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Abstract

Lyme disease is one of the most prevalent and the fastest growing vector-borne bacterial
illnesses in the United States, with over 25,000 new confirmed cases every year. Lyme disease
cases have more than doubled in recent years, and the Centers for Disease Control and Preven-
tion estimates that those numbers could be significantly underrepresented. Humans contract
the bacteria, Borrelia burgdorferi, through the bite of Ixodes scapularis, commonly known as
the deer tick or Eastern blacklegged tick. The tick can receive the bacterium from a variety
of small mammal and bird species but Peromyscus leucopus, commonly known as white-footed
mice, are the primary reservoirs in the northeastern United States, especially near human set-
tlement. The life cycle and behavior of the ticks depends greatly on the season, with different
stages of tick biting at different times. Reducing the infection in mice populations and the
overall tick population may greatly reduce the number of humans affected by this disease in
some parts of the affected region. However, research on the effects of various mouse-targeted
interventions is limited. One particularly promising method is the administration of vaccine
pellets to white-footed mice through special bait boxes. In this study, we develop and analyze
a mathematical model consisting of a system of non-linear difference equations to understand
the complex transmission dynamics and vector demographics in both tick and mice populations.
Later, we evaluate to what extent vaccination of white-footed mice can affect the population
of infected I. scapularis and under which conditions this method is a cost-effective preventative
measure against Lyme disease. We find that vaccination can eliminate mouse=tick transmission
of B. burgdorferi while saving money when instituted in areas with high human risk.

1 Introduction

Borrelia burgdorferi, a bacterial species of spirochete, is the main causative agent of Lyme disease,
a tick-borne illness. The bacteria is mainly present in the northeastern United States, as well as
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in areas of Asia and Europe [34]. In the U.S., there are approximately 30,000 confirmed cases
reported to the Centers for Disease Control and Prevention (CDC) every year but actual cases
have been estimated as high as 300,000 cases per year [11]. Symptoms can be debilitating, but may
not appear for months after infection [12].

Lyme disease is transmitted only through the bite of various species of ticks. The bacteria
is non-congenital; thus a parent cannot transmit the pathogen to its offspring simply by birth or
nursing [20]. Reservoirs of B. burgdorferi include small mammals, such as mice, as well as some
species of birds. Other animals which harbor the bacteria are shrews, chipmunks, and skunks. The
focus of this research is to assess the effectiveness of a new control method for Lyme disease in the
U.S.

1.1 Ecology of Mice and Ticks

In Eastern North America, the primary Lyme disease vector is the black-legged tick, Ixodes scapu-
laris, also known as the deer tick. I. scapularis longevity can range from two to three years, and
its life cycle is segmented into three stages as described in Figure 2. Ticks feed only three times
in their lives, each time by taking a blood meal from a host. These blood meals are necessary for
the tick to reach the next developmental life stage [12]. A tick feeds through a behavior known as
questing, where it attaches with its posterior pair of legs to grass or short bushes and reaches out
with its anterior pair for a host to graze against them [12]. The ticks then locate a suitable area to
attach and feed from their host for three to five days [22]. B. burgdorferi can then enter the host
through the tick’s saliva while the tick feeds for the next 16 to 36 hours [7].

Black-legged ticks are born as susceptible larvae in the spring. In the following summer, they
seek a blood meal from any sort of small mammal; this is where the ticks can initially become
infected by feeding on an active reservoir. Afterwards they spend several days molting where they
reach the nymphal stage and await the next spring. Nymphs feed on any size mammal, ranging
from mice to deer to humans and tend to be predominantly active during the spring season [22].
This is where human risk is the greatest since nymphs are transparent in color and only about
2 millimeters in length, making them difficult to detect on the body. If the tick had previously
become infected in the larval stage it can later, as a nymph, either reintroduce the bacteria into
a susceptible mouse or infect a human. After molting again they reach the adult stage in the
immediate fall and seek out a final blood meal. In the adult stage they prefer large mammals such
as white tailed deer. Having completed their final blood meal in the fall, the adults mate, lay eggs,
and then shortly die [17].

Although ticks will feed on a variety of hosts, of particular importance to the persistence of B.
burgdorferi is the white-footed mouse Peromyscus leucopus. White-footed mice are the preferred
biting targets of larval ticks and are often targeted by nymphs as well. These mice are generalist
species who live in a variety of habitats in eastern North America. They especially thrive in habitats
where their natural predators are absent, such as fragmented forests in and around suburban human
settlements [39, 18]. P. leucopus do not experience any significant reduction in fitness due to either
the B. burgdorferi bacteria or from feeding by larval and nymphal ticks. An individual mouse
typically becomes infected by a nymphal tick, and goes on to spread the infection to many more
larvae over the rest of its one-year life since a mouse may have up to 100 ticks in the larval and
nymphal stages feeding on it at the same time [13]. These factors combined have all contributed
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to the high prevalence of the disease in New England and the Upper Midwest.

It is important to note the seasonality in the tick activity: nymphs are mostly active in the
spring, larvae in the summer, adults in the fall, and in the winter all stage activity decreases [17].
This is due to I. scapularis’ behaviour being greatly sedentary and thus depend on their hosts as
means of transportation. Since mice and deer activity tend to be lower during winter, so do tick
bite rates in humans. Ticks in the United States do not have a natural predator, and winter is the
only natural control mechanism. The advent of climate change leading to shorter, warmer winters
is yet another factor in the proliferation of I. scapularis and B. burgdorferi throughout a widening
range [25].

1.2 Previous Studies on Lyme Disease Transmission and Control

With the increase in tickborne diseases, much research has been undertaken in modeling trans-
mission dynamics and understanding the impact of control methods [10, 14, 16, 32, 35]. Within
the biology community there have been several studies of the potential for vaccines or acaricide, a
poisonous substance for ticks and mites, as interventions to control transmission of B. burgdorferi
between ticks and mice. Notable studies of vaccines include multiple lab studies showing efficacy
of eliciting immune reactions in white-footed mice against B. burgdorferi ’s OspA surface protein,
thereby building resistance to infection in mice [8, 15, 35]. Additionally, field trials of vaccinating
white-footed mice by distributing food with E. coli presenting B. burgdorferi ’s OspA was effective
at reducing prevalence of B. burgdorferi in both mice and nymphal ticks [29]. A current popular
method of control is the use of bait boxes. Bait boxes are placed along frequented mice zones where
the smell of food entices the mice to enter the box and pass through a wick covered in fipronil, a
commonly used acaricide, which protects the mice from tick bites for the following 4 to 6 weeks [32].
A similar method was used in the distributions of vaccines for mice populations [32]. Many of these
studies were conducted in fragmented forest environments. Forest fragmentation is a process where
forests are reduced to small, disconnected patches called forest fragments. This phenomenon is a
large threat to biodiversity since the area no longer becomes suitable to animals with larger ranges.
White-footed mice, however, thrive in this kind of environment often completely out-compete other
species of small mammal [18].

Other control methods to decrease infected ticks currently under investigation include introduc-
tion of other species as natural predators and control of mammalian host population. Most outsider
species are not very effective at controlling tick populations with the exception of Metarhizium
anisopliae fungus which is being tested to be sold for commercial use. Control of deer populations
has not been shown to have a significant effect in reducing tick-borne diseases [16]. In this study we
focus on modeling the introduction of orally induced vaccines into mice populations to determine
the reduction of infected nymphal ticks and hence reduction in human cases.

