this
class is T2 and is the conventional treatment for HSV—2. The latent class L is the stage
where individuals infected with HSV–2 are not infectious because the virus is dormant
during this period. There are four ways to enter the L class: by natural progression
of the disease from I2 at rate γ2, from T1 at rate φ1, from T2 at rate φ2, and directly
from I1 at a rate γ3 when the infected individual only presents constitutional symptoms
before going dormant. The variables and parameters definitions are collected in Tables 2
and 3 respectively.

This model has several assumptions. First, there is always a fraction of the S popula-
tion who show symptoms similar to HSV–2. Second, individuals in the X compartment
are not infected with HSV–2 but are under going treatment for HSV–2(window of oppor-
tunity). Third, the infected population is symptomatic (except the infected population
who are in the latent stage). Fourth, individuals in the T1 and T2 compartment are
infectious, but they do not engage in risky sexual activity because we assume they are
responsible patients and control all risky sexual activities. Fifth, there are no false diag-
nosis for patients in I2. Sixth, the total population is constant. A summary of parameter
definitions and values is shown in Table 3. Lastly, for this model all heterogeneity is
averaged out, because we are focus in a treatment strategy regardless the gender of pa-
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tients, how it is assumed in simple models [25]. More complex models could divide this
model in groups to reflect heterogeneity and their interactions between individuals [26].

Class Description

S Sexually active people between 15 and 49 in the U.S. who are not infected with HSV-2.
X Non-infected people with HSV-2 who present mild symptoms and are under treatment.
I1 Infected and infectious people of HSV-2 who present mild symptoms.
I2 Infected and infectious people of HSV-2 who present severe symptoms.
L Infected and non-infectious people of HSV-2.
T1 Infected and infectious people of HSV-2 with mild symptoms under treatment.
T2 Infected and infectious people of HSV-2 with severe symptoms under treatment.

Table 2: Stages of the proposed model.

S I1 I2
γ1I1 γ2I2

L

γ3I1

rL

X T1 T2

Ω

σpS φ1X

σ(1− p)S

η1I1 η2I2

φ1T1

φ2T2

μN

μX

μS μI1 μI2
μL

μT1
μT2

Figure 1: The diagram illustrates the susceptible (S), infected (I1 and I2), latent (L)
and treatment classes (T1, T2, and X). The compartments in green are non-infectious,
whereas the other compartments include individuals with HSV–2. The compartments
with no shading (e.g., X, T1, T2) represent treatment groups, whereas the others are
non-treatment classes (e.g., S, I1, I2, and L). The parameter definitions are shown in
Table 3.

The proposed model is governed by the following system of equations:
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PARAM Description Value Ref.

μ Rate of non-active sexually population between 15 to 49. 6.328× 10−5 days−1 [20]

β1 Transmission probability of a susceptible individual from 0.0027 days−1 Estimated
contact of an infected individual in Ii.

β2 Transmission probability of a susceptible individual from 0.00135 days−1 Estimated
contact of an infected individual in Ii.

1

γ1

Avg. time it takes an infected individual showing mild 6 days [4]

symptoms to develop severe symptoms without treatment.
1

γ2

Average time it takes an infected individual with severe 14 days [4]

symptoms to relapse.
1

γ3

Average time it takes an infected individual with mild 13 day [20]

symptoms to relapse.
1

φ1

Treatment length for patients presenting mild symptoms. 4 days [17]

1

φ2

Treatment length for patients presenting severe symptoms. 6 days [19]

r Activation from latency. 0.0127 days−1 [2, 20]
η1 Per-capita rate of infected I1 patients going for treatment. Variable Estimated

η2 Per-capita rate of infected I2 patients going for treatment. 0.25 days−1 [14]

σ Per-capita rate of S patients w/ mild symptoms (no HSV-2). 1.34 days−1 Estimated
p Proportion of people w/ mild symptoms who get treatments. 0.01 Estimated

Table 3: Description and units of the model parameters.

dS

dt
= μN + φ1X − σpS − Ω− μS, (2.1)

dX

dt
= σpS − (φ1 + μ)X, (2.2)

dI1
dt

= Ω+ rL− (η1 + γ1 + γ3 + μ)I1, (2.3)

dT1

dt
= η1I1 − (φ1 + μ)T1, (2.4)

dI2
dt

= γ1I1 − (η2 + γ2 + μ)I2, (2.5)

dT2

dt
= η2I2 − (φ2 + μ)T2, (2.6)

dL

dt
= γ3I1 + γ2I2 + φ2T2 + φ1T1 − (r + μ)L, (2.7)

where N = N1 + N2 with N1 = S + I1 + I2 + L and N2 = X + T1 + T2. The force
of infection term is denoted Ω = β1SI1+β2SI2

N1
and the entry rate is Λ = μN . Also,

σp = κη1, where κ is a proportion.

2.2 Cost Effectiveness of Proposed Treatment

The total cost acquired by the public health department is analyzed for the implementa-
tion of early treatment strategy for HSV–2. The cost function of the proposed strategy
is denoted by Cp(t) and computed as follows:

Cp(t) = C1

∫ t

0

σ(1−p)S(s)ds+C2

∫ t

0

σpS(s)ds+C2

∫ t

0

η1I1(s)ds+C3

∫ t

0

η2I2(s)ds, (4.1)

where C1 denotes the average cost incurred by the public health department to evaluate
a single patient. C2 is the average cost incurred by the public health department to di-
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agnose and prescribe treatment to one patient ,and C3 denotes the average cost incurred
by the public health department to diagnose the patient, carry out microbiological and
antibody test, and drug treatment to one patient.

The expressions σ(1 − p)S(t), σpS(t), η1I1(t), η2I2(t) denote the cumulative num-
ber of individuals treated, while being susceptible, mildly infected, or severely infected
during a period of T days. We compare the cost of the proposed early treatment with
the cost of the current strategy of treatment to control HSV–2, denoted by Cc(t):

Cc(t) = C3

∫ t

0
η2I2(s)ds (4.2)

Our study is motivated by previous research which indicates that treating patients
within the first 24 hours of onset symptoms of genital herpes could control a recurrence
episode in two days [19]. Considering this fact, we want to evaluate how a different
strategy (early treatment to HSV–2) could affect the incidence of the disease and its
public health cost. In other words, we compare strategies in terms of cost per the effect
in health achieved through the implementation of a specific strategy [9].

In this study we evaluate, whether or not an early treatment to HSV–2 as a proposed
strategy is more cost effective than the current treatment strategy. Also, we evaluate
the cost effectiveness of combined strategies in order to reduce the incidence of HSV–2
in the population. Cost per health-effect is evaluated by calculating the variation in
cost-effectiveness through the Incremental Cost-Effectiveness Ratio (ICER) [18]:

ICER(t) =
Cp(t)− Cc(t)

Ip(t)− Ic(t)
=

ΔC

ΔI
.

Type of Cost Description Value ($) Ref.

C1 Consultation + Clinical Examination + Routine lab test 161.85 [14]

C2 C1 + Antiviral treatment 248.1833 [14]

C3 C2 + HSV lab test 328.35 [14]

Table 4: Description of type of costs per person

The ICER ratio takes into account the relationship between the change in cost over
the change in incidence. Cp(t) is defined by the proposed cost of implementing early
treatment, while Cc(t) is defined by current cost. Ip(t) is defined by incidence level after
implementing early treatment, while Ic(t) is defined by current incidence level.

3 Analysis

To better understand the transmission dynamics and control of HSV-2, we study the
dynamics of the model analytically by calculating the equilibria and evaluating the
conditions for their existence. The equilibria are calculated by setting equations (2.1)
to (2.7) to zero. There are in fact two equilibria in our system; the disease free and the
endemic equilibria.

3.1 Existence of Disease-Free Equilibrium

The disease-free equilibrium (DFE) is defined as the case where the disease is not present
in the population. In our model the infected classes (I1, I2 and L) must be zero when no
disease is present. Since there would be no disease, then it is not necessary to consider
any treatment for HSV-2 patients, and thus, T1, and T2 are also set to zero.
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The DFE is given by E0 = (S∗, X∗, I∗1 , T
∗
1 , I

∗
2 , T

∗
2 , L

∗), which is

(
S
∗

=
μz1N

κη1z1 + μz1 − κη1φ1

, X
∗

=
κη1μN

κη1z1 + μz1 − κη1φ1

, I
∗
1 = 0, T

∗
1 = 0, I

∗
2 = 0, T

∗
2 = 0, L

∗
= 0

)
,

where z1 = μ+φ1, z2 = μ+ η1+ γ1+ γ3, z3 = μ+ η2+ γ2, z4 = μ+φ2, and z5 = μ+ r.
Each zi represents the sum of all the possible rates at which an individual can leave the
T1, I1, I2, T2, and L compartments, respectively.

3.2 Basic and Control Reproductive Numbers of Simple Models

The Basic Reproductive Number, denoted R0, is defined as the expected number of
secondary cases produced by a typical infected individual during its entire period of
infectiousness in a completely susceptible population [5, 16]. Similarly Rc denotes the
control reproductive number which incorporates control measures, such as treatment,
quarantine, or isolation. In order to obtain R0 from Rc, we set the parameters asso-
ciated with the control measures to zero. The Next Generation Operator method (see
Appendix) is applied to calculate Rc and R0. In order to understand our model’s Rc

and R0, we first analyze simple models and their respective thresholds of reproduction.
We begin with a simple three–compartment model and build on this model by expanding
the number of infection and treatment classes with the purpose of understanding the
behavior of the disease. We present Rc and R0 in Models 1 to 4 and discuss the patterns
observed as the model becomes more complex due to the introduction of infection and
treatment classes, and recurrence of infection.

3.2.1 Model 1 (SILI; Simple Transmission Dynamic Model)

We start with the SILI model (Susceptible–Infectious–Latent–Infectious), the repro-
ductive number is:

R1,0 =

∞∑
n=0

β

μ+ γ

( γ

μ+ γ
· r

μ+ r

)n

=

β
μ+γ

1− γ
μ+γ · r

μ+r

.

This expression can be interpreted as the product of the transmission rate, β, and the
average time spent in I, 1

μ+γ , related to the probability of progressing into the cycle
of the disease. The R1,0 of this model is the convergent sum of the geometric series
associated with the cyclic recurrent behavior of infection in patients. Notice that the
denominator has the form 1−Θ, where Θ is the proportion through the cyclic path out
of I. Details of these calculations are summarized in Appendix A.

3.2.2 Model 2 (SITLI; Transmission Dynamic Model with Treatment)

The SITLI Model (Susceptible–Infectious–Treated–Latent–Infectious) incorporates treat-
ment to some individuals in the infectious class and the rest progress to the latent stage
(see the flowchart in Appendix A. The control reproductive number is:

R2,c =

β
μ+γ+η

1−
(

γ
μ+γ+η · r

μ+r + η
μ+γ+η · φ

μ+φ · r
μ+r

) .
Setting the treatment parameters to zero, that is, φ = 0 or η = 0, we obtain basic
reproductive number:

R2,0 =

∞∑
n=0

β

μ+ γ

( γ

μ+ γ
· r

μ+ r

)n

=

β
μ+γ

1− γ
μ+γ · r

μ+r

.
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For R2,c the progression into the cycle of the disease is based on two different paths:

I–T–L–I and I–L–I. Therefore, the associated Θ̂ of R2,c, where R2,c =

β
μ+γ

1− Θ̂
, contains

the sum of these two paths. Details of these analysis are show in Appendix A.

3.2.3 Model 3 (SI1I2LI1; Transmission Dynamic Model with Heterogeneous
Infection Stages)

In the SI1I2LI1 Model (Susceptible; first Infectious period; second Infectious period;
Latent; first Infectious period), the reproduction number is:

R3,0 =

∞∑
n=0

( β1

μ+ γ1
+

γ1
μ+ γ1

· β2

μ+ γ2

)( γ1
μ+ γ1

· γ2
μ+ γ2

· r

μ+ r

)n

=

β1

μ+γ1
+ γ1

μ+γ1
· β2

μ+γ2

1− γ1

μ+γ1
· γ2

μ+γ2
· r
μ+r

.

In this case, R0 is the sum of the contribution of new infections and average time
spent in each infection class, and also, the probability of progressing from I1 to I2.
That is β1

μ+γ1
represents the product of the transmission rate to I1, (β1), and the time

spent in I1, (
1

μ+γ1
). Similarly, γ1

μ+γ1
represents the probability of progressing to I2 and

β2

μ+γ2
represents the transmission rate to I2 (β2) and the time spent in I2, (

1
μ+γ2

). The

term Θ := γ1

μ+γ1
· γ2

μ+γ2
· r
μ+r represents the proportion being out of I1 and returning by

recurrence. Thus, 1−Θ is the proportion in I1.

3.2.4 Model 4 (SI1I2TLI1; Transmission Dynamic Model with Current Con-
ventional Treatment)

In the SI1I2TLI1 Model (Susceptible; first Infectious period; second Infectious period;
Treated; Latent; first Infectious period). The control reproductive number is:

R4,c =

β1

μ+γ1+γ3
+ γ1

μ+γ1+γ3
· β2

μ+γ2+η

1−
(

γ1

μ+γ1+γ3
· γ2

μ+γ2+η · r
μ+r + γ1

μ+γ1+γ3
· η
μ+γ2+η · φ

μ+φ · r
μ+r + γ3

μ+γ1+γ3
· r
μ+r

) .

To obtain R4,0, we set treatment parameters φ = 0 or η = 0. The reproductive number
is:

R4,0 =

β1

μ+γ1+γ3
+ γ1

μ+γ1+γ3
· β2

μ+γ2

1−
(

γ1

μ+γ1+γ3
· γ2

μ+γ2
+ γ3

μ+γ1+γ3
· r
μ+r

) and

R4,0 =
∞∑

n=0

( β1

μ + γ1 + γ3

+
γ1

μ + γ1 + γ3

·
β2

μ + γ2

)( γ1

μ + γ1 + γ3

·
γ2

μ + γ2

+
γ3

μ + γ1 + γ3

·
r

μ + r

)n
.