Extensive modeling has been done by the mathematical community to try to understand the
enzootic transmission cycle of B. burgdorferi. First among these are models that seek to understand
the complex life cycle of I. scapularis and provide insight on factors affecting its behavior such as
climate, host populations, and seasonal population dynamics [9, 24, 28]. Additionally, there has
been extensive modeling of B. burgdorferi transmission that has given insight on its reproductive
number with mice, the importance of targeting I. scapularis larvae, and the ability of B.burgdorferi
to spread geographically [38, 40]. Our research advances this body of work by using the population
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parameters and dynamics found in previous models, such as [2, 21, 23, 36], to model not just B.
burgdorferi ’s enzootic transmission, but leading efforts people can take to decrease transmission.
This will provide critical insight to public health officials, researchers, and institutions seeking to
assess the effectiveness of vaccines before they invest in their implementation and will also provide
additional data to the small body of field trials that have been done.

In this research study, we model interacting tick and mouse populations subdivided into com-
partments based on infection stages for mice and infection status and life stage for ticks. We use
a system of discrete difference equations for both populations to account for the seasonality in
ticks. We first evaluate the model without vaccination to assess population dynamics and then
with vaccination to determine its effectiveness on the population and estimate cost. Our aim is
to model the populations in a fragmented forest environment in the Northeastern United States,
where much of the field data is available and where human risk is especially high [34].

The next sections of this report will discuss how we obtained our model and equations. Following
that is a section computationally analyzing the dynamics of the system and a cost-benefit analysis
with regard to the total cost of Lyme disease treatment and prevention.

2 Methods

2.1 Model Development

In order to model the dynamics of infection between mice and ticks, we consider certain assumptions.
The first is that there is homogeneous mixing between mice and ticks at all stages and that infection
does not affect their movements or interactions within a certain geographical area. While we
do account for mice having more contacts with larvae than nymphs, infected, vaccinated, and
susceptible mice are all bitten by susceptible and infected ticks at equal constant rates. Additionally,
we assume that infection with B. burgdorferi does not affect the birth or death rates of mice as well
as the death or biting rates of ticks. We assume this because evidence suggests that B. burgdorferi
does not cause any disease in ticks or white-footed mice, making them an excellent reservoir host
[37]. The reproductive fitness of white-footed mice is also unaffected by the presence of the parasitic
ticks [13].

We also assume that infectious mice and ticks remain infectious for the rest of their lives which
is supported by current research on B. burgdorferi in I. scapularis and P. leucopus [4, 26, 33]. We
assume that any larva or nymph that does not feed does not survive to feed in a later season or the
next year which is true for the overwhelming majority of ticks [12]. This allows us to first compute
death rates and declare that any larva or nymph that does not die must progress to nymph or
adult, respectively. That is, we do not define an explicit rate at which ticks progress to the next
stage in the life cycle without changing their infectivity; any ticks at a given stage which did not
die or become infected must progress to the next stage with the same infectivity status. Another
assumption in this model is that ticks are only infected by mice since white-footed mice have a very
high population density and are the primary hosts of larvae [18]. White-footed mice also transmit
and receive B. burgdorferi with greater effectiveness than other tick hosts, making them primary
spreaders of the pathogen [5]. Another assumption about tick behavior in our model is that only
one life stage of tick is feeding at a given time. Here, tick questing/feeding periods are mostly
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divided into two separate seasons although in reality there is some overlap, particularly for nymphs
and larvae, which will not be taken into account in this work. The final assumption of our model,
for which there is scientific evidence, is that infected ticks and mice do not transmit B. burgdorferi
to their offspring [20, 30].

2.2 Compartmental Model

For our model, we build a system of non-linear difference equations describing a susceptible, infec-
tious, and vaccinated (MS −MI −MV ) mouse population coupled with a susceptible and infectious
(NS − NI) tick population. To understand the mechanisms of these populations, life cycles, and
infectiousness, we construct a compartmental diagram representing the dynamics of the system,
capturing also the seasonality. We assume that the only species transmitting the infection are I.
scapularis and P. leucopus. A flow chart capturing the dynamics of the system is shown below in
Figure 1, and state variables and model parameters are summarized in Tables 1 and 2.

MI MS MV

μμ μ

ΛM

βM
NI
N0 ψω

LS

NI AI

NS AS

α2

α2 α3

α3

α1

βL
MI
M0

βN
MI
M0ΛT

Figure 1: Mouse/Tick Compartmental Model
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State Variables Definition

M(τ + 1) Total Mouse Population
MS(τ + 1) Susceptible Mice
MI(τ + 1) Infected Mice
MV (τ + 1) Vaccinated Mice

LS(τ + 1) Susceptible Larvae
N(τ + 1) Total Nymph Population
NI(τ + 1) Infected Nymphs
NS(τ + 1) Susceptible Nymphs
AI(τ + 1) Infected Adults
AS(τ + 1) Susceptible Adults

Table 1: State Variables for Mice and Ticks, taken at time τ .

Parameter Definition

ΛM Birth/recruitment of mice
βM Transmission constant from nymphs to mice
ψ Contact between mice and vaccines
ω Proportion of vaccine effectiveness
μ Natural death of mice

ΛT Recruitment of larvae
βL Transmission constant from mice to larvae
βN Transmission constant from mice to nymphs
α1 Egg to larva natural death
α2 Larva to nymph natural death
α3 Nymph to adult natural death

Table 2: Parameters for Population Dynamics

Mice have a constant birth ΛM per generation and a uniform death rate μ, with a probability
of survival given by e−μ. All mice are born as susceptible and can then become vaccinated with
probability e−ψω, where ψ is the rate per year at which mice become vaccinated and ω the percent
effectiveness of the vaccine. If not, they become infected by a nymphal tick with probability

e−βM
NI
N , where βM is a constant and NI

N weighs the impact of prevalence of nymphs infecting mice.

βM
NI
N is dependent only on nymphs because we assume that larvae do not hatch being infected

with B. burgdorferi so they cannot infect mice when they feed.

Ticks also have a constant recruitment per generation which is defined as ΛT , being the number
of larvae hatching every year. We assume a probability of death as e−αi , with each αi corresponding
to a respective stage change’s natural death as in Table 2. Larvae become infected with annual

probability e−βL
MI
M , where βL measures the impact of the bacteria infecting a susceptible larvae

if it bites an infected mouse. Any larva that does not become infected or die progresses to a
susceptible nymph. This transition is based on the assumption that no larvae survive through
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the next summer without feeding and progressing to nymphs. Nymphs then begin feeding and

susceptible nymphs can be infected with a probability of e−βN
MI
M , βN is defined as the rate nymphs

bite mice multiplied by the probability the bacteria infects a susceptible nymph if it bites an infected
mouse. At this point infected nymphs that do not die can also feed on a susceptible mouse to infect
it as is described in the mouse population. All infectious nymphs and susceptible nymphs that do
not become infected adults become infectious and susceptible adults respectively. This transition
is based on the assumption that no nymphs survive through the next spring without feeding and
progressing to adults.