The interpretation of R4,c is similar to Model 3 with the inclusion of the time spent

in the treatment compartment. Here β1

μ+γ1+γ3
represents the transmission rate due to

I1, multiplied by the average time spent in I1. Next, β2

μ+γ2+η represents the probability
of progressing to I2 multiplied by the time spent in I2; this is related with the pro-
gression into the cycle of the disease, considering three different paths: (I1–I2–T–L–I1),
(I1–I2–L–I1) and (I1–L–I1). In the case of R4,0, the dynamics are similar to R4,c, ex-
cept there are only two paths because the treatment is not considered. These paths are
the associated Θ and Θ̂ representing the population leaving I1 returning by recurrence.
Details are shown in Appendix A.
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3.3 Control and Basic Reproductive Numbers of the Proposed
Model

For the proposed model, Rc and R0 show the same behavior as the previous models. For
simplicity, we substitute zi, where i = 1, ..., 5, as follows: z1 = μ+φ1, z2 = μ+η1+γ1+γ3,
z3 = μ+ η2 + γ2, z4 = μ+ φ2, and z5 = μ+ r. The control reproductive number is:

Rc =
∞∑

n=0

(β1

z2
+

γ1
z2
· β2

z3

)(γ1
z2
· γ2
z3
· r

z5
+

η1
z2
· φ1

z1
· r

z5
+

γ1
z2
· η2
z3
· φ2

z4
· r

z5
+

γ3
z2
· r

z5

)n

.

Notice that Rc is the convergent sum of the geometric series:

Rc =

β1

z2
+ γ1

z2
· β2

z3

1−
(

γ1

z2
· γ2

z3
· r
z5

+ η1

z2
· φ1

z1
· r
z5

+ γ1

z2
· η2

z3
· φ2

z4
· r
z5

+ γ3

z2
· r
z5

) .

This Rc can be interpreted as the transmission rate due to I1 individuals, β1 multiplied
by the time spent in the I1 compartment, 1

z2
. This value is added to the probability

of progressing to the I2 compartment, γ1

z2
, multiplied by the transmission rate due to

the I2 compartment, β2, multiplied again by the time spent in the I2 compartment, 1
z3
.

This is related to the progression into the cyclic paths of the disease (let it be Θ̂). There
are four cyclic paths: (I1–I2–L–I1), (I1–T1–L–I1), (I1–I2–T2–L–I1), and (I1–L–I1). We
observe that Rc has the form:

Rc =
R1 +R2

1− Θ̂
,

where R1 and R2 are the contributions of I1 and I2 respectively to Rc, and 1− Θ̂ is the
proportion at I1.
R0 has a similar dynamic as Rc, except that the two paths related to treatments are

not considered. The basic reproductive number is:

R0 =

β1

μ+γ1+γ3
+ γ1

μ+γ1+γ3
· β2

μ+γ2

1−
(

γ1

μ+γ1+γ3
· γ2

μ+γ2
· r
μ+r + γ3

μ+γ1+γ3
· r
μ+r

) .

3.4 Existence of Endemic Equilibrium

For our original model, we have calculated the Jacobian, see Apendix A.7. Due to the
complexity of our model, to analyze the endemic equilibrium, we consider the reduced
system shown in Appendix A with I = I1 + I2, T = T1 + T2, η1 = η2 = η, γ2 = γ3 = γ,
β1 = β2 = β,and φ1 = φ2 = φ. The system of equations corresponding to this model
are the following:

dS

dt
= μN + φX − βSI

N1
− (μ+ κη)S, (3.4.1)

dX

dt
= κηS − (φ+ μ)X, (3.4.2)

dI

dt
=

βSI

N1
+ rL− (η + γ + μ)I, (3.4.3)

dT1

dt
= ηI − (φ1 + μ)T, (3.4.4)

dL

dt
= γI + φT − (r + μ)L, (3.4.5)
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where N1 = S + I + L.

To simplify the endemic equilibrium we have calculated the Rc.

Rc =

β
z2

1− γ
z2

r
z5
− φ

z1

η
z2

r
z5

where z1 = φ+ μ, z2 = η + γ + μ, and z5 = r + μ. We define the following expressions:

p1 = φ
z1
, p2 = η

z2
, p5 = r

z5
,

q2 = γ
z2
, π1 = φ

z1

η
z2

r
z5
, π2 = r

z5

γ
z2
, and

πc = π1 + π2.

Analyzing the model gives the endemic equilibrium E1 = (S∗, X∗, I∗, T ∗, L∗); where:

S∗ =
Nz1μ(r + z2πc)

z2(α1μ+ rα2 + rz1(−1 + π2))
,

X∗ =
Nrμκη(β + z2(−1 + πc))

z22(α1μ+ rα2 + rz1(−1 + π2))(−1 + πc)
,

I∗ =
Nrz1μ(β + z2(−1 + π1 + π2))

z22(α1μ+ rα2 + rz1(−1 + π2))(−1 + πc)
,

T ∗ =
Nrμη(β + z2(−1 + π1 + π2))

z22(α1μ+ rα2 + rz1(−1 + π2))(−1 + πc)
,

L∗ =
Nrμ(β + z2(−1 + π1 + π2))(z1γ + ηφ)

z22z5(α1μ+ rα2 + rz1(−1 + π2(−1 + πc))
,

with α1 = z1(π1 + π2) + ηκπ2 and α2 = z1(β+μ)+ηκμ
z2

. Evaluating E1 with the current
conventional treatment, we can show that there exists an endemic equilibrium for the
system in Figure 2. Since this system is reduced from our original system, E1 has a
different quantitative meaning related with the treated population but the same quali-
tative meaning, because of the treatment. Therefore, for our original model, there exists
an endemic equilibrium with the parameters in Table 3.
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Figure 2: The blue curve represents the I class and red curve represent the T class.
Time is measured in days.

3.5 Local sensitivity of Rc with respect to η1 and η2

Proposition 1: Consider Rc as the control reproductive number and η2 a parameter.
We show that ∂Rc

∂η2
→ 0 when η2 →∞ and Rc converges to R∗c > 1 when η2 →∞ where

Rc =
β1
z2

(1−(α1+α4+
γ1
z2
·φ2
z4
· r
z5

))
.

Proof :

Consider the change of variables with respect to the partial derivatives:
∂α1

∂η2
= −γ1

z2
· r
z5
· γ2

z2
3

α1 := γ1

z2
· γ2

z3
· r
z5
,

∂α2

∂η2
= 0 α2 := η1

z2
· φ1

z1
· r
z5
,

∂α3

∂η2
= γ1

z2
· φ2

z4
·
(

z3−η2

z2
3

)
α3 := γ1

z2
· η2

z3
· φ2

z4
· r
z5
, and

∂α4

∂η2
= 0 α4 := γ3

z2
· r
z5
.

We now rewrite Rc as:

Rc =

β1

z2
+ γ1

z2
· β2

z3

1− (α1 + α2 + α3 + α4)
,

to observe the change of Rc when η2 varies, we will reference the derivative of Rc with
respect to η2, since Rc depends on many parameters we must calculate the partial
derivative with respect to η2, which yields:

∂Rc

∂η2
=
−γ1β2

z2z2
3
(1− (α1 + α2 + α3 + α4)) +

(
β1

z2
+ γ1β2

z2z3

)(
∂α1

∂η2
+ ∂α3

∂η2

)
(1− (α1 + α2 + α3 + α4))2

.

Calculating the limit of Rc as η2 approaches infinity, we get:

lim
η2→∞

∂Rc

∂η2
= lim

η2→∞

−γ1β2

z2z2
3
(1− (α1 + α2 + α3 + α4)) +

(
β1

z2
+ γ1β2

z2z3

)(
∂α1

∂η2
+ ∂α3

∂η2

)
(1− (α1 + α2 + α3 + α4))2

= 0.
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Since limη2→∞
(
− γ1β2

z2z2
3

)
= 0, limη2→∞

(
∂α1

∂η2
+ ∂α3

∂η2

)
= 0, and

limη2→∞ (1− (α1 + α2 + α3 + α4) =
(
1−

(
α1 + α4 +

γ1

z2
· φ2

z4
· r
z5

))
.

Then Rc will converge to a specific R∗c

lim
η2→∞

Rc = lim
η2→∞

β1

z2
+ γ1

z2
· β2

z3

1− (α1 + α2 + α3 + α4)
=

β1

z2

(1− (α1 + α4 +
γ1

z2
· φ2

z4
· r
z5
))

= R∗c .

To R∗c > 1 if and only if η1 < 0.2588 this result was obtained numerically, and is
consistent with the results obtained in Figure 4. This shows that no matter how much η2
is increased, R∗c will not decrease enough to control the epidemic unless η1 is increased.
In other words, the change in Rc with respect to η2 will stabilize asymptotically and
converge to a number greater than zero if and only if η1 < 0.2588.

Proposition 2: Consider Rc as the control reproductive number and η1 a parameter
for which we have control. We now show that ∂Rc

∂η1
< 0 when η1 →∞ and Rc → 0 when

η1 →∞.

Proof :
Let

Rc =

β1

z2
+ γ1

z2
· β2

z3

1−
(

γ1

z2
· γ2

z3
· r
z5

+ η1

z2
· φ1

z1
· r
z5

+ γ1

z2
· η2

z3
· φ2

z4
· r
z5

+ γ3

z2
· r
z5

) ,

be the control reproductive number. Due to z2 being the only term including η1, we
rewrite Rc as follows:

Rc =

(
1
z2

)
(β1 +

γ1 β2

z3
)(

1
z2

) [
z2 −

(
γ1·γ2

z3
· r
z5

+ η1·φ1

z1
· r
z5

+ γ1·η2

z3
· φ2

z4
· r
z5

+ γ3·r
z5

)] .

Calculating the partial derrivative of Rc with respect to η1 we have:

∂Rc

∂η1
= −

(
β1 +

γ1·β2

z3

)(
1− φ1·r

z1 z5

)
(
z2 −

(
γ1·γ2

z3
· r
z5

+ η1·φ1

z1
· r
z5

+ γ1·η2

z3
· φ2

z4
· r
z5

+ γ3·r
z5

))2 .

Note that the denominator is always positive. The first term of the numerator is also
positive. It is enough to show that for any value of the parameters, the second term is
always positive. We see that

0 <

(
1− φ1 · r

z1 z5

)
≤ 1.

This term is equal to 1 only when φ1 = 0 and in this case it is seen that ∂Rc

∂η1
< 0. Since

z1 = μ + φ1 and z5 = μ + r, then φ1

μ+φ1
and r

μ+r represent probabilities, therefore, the
values are between 0 and 1. We have seen the case when the reproductive number is equal
to zero, now it will never be equal to zero. We can write the product as φ1 r

μ2+μ(φ1+r)+φ1 r .

Therefore, we confirm that this denominator is always between 0 and 1.
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We see now that Rc → 0 when η1 →∞,

lim
η1→∞

Rc = lim
η1→∞

(β1 +
γ1 β2

z3
)

z2 −
(

γ1·γ2

z3
· r
z5

+ η1·φ1

z1
· r
z5

+ γ1·η2

z3
· φ2

z4
· r
z5

+ γ3·r
z5

) = 0.

Notice that the numerator is a fixed value and the denominator tends to infinity
when η1 tends to infinity, then z2 >> η1 · φ1·r

z1 z5
.

Finally, ∂Rc

∂η1
< 0 for whichever parameter values. therefore, Rc is always decreasing

when η1 is increasing. This suggest that it is necessary to implement early treatment to
reduce incidence rates of HSV–2.

4 Numerical Results

4.1 Effect of Control Measures on the Reproductive Number

This section evaluates the impact of new treatment rates on Rc. More specifically, we
examine how Rc changes as parameters η1 and η2 are varied. Figure 3 shows the effect
η1 and η2 have on the control reproductive number. It can be seen that η1 is more
effective in reducing the control reproductive number than η2. The plot also shows that
when η1 = 0, the control reproductive number remains above 1 for all values of η2.

Figure 3: Surface of Rc generated as η1 and η2 change.

Figure 4 is a contour plot of Figure 2 when Rc = 1. This plot represents the
treatment parameter threshold for disease control. As seen, the graph is asymptotic as
η2 is increased, and η1 is decreased below 0.2588 (Proposition 1). This shows that no
matter how much effort is put into getting people from I2 into T2 the epidemic will not
be controlled. The graph also shows that the disease is better controlled as η1 increases
and η2 decreases. This shows that as more people are removed from I1 the more likely
it is to control HSV–2.
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Figure 4: Contour plot when Rc = 1.

Figure 5 shows the relationship η1 has on Rc. We can conclude that as η1 increases Rc

decreases enough to control the epidemic. The constant line at Rc = 1 shows the point
needed to cross the threshold of controlling the epidemic. The minimum rate needed
for η1 to cross this threshold is 0.39. If this is reached, the epidemic will be controlled
effectively.

Figure 5: Rc function as η1 increases.
.

4.2 Local Sensitivity on Endemic Prevalence Levels

A local sensitivity analysis is performed in order to evaluate the effects of the treatment
parameters of I1(η1) and I2(η2) individuals. We discuss the role of small changes in η1
and η2 on I1 and I2 over time.

Figure 6 shows the effects of η1 and η2 on the infected population with constitu-
tional symptoms I1. It is observed that as η1 (blue-solid curve) increases the infected
population with non-constitutional symptoms I2 decreases as I2 individuals leave the
compartment, and after some time I1 stabilizes. It is also seen that as η2 (red-dashed
curve) increases, it has a little effect on the change of I1, since individuals enter in the
I1 compartment before transition into the I2 class. This slight increase is due to the
higher number of recurrences due to the people entering the latent stage.
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Figure 7 shows the effects of η1 and η2 on the I2 compartment. It is seen that η2
(blue-solid curve) has a larger effect on the I2 compartment than η1 (red-dashed curve)
since η2 is directly removing individuals from the I2 compartment. The plots also show
that changes in η1 also have a significant effect on I2 since this rate does not allow
individuals to reach the I2 class. This shows that I2 is more sensitive to η2 than η1.

Figure 6: Local sensitivity analysis of class
I1 with respect to η1 (blue curve) and η2
(red curve).

Figure 7: Local sensitivity analysis of class
I2 with respect to η1 (red curve) and η2
(blue curve).

4.3 Impact of Treatment Parameters on Cost of Implementation
of Treatment Strategies

Figure 8 and Figure 9 compare the incidence, at a proportional level of the US pop-
ulation, of HSV–2 infections between conventional treatment (Figure 9) and proposed
treatment (Figure 8). It is seen that incidence levels drop drastically as η1 is varied.