2.3 Seasonality

In order to derive the final model, we first divide a one year time-step into several subintervals,
with each subinterval describing one specific process in the cycle. After each of the events is
mathematically described, they can be chained together to describe the population dynamics from
year to year. First, each important event in the system is associated with one or more arrows on
the flowchart. The full list of these transition equations derived from these events is provided in
Appendix 6.1.

For a visual representation of how the 2-year tick life cycle fits in to a model with 1-year time
steps see Figure 2. Although there is only one generation and life stage assumed to be questing
and feeding at a time, there are 2 generations that overlap each year. Our yearly cycle begins with
nymphs in the spring which quest, feed, and begin molting to the adult phase. We then consider
the larvae which hatch from the eggs of the previous year’s adults and begin questing and feeding
in the summer. These larvae will go on to become the next year’s nymphs. In the summer those
nymphs are dormant while they transition to adulthood and the larvae that hatched in the end of
the spring begin questing and feeding. Those larvae molt during the fall and winter. In the fall,
the adults, who were nymphs in the spring, lay the eggs for the next spring.

These building blocks are designed to be modular to allow for a possible different ordering of
events. The system, for the purposes of this model, is approximated as happening in the following
order: the cycle begins and ends in the spring, which is peak nymph activity. Thus the following
sequence of events for the life cycle and infectiousness for the populations is considered:

Spring

1. Mice are vaccinated
Mice are vaccinated at the beginning of our time-step because we want to measure the impact
of vaccination as protection against nymphal ticks, thus vaccination must take place before
nymphal ticks begin questing and feeding in the spring.

2. Susceptible mice become infected
Mice being infected is the first event related to the nymphal feeding season. Larvae infected
in the previous year have now progressed to nymphs and can infect mice by taking blood
meals.
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Summer

3. Nymphs become adults
Nymphs becoming adults means that the nymph successfully feeds, and from there any of the
following may occur:

• Infected nymphs become infected adults (infected nymph potentially infects host)

• Susceptible nymphs can become infected adults

• Susceptible nymphs can become susceptible adults

4. Mice die
Here we account for mice deaths that happen in the spring, after vaccination and after nymphs
have fed. We separate this event from the other event of deaths in mice to account for the
mice that are infected in the spring but do not survive to infect larvae in the summer.

5. Mice are born
Here we account for new births in the mice population that happen in the spring after vacci-
nation and the feeding of nymphs. We separate this event from the other event of births in
mice so as to maintain a consistent population size after the deaths calculated in the previous
step.

6. Larvae hatch
Eggs hatch throughout the summer and become larvae. These larvae do not feed until the
following spring (see Figure 2).

7. Larvae die
Here we account for larval deaths that occur during the hatching season and while questing.
Thus the future steps focusing on larvae can assume that all remaining larvae successfully
feed.

8. Larvae feed on mice
Here all remaining larvae successfully feed and become either infected or susceptible nymphs
based on whether they feed on an infected mouse and receive the bacteria. In our model,
we count these larvae as nymphs immediately after they feed whereas in reality they will not
finish molting to nymphs until next spring.

• Susceptible larvae can become susceptible nymphs

• Susceptible larvae can become infected nymphs
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Fall through end of winter

9. Nymphs die
Here we account for all nymphs that died during molting or while questing. Thus the the
solution for our nymph population is representative of the nymphs that successfully feed and
progress to adult, rather than counting nymphs that would have died while molting.

• Infected nymphs die

• Susceptible nymphs die

10. Mice die
Here we account for death that takes place from the beginning of summer until the end of
spring so that our solution for mouse population is representative of the population at the
beginning of spring.

11. Mice are born
Here we account for birth that takes place from the beginning of summer until the end of
spring so that our solution for mouse population is representative of the population at the
beginning of spring.

In Figure 2, different generations are designated by the subscripts 0, 1, and 2. Generation 1
covers the two-year span of the image, Generation 0 finishes in fall of the first year, and Generation
0’s descendants, Generation 2, begin their lives in summer of the second year. The subscripts
are not the same as the τ -indexed yearly time steps in the model. The nymphs and adults for a
particular year are the same generation of ticks, while the larvae are another. The vertical axis
does not depict relative population size, but indicates respective seasons of questing individuals. In
our model, the total population of any stage of tick in each year is the same as the total population
of the same stage in every other year, which allows us to organize their two-year cycle in one year.
This will be proved later in the analysis section.

Figure 2: Tick life cycle.
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2.4 Equations

To construct our system of equations, we use each rate on the flowchart to create an expression for
population before and after its associated event, and then proceed by combining those equations
into the full system. As an example, consider μ, the rate at which mice die. If we integrate to find
the total population before and after one year’s worth of deaths we get M(τ +1) = e−μM(τ). The
proportion of mice that survive is e−μ. Likewise, the proportion of mice that die is 1− e−μ.

To organize this ordering of events we separate the year into 11 sub-timesteps { τ + i
11 | i =

1,2, . . .,11 }. These sub-timesteps do not neccesarily correspond to a certain interval of time, and
often we account for an entire year’s worth of a particular process in each sub-step. If we wish
to account for processes over only part of the year our proportions will be of the form e−ζ/k for
arbitrary parameter ζ and fraction of the year 1/k. Furthermore, nonlinear terms will reference
other state variables in the exponent, which introduces more complexity to the final equations. A
full derivation of the system of equations can be found in Appendix 6.2.

The final system of equations (1), relating populations of mice and nymphs starting and ending
during spring, is presented below. Adult and larvae stages are not included in these final populations
as larvae have not yet hatched and adults died in the previous fall. However, the intermediate steps
contain solutions for each stage at various points in the year.

Let M(τ) = MS(τ)+MI(τ)+MV (τ) and N(τ) = NS(τ)+NI(τ), the total population of mice

and ticks, respectively. Then the system of equations, System (1), is given by:

NI(τ + 1) = ΛT e
− (α1+3α2)

4

⎛
⎜⎜⎜⎜⎝1− e

−βL
4

MI (τ)e
−μ

4 +MS(τ)e
−μ

4 e
−ψω

4

⎛
⎜⎝1−e

−βM
2

NI (τ)
N(τ)

⎞
⎟⎠

e
−μ

4 M(τ)+
ΛM
4

⎞
⎟⎟⎟⎟⎠ , (1a)

NS(τ + 1) = ΛT e
− (α1+3α2)

4

⎛
⎜⎜⎜⎜⎝e

−βL
4

MI (τ)e
−μ

4 +MS(τ)e
−μ

4 e
−ψω

4

⎛
⎜⎝1−e

−βM
2

NI (τ)
N(τ)

⎞
⎟⎠

e
−μ

4 M(τ)+
ΛM
4

⎞
⎟⎟⎟⎟⎠ . (1b)

MS(τ + 1) = MS(τ)e
−μe−

ψω
4 e−

βM
2

NI (τ)

N(τ) +
ΛM

4
(e−

3μ
4 + 3), (1c)

MI(τ + 1) = MI(τ)e
−μ +MS(τ)e

−μe−
ψω
4 (1− e−

βM
2

NI (τ)

N(τ) ), (1d)

and

MV (τ + 1) = MV (τ)e
−μ +MS(τ)e

−μ(1− e−
ψω
4 ). (1e)

The number of susceptible mice at time τ + 1 is equal to the number of susceptible mice
that did not die, did not become vaccinated, and did not become infected in the previous
year plus the mice that were born - accounting for the fact that mice are born throughout
the year by allowing 3/4 to be born before the larvae bite and 1/4 to be born after. The
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number of infected mice at time τ + 1 is equal to the number of infected mice that did not
die plus the number of susceptible mice that became infected and did not die. Likewise, the
number of vaccinated mice at time τ +1 is equal to the number of susceptible mice that did
not die plus the number of susceptible mice that became vaccinated and did not die.

The number of infected and susceptible nymphs at time τ + 1 is equal to the number
of eggs hatched times the survival rate times the probability of becoming infected or not
becoming infected, respectively. This rate is based on a contact rate times the proportion of
all mice which were infected in the previous summer.

3 Mathematical Analysis

3.1 Total Populations of I. scapularis and P. leucopus

The total population size of mice can be described by calculating M(τ +1), the sum of the suscep-
tible, infected, and vaccinated compartments at time τ + 1. The value M0 is the carrying capacity
of mice in the system.

M(τ + 1) = MS(τ + 1) +MI(τ + 1) +MV (τ + 1)

M(τ + 1) = e−μM(τ) +
ΛM

4
e

−3μ
4 +

3

4
ΛM

This is a linear difference equation whose solution is:

M(τ) = M(0)(e−μ)τ +
ΛM

4
(e−

3μ
4 + 3)

τ−1∑
i=0

e−μi

= M(0)(e−μ)τ +
ΛM

4
(e

−3μ
4 + 3)

(
1− (e−μ)τ

1− e−μ

)

Since μ is a positive constant, e−μ is a proportion and 0 < e−μ < 1. Therefore:

lim
τ→∞M(τ) =

ΛM

4

(e−
3μ
4 + 3)

1− e−μ
= M0

This is the mouse population at demographic steady state, and it can also be written as:

M0 =
ΛM

4
e−3μ/4 1

1− e−μ
+

3ΛM

4

1

1− e−μ
= M1

0 +M2
0

In biological terms, it is the number of mice born during event 5 of any year that did not die plus
the number of mice born during event 11 of any year.

Similar calculations can be performed on the total nymphal tick population with N(τ + 1)
equal to the sum of the susceptible and infected tick populations at time τ . In the construction of
this model, we assumed that there are no demographic pressures on the population other than the
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constant birth and death rates, so N(τ) is constant from year to year as well. That is,

N(τ + 1) = NS(τ + 1) +NI(τ + 1) = ΛT e
− (α1+3α2)

4

thus,

N0 = ΛT e
− (α1+3α2)

4 for all time τ.

The total nymph population is equal to the number of hatched eggs times the proportion of
nymphs that do survive before the sampling time. It follows from this calculation of M0 and N0

that we can reduce System (1) to a system of three equations. Let MS(τ) = M0− (MI(τ)+MV (τ))
and NS(τ) = N0 −NI(τ). The system becomes System (2), which is only in terms of the NI ,MI ,
and MV populations. System (2) will be used throughout the rest of the paper, including in the
numerical simulations (Section 4), and is given by:

NI(τ + 1) = ΛT e
− (α1+3α2)

4

⎛
⎜⎜⎜⎜⎜⎝1− e

−βL
4

MI (τ)e
−μ

4 +(M0−MI (τ)−MV (τ))e−
μ
4 e

−ψω
4

⎛
⎜⎝1−e

−βM
2

NI (τ)
N0

⎞
⎟⎠

e
−μ

4 M0+
ΛM
4

⎞
⎟⎟⎟⎟⎟⎠ , (2a)

MI(τ + 1) = MI(τ)e
−μ + (M0 −MI(τ)−MV (τ)) e

−μe−
ψω
4 (1− e

−βM
2

NI (τ)

N(τ) ), (2b)

MV (τ + 1) = MV (τ)e
−μ + (M0 −MI(τ)−MV (τ)) e

−μ(1− e−
ψω
4 ). (2c)

In the next section we proceed to calculate the fixed points of System (2)in order to understand its
long-term dynamics.

3.2 Fixed Points of System (2)

To find fixed points, we start by setting the equations in System (2) equal to their respective
populations. That is,

NI(τ + 1) = NI(τ) = N∗
I ,

MI(τ + 1) = MI(τ) = M∗
I ,

and

MV (τ + 1) = MV (τ) = M∗
M .

The disease-free equilibrium is obtained by letting N∗
I = 0, (N∗

S , N
∗
I ,M

∗
S ,M

∗
I ,M

∗
V ) where each

of the entries are given by:
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N∗
S = N0,

N∗
I = 0,

M∗
S = M0

1− e−μ

1− e−μ−ψω
4

,

M∗
I = 0,

and

M∗
V = M0

e−μ(1− e−
ψω
4 )

1− e−μ−ψω
4

.

As expected, the total population is at demographic steady state; M∗
S+M∗

V = M0. We can also
interpret the mouse populations at disease-free equilibrium as proportions of the total equilibrium
mouse population. That is,

M∗
S

M0
=

1− e−μ

1− e−μ−ψω
4

,

and

M∗
V

M0
=

e−μ(1− e−
ψω
4 )

1− e−μ−ψω
4

.

The expression
M∗

S

M0
is the proportion of mice that die and are thus replaced at demographic equi-

librium over the proportion that either get vaccinated or die. Furthermore,
M∗

V

M0
is the proportion

that survive times the proportion that do get vaccinated over the proportion that either die or get
vaccinated.

3.3 Stability of the Disease-Free Equilibrium and Calculation of RC, the Control
Reproduction Number

The stability of the disease-free equilibrium can be achieved by linearizing System (2) and calcu-
lating the Jacobian at the disease-free equilibrium and through the eigenvalues. Notice that this

matrix is singular; the first row is a constant multiple
e−

(α1+3α2)
4 (1− e−μ)βLΛT(

3e−μ + e−3μ/4
)
ΛM

of the second.

The Jacobian matrix of System (2) is given by

J(N∗
I ,M

∗
I ,M

∗
V ) =

⎡
⎢⎢⎣

∂NI(τ+1)
∂NI(τ)

∂NI(τ+1)
∂MI(τ)

∂NI(τ+1)
∂MV (τ)

∂MI(τ+1)
∂NI(τ)

∂MI(τ+1)
∂MI(τ)

∂MI(τ+1)
∂MV (τ)

∂MV (τ+1)
∂NI(τ)

∂MV (τ+1)
∂MI(τ)

∂MV (τ+1)
∂MV (τ)

⎤
⎥⎥⎦ ,
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J(N∗
I ,M

∗
I ,M

∗
V )
∣∣
D.F.E

=

⎡
⎢⎢⎢⎢⎢⎢⎣

βMβL
8

(3e−
μ
4 +e−μ)e−

3μ
4 −ψω

4

(1−e−μ−ψω
4 )

(1−e−μ)
(3e−μ+e−3μ/4)

e−μ e−
(α1+3α2)

4 (1−e−μ)βLΛT

(3e−μ+e−3μ/4)ΛM
0

βMΛM
8ΛT

(3e−
μ
4 +e−μ)e−

3μ
4 −ψω

4

(1−e−μ−ψω
4 )e−

(α1+3α2)
4

e−μ 0

0 −e−μ
(
1− e−

ψω
4

)
e−μ−ψω

4

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The eigenvalues of the Jacobian matrix evaluated at the D.F.E. are:

λ1 = 0,

λ2 = e−μ−ψω
4 ,

and

λ3 = e−μ +
βM
2

βL
4

(
1− e−μ

1− e−μ−ψω
4

)(
e−μ + 3e

−μ
4

e
−3μ
4 + 3e−μ

)
e

−3μ
4

−ψω
4 .