Figure 8: Incidece proportion as η1
varies while η2 = 0.25 (proposed treat-
ment method)

Figure 9: Incidence proportion as η2
varies while η1 = 0 (conventional treat-
ment method)

4.4 Cost Effectiveness Analysis

According to the literature we set η2 = 0.25, and from this we computed the current
public health cost and incidence level [14]. Figure 10 shows the components of the ICER
as functions of η1 normalized by the current Cc(t) and Ic(t) respectively. It is seen that
as η1 increases benefit proportion of cost increases while incidence levels decrease.
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Figure 10: The Upper red-solid curve represents ΔC, while the lower blue-dashed curve
represents ΔI.

Figure 11 shows the relationship between cost as a function of conventional and pro-
posed treatment rates, the combined effect of treatment rates, and the cost implicated.
We observe in both plots that as the proposed treatment η1 increases, the cost also
increases. Although conventional treatment is less expensive. By incorporating pro-
posed treatment plan its possible to find feasible diseases control strategies, under the
constraints of available resources.

Figure 11: Relationship between η1, η2, and cost

Figure 12 demonstrates the range of cost as η1 and η2 increase. The range of the
plot begins at $15 billion and ranges to $50 billion. The practical amount of monetary
expenses is between $20 billion and $25 billion.
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Figure 12: Level curves of cost (η1, η2).

Figure 13 shows the relationship of the ICER as η1 and η2 vary. Is is seen that as
η1 and η2 become very large, it is extremely beneficial, but not practical because the
ICER decreases by such a large cost.

Figure 13: Plot of η1, η2, and ICER

From Figure 13 we obtain many possible combinations of treatment strategies. Some
of these combinations are ideal in control of the epidemic but not practical due to the
cost needed to support these strategies. Practical strategies were found by analyzing
Figure 5 as well as Figure 12. Optimal values of η1 and η2 were estimated by analyzing
Figure 12. This analysis gaves a range of values for η1 and η2 for a given cost range.
From these η1 and η2 values two examples were chosen to come close to crossing the Rc
threshold of Rc=1. Two examples of strategies were created through this method an
optimal strategy and an Ideal strategy, both are analyzed in Table 5.

Current treatment Optimal strategy Ideal strategy
η1 = 0 η1 = 0.2145 η1 = 0.4

η2 = 0.25 η2 = 0.1407 η2 = 0.3
Rc = 2.506 Rc = 1.509 Rc = 0.956
ICER = N/A ICER = −0.6672 ICER = −0.8923

Cost = $16.14 B. $20.4 B. ≤ Cost ≤ $20.5 B. $24 B. ≤ Cost ≤ $24.1 B.
Incidence = 1, 146, 200 (0.76%) Incidence = 683, 467 (0.45%) Incidence = 432, 146 (0.28%)

Table 5: Comparison between Treatment Strategies.

In Table 5 we compare examples of optimal and ideal treatment strategies with the
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current treatment strategy. In the current treatment with Rc = 2.506, applying the
conventional treatment, the total public health cost is $16.14 billion with an incidence
of about 1.15 million of newly infected individuals. Applying a combined strategy and
considering Rc = 0.956 the total public health cost is about 24 billion dollars. However,
the incidence is reduced to approximately 714,054 new infected individuals, this repre-
sents an important incremental cost on public health. This is why, the optimal strategy,
where we slightly increase the effort of η1and η2to obtain Rc = 1.509 will generate a
total public health cost of $20.4-20.5 billion meanwhile reducing the incidence to 462,733
newly infected individuals.

From Proposition 1 and Figure 4, we realize that an η1 > 0.2588 is required in order
to cross the threshold Rc = 1. According to Figure 12, the minimum budget of public
health cost for HSV–2 (marginal cost) is given by $12.56 Billion, but this budget does
not guarantee the control of the disease.

4.5 Wasted Cost of Treatment of Non-Infected Individuals

Figure 14 shows functions of total cost (red-solid) as well as wasted cost (blue-dashed) as
η1 varies, with η2 = 0.25 and cost being on a logarithmic scale. p1 and p2 represent the
percentage of total cost that is attributed to waste cost. When η1 = 0.5, the percentage
of total cost attributed to waste cost (p1) is 18.15%. When η1 = 2, the percentage
of total cost attributed to waste cost (p2) is 44.31%. This suggests that it would be
impractical to choose the largest value of η1 possible, since much of the total cost would
be attributed to waste cost.

Figure 14: Wasted Cost Functions

5 Discussion

5.1 Conclusions

The purpose of this study was to investigate optimal treatment strategies for reducing
HSV–2 infections in the United States. We proposed that treatment in the constitutional
stage would be more cost effective than the conventional treatment, which only applies
treatment in the non-constitutional stage. To test this, we developed and analyzed a
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mathematical model that modeled treatment at the constitutional stage, in addition to
treatment of the non-constitutional stage, and we also tracked the treatment of false
positive cases.

For our proposed model we defined a system of ordinary differential equations, and
performed computer simulations to analyze the behavior of HSV–2 infections. With
the reduction of our model, we showed that with the given parameters in Table 3,
there exists an endemic equilibrium with the current conventional treatment. Since Rc

considers control strategies, the rate at which infected individuals initiate treatment is
considered in the calculation of this threshold. Thus, η1 and η2 form part of the cyclic
paths of progression through the disease observed in Rc.

To study the optimal strategy, we developed a cost function to evaluate the cost
effectiveness of the proposed treatment. The total public cost in one year, i.e, T = 365,
we numerically solved equations (4.1) and (4.2). Our results have shown that, it does
not matter how much effort we put on getting infected individuals into treatment when
they are in the non-constitutional stage (conventional treatment), the disease persist
because there is a period of time in which the person is infectious with constitutional
symptoms but is not getting treatment. Also, if we focus only on a strategy that involves
early treatment, it will be efficient in terms of decreasing Rc, but the monetary effect
is not practical because when a doctor treat patients who show mild symptoms, he/she
can not know for sure if the patient has HSV–2, which is why the cost will increase. This
is why, to optimize the cost effectiveness, we need a combination of the two treatments,
that is, we need to put effort in both η1 and η2. This combined strategy not only bring
Rc(η1, η2) less than one but also reduces the cost by approximately 20% of a possible
ideal strategy.

The cost required to decrease the Rc by this much was found by calculating the
ICER. It was found that as more monetary effort is invested into implementation of early
treatment, incidence of new HSV–2 cases is expected to decrease drastically. Optimal
implementation, as seen in Table 5, would require an ICER value of -0.6, which would
relate to annual costs between $18 to $20 billion. The implementation of early treatment
is strongly recommended to decrease incidence of HSV–2 infections in a cost effective
manner.

5.2 Future Work

Future work would include to study the impact this proposed strategy has in the US
population but with HSV–1 instead of HSV–2. Analyze different strategies to see which
one is more effective, for example, analyze the effect on vaccination and compare it
with our proposed strategy for this research. A limitation in this work was finding data
over the constitutional stage, since patients are not treated here. If early treatment was
implemented, it would be interesting to study the impact of implemented treatment
through data.
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A Appendix: Simple Models

All of these models represent a modification of the proposed model. We begin with
a simple 3 compartment model and continue to build, or add more complexity, and
calculate the reproductive number.We compare and show the behavior of R0 and Rc

through an inductive way.