The first two eigenvalues λ1 and λ2 both have magnitude less than 1. The third eigenvalue may or
may not be less than 1 in magnitude, and it therefore serves as a condition for stability. If |λ3| < 1,
the disease-free equilibrium is locally stable. Otherwise, it is unstable. However, since all of the
parameters are defined as positive constants, λ3 is strictly positive, meaning we can reduce the
expression further.

e−μ +
βM
2

βL
4

(
1− e−μ

1− e−μ−ψω
4

)(
e−μ + 3e

−μ
4

e
−3μ
4 + 3e−μ

)
e

−3μ
4

−ψω
4 < 1

⇐⇒ βM
2

βL
4

(
1− e−μ

1− e−μ−ψω
4

)(
e−μ + 3e

−μ
4

e
−3μ
4 + 3e−μ

)
e

−3μ
4

−ψω
4 < 1− e−μ

⇐⇒ βM
2

βL
4

(
1

1− e−μ−ψω
4

)(
e−μ + 3e

−μ
4

e
−3μ
4 + 3e−μ

)
e

−3μ
4

−ψω
4 < 1.

Therefore, let

r =

(
βMβL

8(1− e−μ−ψω
4 )

)(
e−μ + 3e

−μ
4

e
−3μ
4 + 3e−μ

)
e

−3μ
4

−ψω
4 . (3)

Although r < 1 is a condition for stability, r �= RC . But by Allen and van den Driessche [3]
either r = RC = 1, 1 < r ≤ RC , or 0 ≤ RC ≤ r < 1, meaning stability conditions based on r are
equivalent to stability conditions based on RC . The canonical value of RC can be calculated using
the next-generation matrix approach. We begin by representing the Jacobian matrix as follows:

J =

[
F + T O
A C

]

where F + T is the 2 × 2 submatrix relating the NI and MI compartments, O is the 2 × 1 zero
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matrix, A is a 1× 2 matrix, and C is the 1× 1 matrix
[
e−μ−ψω

4

]
. F consists of all terms relating

to new infections and T consists of all other terms in each matrix entry.

F =

⎡
⎢⎢⎢⎣

βMΛM
8ΛT

(3e−
μ
4 +e−μ)e−

3μ
4 −ψω

4

(1−e−μ−ψω
4 )e−

(α1+3α2)
4

e−
(α1+3α2)

4 (1−e−μ)βLΛT

(3e−μ+e−3μ/4)ΛM
e−μ e−

(α1+3α2)
4 (1−e−μ)βLΛT

(3e−μ+e−3μ/4)ΛM

βMΛM
8ΛT

(3e−
μ
4 +e−μ)e−

3μ
4 −ψω

4

(1−e−μ−ψω
4 )e−

(α1+3α2)
4

0

⎤
⎥⎥⎥⎦

and

T =

[
0 0
0 e−μ

]
.

As with the full Jacobian, the matrix F+T is singular as well. We can also use r from above to
simplify this calculation. Let F =

(
ka kb
a 0

)
and T =

(
0 0
0 b

)
We can use these matrices to calculate

the next-generation matrix Q and an expression for RC .

Q = F (I2×2 − T )−1

=

[
ka kb

1−b

a 0

]
,

with the associated eigenvalues,

λ1,2 =

{
1

2

(
ka±

√
(ka)2 +

4(ka)b

1− b

)}
,

in which case,

RC =
1

2

(
ka+

√
(ka)2 +

4(ka)b

1− b

)

=
1

2

⎛
⎝(1− e−μ)

(
e−μ + 3e−μ/4

)
βLβMe−

3μ
4
−ψω

4

8
(
3e−μ + e−3μ/4

) (
1− e−μ−ψω

4

)
⎞
⎠+

1

2

√√√√√(1− e−μ)2
(
e−μ + 3e−μ/4

)2
β2
Lβ

2
Me−

3μ
2
−ψω

2

64
(
3e−μ + e−3μ/4

)2 (
1− e−μ−ψω

4

)2 +

(
e−μ + 3e−μ/4

)
βLβMe−

7μ
4
−ψω

4

2
(
3e−μ + e−3μ/4

) (
1− e−μ−ψω

4

)

This depends on ∂NI(τ+1)
∂NI(τ)

and a term representing ∂NI(τ+1)
∂NI(τ)

times b
1−b , the total mice that

have survived to year τ . Since e−μ−ψω
4 , the spectral radius of C, is always between 0 and 1, RC

provides a stability condition for the disease-free equilibrium. If RC < 1, the equilibrium is stable.
Otherwise, it is unstable.
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3.4 Existence of Endemic Equilibria

To prove the existence of fixed points we reduce this system to one equation. We solve Equation
(2c) in terms of M∗

I and Equation (2b) in terms of N∗
I . Plugging those two equations into Equation

(2a) we can write a single equation in terms of N∗
I . For the full derivation, see Appendix 6.4. The

number of roots of this equation will determine the number of solutions, and is given by:

G(N∗
I ) = ln

(
1− N∗

I

N0

)
+

βLM0e
−μ

4 e−
ψω
4

4
(
e

−μ
4 M0 +

ΛM
4

)
⎛
⎝ 1− e

−βM
2

N∗
I

N0

1− e−μe
−ψω

4 e
−βM

2

N∗
I

N0

⎞
⎠ = 0. (5)

Since this equation is transcendental, we can not analytically find zeros of Equation (5). How-
ever, by inspection, we notice that G(0) = 0, which suggests the existence of a disease-free equi-
librium. We can find other roots numerically by graphing the equation with the parameter values
found in the literature. Because of the large range of available estimates for contact rates βL and
βN we plot three curves, one for each parameter value chosen. For a more detailed explanation of
these estimates see Section 4.1. The beta values in Figure 3, are listed per year and correspond to
values of low contact, medium contact, and high contact from bottom to top.

Figure 3: Existence of equilibrium with vaccination. Equilibria correspond to roots of G.

In Figure 3, it is evident that, for medium and high contact rates there exist two solutions:
the disease-free and the endemic equilibrium. The graph demonstrates a parabolic behavior having
a root at G(0) = 0, reaching a max and then going downwards until it reaches another root.
Therefore we know that there exists at least one positive root by the Intermediate Value Theorem
by observing the positive values in the graph for NI > 0 and knowing limNI→∞G(NI) = −∞. For
the low contact rates, βM = 1 and βL=0.5, we notice different behavior. G‘(NI) < 0 for all NI , and
the only non-negative root is NI∗ = 0. In fact, in this low contact rate scenario, we can calculate
that RC < 1, meaning that the disease-free equilibrium is stable.
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4 Numerical Results

4.1 Parameter Estimation

Parameter Definition Value Units Reference

M Total mouse population 50 Individuals [21]
ΛM Birth/recruitment of mice 65.02 Individuals
ψ Contact between mice and vaccines Estimated 1/year
βM Transmission from nymphs to mice Estimated 1/year
ω Proportion of vaccine effectiveness 0.96 1/year [35]
μ Natural death rate of mice 4.38 1/year [23, 38]

N Total nymph population 1000 Individuals [2]
ΛT Recruitment of larvae 1.998x105 Individuals
βL Transmission from mice to larvae Estimated 1/year
βN Transmission from mice to nymphs Estimated 1/year
α1 Egg to larva natural death 11.98 1/year [36]
α2 Larva to nymph natural death 3.07 1/year [36]
α3 Nymph adult natural death 3.22 1/year [36]

Table 3: Parameters values for population dynamics

Many of these parameters are given as rates in units of 1/year, which were often converted from
1/day as found in literature. Whenever these parameters appear in the model they are always within
exponents, e.g. e−μ, which converts the rates into proportions as is necessary for the discrete-time
model. Our time step of one year is subdivided by seasons in order to accurately account for tick

life/activity stages, thus some of the proportions are shown to be fractions. For example, e
−3μ
4

represents the survival for three out of the four seasons. This use of fractional exponents is used
for recruitment, death, vaccination, and contact constants.

Values for α1, α2, and α3 were derived from survival proportions between each stage of the
tick life cycle; exact calculations are in Appendix 6.5. The total mouse population of 50 and total
nymph population of 1000 were estimated using data on mice and tick populations in fragmented
forest areas, relating woodland size to population density. We focused on plot sizes of 1.1 hectares
to match the study that gave us our proportion of vaccine effectiveness [35]. Though the data
varied, we chose populations that had biological significance and would allow us to simulate our
model. Values ΛM and ΛT were calculated from the population death rates and sizes, using the
equilibrium solutions for the total mouse and tick populations as found in Appendix 6.2. The three
sets of β values in units of 1/year, βN= 0.68, 0.86, and 1.47, βL=3.41, 4.29, and 5.73, and βM=7.05,
8.87, and 11.85, were estimated to signify very low, moderate, and high transmission rates, each
respectively corresponding to approximately 20%, 35% and 50% of nymphs infected at equilibrium.
Since biting rates between ticks and mice are dependent on abiotic factors and proportions of other
nymph hosts that are not present in our model, we wanted to use β values that would provide
information on a wide range of biologically feasible scenarios. All calculations for parameter values
are explained further in Appendix 6.5.
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4.2 Numerical Analysis

Below is a directory for all of the simulations conducted in this section.

Scenario Figures Summary Parameters

1 4 Simulate susceptible, infected, and
vaccinated populations vs time to
understand general trends.

βN=0.86/yr, βL=4.29/yr, βM=
8.87/yr, RC = 1.27

2 5 Vary contact rates βN , βL, and βM ;
find equilibrium infectious propor-
tions and R0 with no vaccination.

ψ = 0

3 6, 7, 8 Vary vaccination rate with fixed
contact rates; find equilibrium infec-
tious proportions.

Figure 6: low contact rates,
RC ∈ [0.18, 3.02].

Figure 7: medium contact rates,
RC ∈ [0.28, 4.77].
Figure 8: high contact rates,
RC ∈ [0.48, 8.51].

4 9 Vary vaccination rate to find RC . Low, medium, and high contact
rates for moderate transmission

5 10 Vary vaccination rate to find infec-
tious proportions after 2, 5, and 10
years.

Low, medium, and high contact
rates

The first step in numerical analysis was creating plots of mouse and tick populations with respect
to time to confirm the equations behaved as hypothesized. These simulations were implemented
using MATLAB. These results were surprising in that populations tended to reach equilibrium
within the first 6 years. However, vaccination’s ability to drive an endemic equilibrium with a high
proportion of infected ticks to one with very few infected ticks was as expected.

(a) No Vaccination (b) Vaccination

Figure 4: Mouse and nymph populations with and without vaccination at M=50 mice, N=1000
ticks, βN=0.86/year, βL=4.29/year, βM=8.87/year, RC = 1.27, R0 = 4.77.
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The next step in our analysis was to measure the change in the asymptotic equilibrium for
increasing infectious contact rates. We vary infectious contact rates by keeping a constant ratio
between βN , βL, and βM , varying their magnitude as seen in Figure 5. There is a set ratio between
the mouse and the nymphal contact rate because they are both dependent on the rate at which
ticks bite mite. To convert the tick biting rate to the mouse biting rate, we multiplied by the
proportion of nymphs to mice. We set βN to vary from 0 to 1.2 and then tested varying ratios
between βN and βL until we found sets of contact rates that corresponded to percent nymphs
infected at equilibrium that matched biological expectations[29]. For this simulation we keep ψ = 0
which represents no vaccination. This was critical to providing estimates for contact rates but also
revealed novel dynamics. The mouse population asymptotically approaches approximately 1.2%
infected as contact rates increase. This can be explained by the ordering of events in our model,
specifically observing that three-fourths of mice recruitment takes place at the end of the year.
Since all mice are born susceptible, these mice are counted as susceptible at our sampling time in
the next spring. Even if 100% of mice were to be infected after the nymph biting period, those
mice must survive fall, winter, and most of spring to affect the next cycle, which gives biological
justification to the trend in Figure 5 explained above. Due to the short life span of the mice, only a
very low proportion of them actually make it to the next spring, so biologically there should always
be a minimum number of susceptible mice in the spring.

Another important finding of these simulations is that mice almost immediately reach the
threshold of infected mice (for a value of βL=4) while the proportion of infected nymphs is still
approximately 30%. This means that the spring population of mice is not a good predictor of the
proportion of infected nymphs that year as the percent of nymphs infected could vary from 30% to
100% with very little measurable change in mouse infection prevalence. Additionally, the infected
mouse population is so small for any infectious contact rates that any field estimation would be
very difficult. In short, while the exact maximum proportion of infected mice will vary between
geographical regions and mice habitats, the proportion of infected mice measured it in the spring
is not a good predictor for Lyme disease risk that year. This simulation also confirms the stability
of a disease free equilibrium when RC < 1 for values of βL below 2.75 (see Figure 5).
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Figure 5: Asymptotic fixed points for infected mice and nymph proportions of population as βL
varies, M=50, N=1000, ψ = 0, R0=[0, 12.68].

We now analyze the asymptotic behavior of endemic equilibria with respect to varying vaccina-
tion rates, ψ, at the low (Figure 6), medium (Figure 7), and high (Figure 8) test values for contact
rates between mice and ticks as discussed in our parameter estimation. These plots show that the
proportion of infected ticks can be reduced to less than one (less than 10−3 proportion infected
since the nymphal population size is 1000) at vaccination rates of approximately 2/year, 4/year,
and 6/year1 for the low, medium, and high sets of infectious contact rates values respectively. This
shows an approximately linear relationship between an endemic equilibrium of ticks infected with-
out vaccination and the vaccination rate required to control the epidemic. If equilibrium infection
prevalence increases by 15% then the vaccination rate required to eliminate the pathogen is an ad-
ditional 2/year. For example, the low set of contact rates which correspond to approximately 20%
of nymphs infected require a vaccination rate of 2/year to be reduced to less than one infected tick
(Figure 6). The medium contact rates which correspond to approximately 35% infected require a
vaccination rate of 4/year to be reduced to less than one infected tick (Figure 7). A similar change
is seen again from the medium contact rates to the high contact rates, corresponding to 50% of
nymphs infected, as they require a vaccination rate of 6 per year to be reduced to less than one
infected nymph (Figure 8). This can be a guide to those seeking to introduce vaccination across a
variety of areas who may not have the aid of computational tools to recalculate vaccination rates
for each area.