A.1 Model 1

In this model we only consider susceptible, infectious and latent classes shown in figure
13.

S I L
γI

βSI
NΛ

μIμS

rL
μL

Figure 15: SILI Model

The differential equations that represent this model are the following:

dS

dt
= Λ− βSI

N
− μS (3.1.1)

dI

dt
=

βSI

N
− (μ+ γ)I + rL (3.1.2)

dL

dt
= γI − (r + μ)L (3.1.3)

Calculation of R1,0:

DFE =
(
Λ
μ , 0, 0

)
where N = Λ

μ .

Infected classes: X =

[
I
L

]

Thus, F and V are as follows:

F =

[
βSI
N
0

]
V =

[
(μ+ γ)I − rL
−γI + (μ+ r)L

]

The Jacobian matrices for F and V with respect to I and L are respectively the
following:
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F =

[
β 0
0 0

]
V =

[
μ+ γ −r
−γ μ+ γ

]

The spectral radius ρ(FV −1) of FV −1 is the largest eigenvalue and it represents the
basic reproductive number R1,0. For this model is as follows:

R1,0 = ρ(FV −1) = ρ
( 1

(μ+ γ)(μ+ r)− rγ

[
β(μ+ r) βr

0 0

])
=

β(μ+ r)

(μ+ γ)(μ+ r)− rγ

We consider a geometric series because this represents the n cycles that a infected
person can do in the model, the geometric series of this case is:

β
(μ+γ)

1− γ
μ+γ · r

μ+r

=

∞∑
n=0

β

μ+ γ

( γ

μ+ γ
· r

μ+ r

)n

It is enough to show that the ratio of the series is less than 1 to justify that the series
actually converges,

γ

μ+ γ
· r

μ+ r
=

γ · r
μ2 + μ(γ + r) + μ r

The first two factors are probabilities therefore they are between zero and one, now note
that in the denominator of the right side the terms μ2 and μ(γ + r) are positive non
null so the denominator is greater than the numerator, then the ratio is less than one.
Therefore the geometric series converges to R1,0.

A.2 Model 2

In this model we only contemplate susceptible, infectious, treatment and latent state
shown in figure 14.

S I

TμT

L

φT

γI
βSI
NΛ

μIμS

rL
μL

ηI

Figure 16: SITLI Model

The differential equations that represent this model are the following:

dS

dt
= Λ− βSI

N
− μS (1)

dI

dt
=

βSI

N
+ rL− (η + γ + μ)I (2)

dT

dt
= ηI − (μ+ φ)T (3)

dL

dt
= φT + γI − (μ+ r)L (4)
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Calculation of R2,0:

DFE = (Λμ , 0, 0, 0), where N = Λ
μ

Infected classes: X =

⎡
⎣I
T
L

⎤
⎦

Thus, F and V are as follows:

F =

⎡
⎣

βSI
N
0
0

⎤
⎦ V =

⎡
⎣ −rL+ (η + γ + μ)I

−ηI + (μ+ φ)T
−φT − γI + (μ+ r)L

⎤
⎦

The Jacobian matrices for F and V with respect to I, T and L are respectively the
following:

F =

⎡
⎣β 0 0
0 0 0
0 0 0

⎤
⎦ V =

⎡
⎣η + γ + μ 0 −r

−η μ+ φ 0
−γ −φ μ+ r

⎤
⎦

Thus,

FV −1 = 1
(η+γ+μ)(μ+φ)(μ+r)−r(ηφ+γ(μ+φ)

⎡
⎣β(r + μ)(μ+ φ) βrφ βr(μ+ φ)

0 0 0
0 0 0

⎤
⎦

The spectral radius ρ(FV −1) of FV −1 is the largest eigenvalue and it represents
the control reproductive number R2,c because of the consideration of the treatment
compartment (T ). For this model is as follows:

R2,c =

β
μ+γ+η

1−
(

γ
μ+γ+η · r

μ+r + η
μ+γ+η · φ

μ+φ · r
μ+r

)

By setting φ = η = 0, the parameters associated to treatment, we are able to find
R2,0. Thus,

R2,0 =

β
μ+γ

1− γ
μ+γ · r

μ+r

Geometric Series for R2,0:

R2,0 =
∞∑

n=0

β

μ+ γ

( γ

μ+ γ
· r

μ+ r

)n

,

this geometric series converges because the ratio is less than 1, we prove that for the
Model 1.

67



A.3 Model 3

In this model we only contemplate susceptible, latent and two infectious classes shown
in figure 15.

S I1 I2
Ω γ1I1 γ2I2

L

rL

μI1 μI2

Λ μL

μS

Figure 17: SI1I2LI1 Model

Note: Ω = β1SI1+β2SI2
N .

dS

dt
= Λ+ μS − (β1I1 + β2I2)

S

N
(5)

dI1
dt

= (β1I1 + β2I2)
S

N
+ rL− (γ + μ)I1 (6)

dI2
dt

= γ1I1 − (μ+ γ2)I2 (7)

dL

dt
= γ2I2 − (μ+ r)L (8)

Calculation of R3,0:

DFE = (Λμ , 0, 0, 0), where N = Λ
μ

Infected classes: X =

⎡
⎣I1I2
L

⎤
⎦

Thus, F and V are as follows:

F =

⎡
⎣(β1I1 + β2I2)

S
N

0
0

⎤
⎦ V =

⎡
⎣ (γ1 + μ)I1 − rL
(μ+ γ2)I2 − γ1I1
(μ+ r)L− γ2I2

⎤
⎦

The Jacobian matrices for F and V with respect to I1, I2 and L are respectively the
following:

F =

⎡
⎣β1 β2 0
0 0 0
0 0 0

⎤
⎦ V =

⎡
⎣γ1 + μ 0 −r
−γ1 μ+ γ2 0
0 −γ2 μ+ r

⎤
⎦

Thus,
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FV −1 = 1
det(V )⎡

⎣β1(r + μ)(γ2 + μ) + β2(rγ1 + γ1μ) rβ1γ2 + β2(r + μ)(γ1 + μ) rβ2γ2 + β1(rγ2 + rμ)
0 0 0
0 0 0

⎤
⎦

where det(V ) = (r + μ)(γ1 + μ)(γ2 + μ)− rγ1γ2
Therefore, the basic reproductive number R3,0 is as follows:

R3,0 =

β1

μ+γ1
+ γ1

μ+γ1
· β2

μ+γ2

1− γ1

μ+γ1
· γ2

μ+γ2
· r
μ+r

Geometric series for R3,0:

R3,0 =

∞∑
n=0

( β1

μ+ γ1
+

γ1
μ+ γ1

· β2

μ+ γ2

)( γ1
μ+ γ1

· γ2
μ+ γ2

· r

μ+ r

)n

Ahora debemos probar que el ratio es menor que 1,

γ1
μ+ γ1

· γ2
μ+ γ2

· r

μ+ r
=

γ1 · γ2 · r
μ3 + μ2(γ1 + γ2 + r) + μ(γ1γ2 + r(γ1 + γ2)) + γ1γ2r

Each of the first three factors represents the probability that a person moves from I1
to I2, I2 to L and L to I1 respectively for each of the terms. Therefore each one is
between zero and one, the product will also be between zero and one. The terms of the
denominator of the fraction of the right side μ3, μ2(γ1+γ2+r) and μ(γ1γ2+r(γ1+γ2))
are positive non null, then the denominator is greater than the numerator. Therefore
the ratio is less than one and so the geometric series converges.