1A note on interpretation: A vaccination rate of ψ = 6/year means it takes one mouse an average of 1/6 of a year
to encounter a bait box.
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Figure 6: Population proportions at low contact rates as ψ varies at M=50, N=1000
βN = 0.68/year, βL = 3.41/year, βM = 7.05/year, RC = [0.18, 3.02].

Figure 7: Population proportions at medium contact rates as ψ varies at M=50, N=1000
βN = 0.86/year, βL = 4.29/year, βM = 8.87/year, RC = [0.28, 4.77].
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Figure 8: Population proportions at high contact rates as ψ varies at M=50, N=1000
βN = 1.47/year, βL = 5.73/year, βM = 11.85/year, RC = [0.48, 8.51].

We also wish to know at which values of ψ the disease-free equilibrium is stable. So in Figure
9 we plot RC vs ψ for the same three sets of infectious contact rates as in Figures 6, 7, and 8.
In Figure 9, the point where any of the curves cross the line RC = 1 (100) is the critical point in
determining the stability. For small β values, this is at ψ = 4.58/year, for medium β values, it is at
ψ = 6.55/year, and at large β values, this is at ψ = 11.04/year. As expected, higher transmission
rates lead to a greater RC and more vaccination is needed to bring the epidemic under control.
Important to note is that the vaccination rates required to reduce the proportion of infected ticks to
less than 1 are significantly less than the vaccination rates required to reduce RC to less than 1. The
difference between these interpretations is that numerically there exist endemic equilibria with the
number of infected ticks between 0 to 1, however, these values do not make sense biologically since
fractional ticks do not exist. This implies that, though RC is a sufficient condition for elimination
of B. burgdorferi in the mouse-tick system, it is not a necessary condition, so analysis of vaccine
effectiveness should not center on RC .
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Figure 9: RC vs ψ at varying values of β

Mapping equilibria as done in Figures 6, 7, and 8 is not necessarily feasible for determining
usefulness of an intervention since results are often expected much sooner than equilibria occur.
Therefore, we also mapped the effect of vaccination on the proportion of infected nymphs after
two, five, and ten years in Figure 10. These results showed that, not only can vaccinating mice
significantly reduce the endemic prevalence, it can do so within short time periods. Vaccination was
effective at reducing the number of infected nymphs to zero for all infectious contact rates within
the range of vaccination rates sampled. The number of infected ticks at the different time intervals
were almost identical if the proportion of infected ticks was above 20% but the longer durations of
vaccination begin to reduce more ticks for lower proportions of infected ticks. This means that if
the proportion of infected ticks is above 20%, individuals using vaccines to reduce the number of
infected ticks should expect to see the same results every year after two years; however, for lower
proportions, they should see lower number of ticks each year if continuing to vaccinate at the same
rate. The 20% prevalence of B. burgdorferi in nymphal ticks serves as a threshold such that at this
point, the tick population is resistant to vaccination but the prevalence begins to approach very
low values as vaccines are repeatedly used if the prevalence drops below 20%.
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Figure 10: Vaccine effect on nymphs compared to years of use, M=50 mice, N=1000 ticks at
RC = [0.18, 3.02], RC = [0.28, 4.77], and RC = [0.48, 8.51]. (βN/yr, βL/yr, βM/yr)

4.3 Risk and Cost Analysis

Through risk and cost analysis we can understand the effectiveness of mice vaccination at reducing
human cases of Lyme disease. We have determined that vaccines can significantly reduce the
number of infected nymphal ticks in an area; thus we also compare the cost of vaccination with
reductions of human risk to determine if the intervention is cost-effective. In order to predict the
change in the risk of human Lyme disease cases, we construct the following function for the yearly
number of new human cases, I, also known as the incidence rate:

I = NI
N · ρ · γ ·HS ,

where ρ is the probability of infection for humans after nymph bite and γ is the biting rate of
tick nymph per human per year. NI is the number of infected nymphs dependent on ψ and β
values. We did not take NI at the fixed point because this value often took decades or centuries
to reach, which would not be a feasible amount of time for this intervention. Although adult ticks
also bite humans, we do not include these contacts in our model because this is minimal in terms
of transmitting infection to humans; due to the large size of these ticks, most are detected and
removed before the necessary time to transmit the infection [6, 27]. We take the value of ρ to be
0.031, obtained by taking an average from a range of values in our source [19]. We found γ to
be valued at 0.005/day, or equivalently 0.913/year2, from another model but decided to vary this

20.005 ∗ 365 = 1.825/year. Nymphs are active for only half the year, and 1.825/2 ≈ 0.913
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value since it was unclear how this γ had been calculated [38].

HS is the number of people who spend their tick exposure time in that tick-infected region.
There are three components to calculating HS . First is the yearly number of unique people that
move through an area. Second is the average percentage of those people’s tick exposure time spent
in the vaccination area. Third is the percentage of that area that is covered by 1 hectares. For
example, 1,000 unique people may walk on a suburban trail in a year. Since this a neighborhood
trail, most of those people are likely regularly there walking dogs or spending time with their
children so the average person may spend 80% of their total time exposed to ticks on that trail.
Finally, that trail may be a kilometer long so if mice are vaccinated for 50 meters on either side of
the trail, the total vaccination area would be 5 hectares so a single hectare of vaccination would
only cover 20% of the total trail risk. This gives us our first estimated HS value of 160. The other
two estimated values follow similarly. One accounts for a similar trail, but less populated, and the
other represents a public park. Table 4 compares these three scenarios.

HS value 80 160 750

Geographical area Trail Trail Park
Number of people 500 1000 5000

Proportion of time spent 80% 80% 30%
Proportion of area covered 20% 20% 50%

Table 4: Scenarios for estimation of HS values

To analyze the cost of Lyme disease treatment, we examine the relationship between total cost
of implementation of mice vaccination and average cost for Lyme disease treatment per infected
person. We assume a linear relationship between ψ, the vaccination rate per year, and the increase in
cost per increase in vaccination rate, x. Considering the fact that white-footed mice are territorial,
it is possible that a particular nest of mice are the only ones feeding from a particular bait box[31].
Thus, the same amount of mice would access each box regardless of the number of boxes until all
mice are vaccinated, making this assumption biologically feasible. This achieves the following cost
function,

Ctotal = x · ψ + I · θ

where θ is the average cost of Lyme disease treatment per infection, calculated to be $3537.70 per
year per person based on studies of health care costs of Lyme disease, as shown in Appendix 6.5.
Using data from a field study of vaccines targeting white-footed mice, we estimated x to be $329.29
per unit increase in ψ, as shown in Appendix 6.5 [14, 29]. Thus the total cost will be given by
Equation (6)