A.4 Model 4

For this model we only contemplate suscpetible, latent states, two infectious states and
one treatment state, shown in figure 16.

S I1 I2
Ω γ1I1 γ2I2

L

rL

γ3I1

μI1

μI2

Λ μL

μS

TμT

ηI2

φT

Figure 18: SI1I2TLI1 Model
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dS

dt
= Λ− (

β1I1 + β2I2
) S
N
− μS (9)

dI1
dt

=
(
β1I1 + β2I2

) S
N
− (μ+ γ1 + γ3)I1 + rL (10)

dI2
dt

= γ1I1 − (μ+ γ2 + η)I2 (11)

dT

dt
= η2I2 − (μ+ φ)T (12)

dL

dt
= φT + γ2I2 + γ3I1 − (μ+ r)L (13)

Calculation of R4,0:

DFE = (Λμ , 0, 0, 0, 0), where N = Λ
μ .

Infected classes: X =

⎡
⎢⎢⎣
I1
I2
T
L

⎤
⎥⎥⎦

Thus, F and V are as follows:

F =

⎡
⎢⎢⎣
(
β1I1 + β2I2

)
S
N

0
0
0

⎤
⎥⎥⎦ V =

⎡
⎢⎢⎣

(μ+ γ1 + γ3)I1 − rL
−γ1I1 + (μ+ γ2 + η)I2
−η2I2 + (μ+ φ)T

−φT − γ2I1 − γ3I1 + (μ+ r)L

⎤
⎥⎥⎦

The Jacobian matrices for F and V with respect to I1, I2, T and L are respectively
the following:

F =

⎡
⎢⎢⎣
β1 β2 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ V =

⎡
⎢⎢⎣
γ1 + γ3 + μ 0 0 −r

−γ1 γ2 + η + μ 0 0
0 −η μ+ φ 0
−γ3 −γ2 −φ r + μ

⎤
⎥⎥⎦

where det(V ) = (γ1+γ3+μ)(γ2+η+μ)(μ+φ)(r+μ)+−rγ1[ηφ+γ2(μ+φ)]−rγ3(γ2+
η + μ)(μ+ φ)

a1 = β1(r + μ)(γ2 + η + μ)(μ+ φ)− β2(r + μ)(γ1μ− γ1φ)

a2 = β2(rγ1 + rμ+ γ1μ+ γ3μ+ μ2)(μ+ φ) + β1(rγ2μ+ rγ2φ+ rηφ)

a3 = rβ2γ1φ+ rβ1(γ2 + η + μ)φ

a4 = rβ1(γ2 + η + μ)(μ+ φ) + β2(rγ1μ+ rγ1φ)

FV −1 = 1
det(V )

⎡
⎢⎢⎣
a1 a2 a3 a4
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

R4,c =

β1

μ+γ1+γ3
+ γ1

μ+γ1+γ3
· β2

μ+γ2+η

1−
(

γ1

μ+γ1+γ3
· γ2

μ+γ2+η · r
μ+r + γ1

μ+γ1+γ3
· η
μ+γ2+η · φ

μ+φ · r
μ+r + γ3

μ+γ1+γ3
· r
μ+r

)
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Thus,

R4,0 =

β1

μ+γ1+γ3
+ γ1

μ+γ1+γ3
· β2

μ+γ2

1−
(

γ1

μ+γ1+γ3
· γ2

μ+γ2
+ γ3

μ+γ1+γ3
· r
μ+r

)

A.5 Proposed Model

In order to calculate the Rc of the proposed model, the Next Generation Operator is
used. Let X̂ = (I1, I2, T1, T2, L)

T be the vector of the infected classes with HSV–2. Now,
X̂ is re-written as X̂ = F − V, where F are new infection cases and V are composed of
the other terms. Thus,

F =

⎡
⎢⎢⎢⎢⎣

(β1I1+β2I2)S
S+I1+I2+L

0
0
0
0

⎤
⎥⎥⎥⎥⎦ and V =

⎡
⎢⎢⎢⎢⎣

−rL+ z2 + I1
−γ1I1 + z3I2
−η1I1 + z1T1

η2I2 + z4T2

−γ3I1 − γ2I2 − φ2T2 − φ1T1 + z5L

⎤
⎥⎥⎥⎥⎦

For simplicity, we substitute zi, where i = 1, ..., 5, as follows:
z1 = μ+ φ1, z2 = μ+ η1 + γ1 + γ3, z3 = μ+ η2 + γ2, z4 = μ+ φ2, and z5 = μ+ r.

Next we calculate the Jacobian matrices for F and V are the following:

F =

⎡
⎢⎢⎢⎢⎣

β1 β2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ V =

⎡
⎢⎢⎢⎢⎣

z2 0 0 0 −r
−γ1 z3 0 0 0
−η1 0 z1 0 0
0 −η2 0 z4 0
−γ3 −γ2 −φ1 −φ2 z5

⎤
⎥⎥⎥⎥⎦

Next, we find the eigenvalues of FV −1, which is,

FV −1 =
1

det(V )

⎡
⎢⎢⎢⎢⎣

b1 b2 b3 b4 b5
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ ,

where det(V ) = z1z2z3z4z5 − rz3z4η1φ1 − rz1(z4γ1γ2 + z2z3γ3 + γ1η2φ2), and

b1 = z1z3z4z5β1 + z1z4z5β2γ1,

b2 = β2(z1z2z4z5 − rz1z4γ3 − rz4η1φ1) + β1(rz1z4γ2 + rz1η2φ2),

b3 = rz3z4β1φ1 + rz4β2γ1φ1,

b4 = rz1z3β2φ2 + rz1β2γ1φ2, and

b5 = rz1z3z4β1 + rz1z4β2γ1.
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The Rc is mathematically defined as the spectral radius (the largest eigenvalue) of the
matrix FV −1. Therefore,

Rc =

β1

z2
+ γ1

z2
· β2

z3

1−
(

γ1

z2
· γ2

z3
· r
z5

+ η1

z2
· φ1

z1
· r
z5

+ γ1

z2
· η2

z3
· φ2

z4
· r
z5

+ γ3

z2
· r
z5

) .

Notice that Rc is the convergent sum of the geometric series:

Rc =
∞∑

n=0

(β1

z2
+

γ1
z2
· β2

z3

)(γ1
z2
· γ2
z3
· r

z5
+

η1
z2
· φ1

z1
· r

z5
+

γ1
z2
· η2
z3
· φ2

z4
· r

z5
+

γ3
z2
· r

z5

)n

By setting to zero the parameters associated to treatment, i.e. η1, η2, φ1, and φ2,
we obtain R0:

R0 =

β1

μ+γ1+γ3
+ γ1

μ+γ1+γ3
· β2

μ+γ2

1−
(

γ1

μ+γ1+γ3
· γ2

μ+γ2
· r
μ+r + γ3

μ+γ1+γ3
· r
μ+r

) .

A.6 Reduced model

Due to the complexity of our original model, we reduced it to a five-equation model.
The following flow chart was made to be able to analyze the endemic equilibrium of our
original system, shown in figure 17.

S I

T
μT

L

φT

γI
βSI
NΛ

μX

μIμS

rL
μL

ηIσS

X

Figure 19: Reduced Model

A.7 Jacobian of original model

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

c11 φ1 c13 0 c15 0 c17
κη1 −(φ1 + μ) 0 0 0 0 0
c31 0 c33 0 c35 0 r − c17
0 0 η1 −(φ1 + μ) 0 0 0
0 0 0 0 −(η1 + γ1 + μ) 0 0
0 0 0 0 η2 −(φ2 + μ) 0
0 0 γ3 φ1 γ2 φ2 −(r + μ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Where,

c11 = −κη1 − N1(β1I1 + β2I2)− (β1SI1 + β2SI2)

N2
1

− μ,

c13 = −N1(β1S)− (β1SI1 + β2SI2)

N2
1

,

c15 = −N1(β2S)− (β1SI1 + β2SI2)

N2
1

,

c17 =
S(I1β1 + I2β2)

N2
1

,

c31 =
N1(β1I1 + β2I2)− (β1SI1 + β2SI2)

N2
1

,

c33 =
N1(β1S)− (β1SI1 + β2SI2)

N2
1

− (η1 + γ3 + γ1 + μ),

c35 =
N1(β2S)− (β1SI1 + β2SI2)

N2
1

.

A.8 Sensitivity Analysis on stages with respect to η1 and η2

The following fourteen equations were calculated in order to use them for forward sen-
sitivity equations with respect to parameters η1 and η2. We made a numerical solution
to obtain the sensitivity of I1 and I2 with respect of both parameters.
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d

dt

[ ∂S

∂η1

]
= φ1

∂X

∂η1
− η1κ

∂S

∂η1
− κS − (β1I1 + β2I2)(N1

∂S
∂η1

− S ∂N1
∂η1

) + (β1
∂I1
∂η1

+ β2
∂I2
∂η1

)SN1

N2
1

− μ
∂S

∂η1

d

dt

[∂X
∂η1

]
= η1κ

∂S

∂η1
+ κS − (φ1 + μ)

∂X

∂η1

d

dt

[ ∂I1
∂η1

]
=

(β1I1 + β2I2)(N1
∂S
∂η1

− S ∂N1
∂η1

) + (β1
∂I1
∂η1

+ β2
∂I2
∂η1

)SN1

N2
1

+ r
∂L

∂η1
− η1

∂I1
∂η1

− I1

− (γ1 + γ3 + μ)
∂I1
∂η1

d

dt

[∂T1

∂η1

]
= η1

∂I1
∂η1

+ I1 − (φ1 + μ)
∂T1

∂η1
d

dt

[ ∂I2
∂η1

]
= γ1

∂I1
∂η1

− (η2 + γ2 + μ)
∂I2
∂η1

d

dt

[∂T2

∂η1

]
= η2

∂I2
∂η1

− (φ2 + μ)
∂T2

∂η1
d

dt

[ ∂L

∂η1

]
= γ3

∂I1
∂η1

+ γ2
∂I1
∂η1

+ φ2
∂T2

∂η1
+ φ1

∂T1

∂η1
− (r + μ)

∂L

∂η1

d

dt

[ ∂S

∂η2

]
= φ1

∂X

∂η2
− κη1

∂S

∂η2
− (β1I1 + β2I2)(N1

∂S
∂η2

− S ∂N1
∂η2

) + (β1
∂I1
∂η2

+ β2
∂I2
∂η2

)SN1

N2
1

− μ
∂S

∂η2

d

dt

[∂X
∂η2

]
= κη1

∂S

∂η2
− (φ1 + μ)

∂X

∂η2

d

dt

[ ∂I1
∂η2

]
=

(β1I1 + β2I2)(N1
∂S
∂η2

− S ∂N1
∂η2

) + (β1
∂I1
∂η2

+ β2
∂I2
∂η2

)SN1

N2
1

+ r
∂L

∂η2

− (η1 + γ1 + γ3 + μ)
∂I1
∂η2

d

dt

[∂T1

∂η2

]
= η1

∂I1
∂η2

− (φ1 + μ)
∂T1

∂η2
d

dt

[ ∂I2
∂η2

]
= γ1

∂I1
∂η2

− η2
∂I2
∂η2

− I2 − (γ2 + μ)
∂I2
∂η2

d

dt

[∂T2

∂η2

]
= η2

∂I2
∂η2

+ I2 − (φ2 + μ)
∂T2

∂η2
d

dt

[ ∂L

∂η2

]
= γ3

∂I1
∂η2

+ γ2
∂I1
∂η2

+ φ2
∂T2

∂η2
+ φ1

∂T1

∂η2
− (r + μ)

∂L

∂η2

References

[1] Beauman, J. G. (2005). Genital herpes: a review. American Family Physician, 72(8),
1527–1534. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16273819

[2] Benedetti J, Corey L, Ashley R. Recurrence Rates in Genital Herpes after Symptomatic
First-Episode Infection. Ann Intern Med. 1994;121(11):847. doi:10.7326/0003-4819-121-11-
199412010-00004

[3] Burn, C., Ramsey, N., Garforth, S. J., Almo, S., Jacobs, W. R., &amp; Herold, B. C. (2017).
An HSV-2 single- cycle candidate vaccine deleted in glycoprotein D, ΔgD-2, protects male
mice from lethal skin challenge with clinical isolates of HSV-1 and HSV-2. The Journal of
Infectious Diseases, 217(5), 754–758. https://doi.org/10.1093/infdis/jix628

[4] Corey L, Adams HG, Brown ZA, Holmes KK. Genital Herpes Simplex Virus Infections:
Clinical Manifestations, Course, and Complications. Ann Intern Med. 1983;98(6):958.
doi:10.7326/0003-4819-98-6-958

74



[5] Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. (1990). On the definition and the
computation of the basic reproduction ratio R 0 in models for infectious diseases in hetero-
geneous populations. Journal of mathematical biology, 28(4), 365-382.

[6] Fatahzadeh, M., Schwartz, R. A. (2007). Human herpes simplex virus infections: Epidemi-
ology, pathogenesis, symptomatology, diagnosis, and management. Journal of the American
Academy of Dermatology, 57(5), 737–763. https://doi.org/10.1016/J.JAAD.2007.06.027

[7] Johnston, C., & Corey, L. (2016). Current Concepts for Genital Herpes Simplex Virus
Infection: Diagnostics and Pathogenesis of Genital Tract Shedding. Clinical Microbiology
Reviews, 29(1), 149–161. https://doi.org/10.1128/CMR.00043-15

[8] McQuillan G, e. (2018).Prevalence of Herpes Simplex Virus Type 1 and Type 2 in Per-
sons Aged 14-49: United States, 2015-2016. - PubMed - NCBI. [online] Ncbi.nlm.nih.gov.
Available at: https://www.ncbi.nlm.nih.gov/pubmed/29442994.

[9] Mubayi A, Zaleta CK, Martcheva M, Castillo-Chávez C. A cost-based compar-
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