Ctotal = x · ψ + θ · ρ · γ · NI

N
HS . (6)

For a summary of parameters of the cost function as well as their definitions and values see Table
5:
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PARAM Definition Unit Value Source
x Increase in cost per increase in vaccination rate dollars $329.29 [29]
ψ Contact between mice and vaccines 1/year Estimated -
θ Average cost of Lyme disease treatment dollars/infection $3537.70 [1]
ρ Prob. of infection for humans after nymph bite infections/bites .031 [19]
γ Biting rate of tick nymph per human per year bites/(human·year) Estimated -
HS Susceptible humans people Estimated -

Table 5: Parameters values for risk and cost equations

We then modeled the relationship between vaccination rate and dollars saved in a human
population infected with Lyme disease and mouse vaccination intervention after ten years across
varying values of γ. Figures 11, 12, and 13 represent susceptible populations of 80, 160, and 750
humans, respectively. In all of these plots we observe a similar trend in that the higher the value
of γ, the more money saved. However, only for a human population size of 1,000 does vaccination
become cost-effective for every γ value. We also observe that at certain points there is an optimal
value for ψ that will guarantee the most money saved. The greater the human population, the
greater the vaccination rate needs to be in order to maximize cost-effectiveness. Additionally, this
maximum value is much greater for larger human populations. In the parks, the highest number of
susceptible humans, vaccination saved up to approximately $27,000 per year whereas significantly
less money is saved from vaccinating on trails.

Figure 11: Dollars saved after 10 years of vaccination for varying nymphal biting rates, HS = 80,
M=50, N=1000, βN=0.86/year, βL=4.29/year, βM=8.87/year
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Figure 12: Dollars saved after 10 years of vaccination for varying nymphal biting rates, HS = 160,
M=50, N=1000, βN=0.86/year, βL=4.29/year, βM=8.87/year

Figure 13: Dollars saved after 10 years of vaccination for varying nymphal biting rates, HS = 750,
M=50, N=1000, βN=0.86/year, βL=4.29/year, βM=8.87/year

This reflects that vaccines can be a cost-efficient method when compared to treatment for Lyme
disease but likely will only remain cost-efficient when mice are coming into frequent contact with
bait boxes, especially in areas that have a high level of human traffic.
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5 Discussion

In the present research, a coupled mouse (MS − MI − MV ) and nymphal tick (NS − NI) model
was used to determine whether the implementation of vaccination of the mouse populations in
fragmented forests could reduce the population of infected ticks there. This model captures both
the seasonal dynamics of the mouse-tick interactions and the effects of vaccination on the persistence
of the infection. These characteristics are important because an accurate estimate of the infection
prevalence within the nymphal stage can provide a direct relationship with the expected number
of human cases in an area and the cost-effectiveness of vaccines.

Preliminary analysis is based on first proving constant population size in both species to reduce
the system of equations to (MI − MV ) and (NI). With our reduced system of equations the
existence of solutions was tested, giving us two roots demonstrating the existence of a disease-free
equilibrium and an endemic equilibrium with and without vaccination. Due to the nature of the
equations, only the disease-free equilibrium could be explicitly found. Through the use of the
Jacobian and a next-generation matrix approach the stability conditions and RC were calculated
for the disease-free equilibrium.

The results from computer simulations show that vaccination can eliminate transmission of B.
burgdorferi between mice and ticks and can do so at achievable rates and duration of vaccination.
Furthermore, we discovered that the proportion of infected ticks can be reduced to below one at
vaccination rates significantly less than those required to reduce RC to less than 1. This means that
though RC being less than one is sufficient for elimination of the tick-mouse transmission pathway,
it often is not required. Additionally, we found that the vaccination rates required to reduce the
number of infected ticks to 20% were the same regardless of duration of vaccination but that the
duration of vaccination began to have a major impact on infected tick reduction for prevalences
lower than 20%. This tells us that the proportion of infected ticks can be reduced to 20% within
the first two years but long-term vaccination would likely be required to actually eliminate the
transmission pathway.

Furthermore, the cost-benefit analysis shows that vaccine intervention is cost-effective if there
is significant human presence in the area, and especially if there is a high rate of tick bites to these
humans. In its current form, vaccination of mice may never eradicate B. burgdorferi worldwide since
there are other reservoirs carrying the infection, but it could prove to be a cost-effective measure to
reduce human cases of Lyme disease in specific targeted areas where mice are primary reservoirs. We
believe this could be a particularly practical measure in fragmented forests near human settlements
like parks or wooded areas in and around suburban developments. These environments often have
very high infection prevalence among nymphal ticks, low mammal diversity, and high levels of
human activity.

In future research, this model could be adapted to include influence of other control factors.
Some promising methods include chemical or fungal pesticides to cull tick populations, or increasing
mammalian biodiversity to allow for predation or for competition with less competent reservoirs of
small mammal hosts. Modeling the pesticide methods could include adding classes of mice that are
protected by pesticide applied directly to their fur through similar bait boxes to the ones that deliver
the vaccine. Increased biodiversity might include predator-prey or competition dynamics with
different species of host having different transmission rates. Any of these modifications could quickly
become much more complicated as more compartments are added to the model. It would also be
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possible to produce a more detailed cost analysis, perhaps with compartments for susceptible,
infectious, and susceptible again, or with more intensive parameter estimation. Lyme disease is
a significant public health problem, and a variety of mathematical models could offer solutions
without the need for expensive field tests.
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6 Appendix

6.1 Appendix 1 - General, Discrete form of transition equations

Mice in Vaccine System

Event Flow Term in Equation

Mice are born → MS MS(τ + i+1
k )=c∗ΛM +MS(τ + i

k )
Mice are Vaccinated MS → MV MS(τ + i+1

k ) = MS(τ + i
k )e

−cψω

VM (τ + i+1
k ) = MV (τ + i

k ) +MS(τ + i
k )(1− e−cψω)

Mice Die MS → MS(τ + i+1
k ) = MS(τ + i

k )e
−cμ

MI → MI(τ + i+1
k ) = MI(τ + i

k )e
−cμ

MV → MV (τ + i+1
k ) = MV (τ + i

k )e
−cμ

Mice are Infected MS → MI MS(τ + i+1
k ) = MS(τ + i

k )e

−cβIS
NI (τ+

i
k
)+NS(τ+ i

k
)

MI(τ+
i+1
k ) = MI(τ+

i
k )+MS(τ+

i
k )(1−e

−cβIS
NI (τ+

i
k
)+NS(τ+ i

k
) )

Event Flow Term in Equation

Ticks Die LS → LS(τ + i+1
k ) = LS(τ + i

k )e
−cα

NS → NS(τ + i+1
k ) = NS(τ + i

k )e
−cα

NI → NI(τ + i+1
k ) = NI(τ + i

k )e
−cα

AS → AS(τ + i+1
k ) = AS(τ + i

k )e
−cα

AI → AI(τ + i+1
k ) = AI(τ + i

k )e
−cα

Larvae Feed LS → NI NI(τ + i+1
k ) = LS(τ + i

k )e
−cβL

MI (τ+
i
k
)

∗∗M(τ+ i
k
)

LS → NS NS(τ + i+1
k ) = LS(τ + i

k )(1− e
−cβL

MI (τ+
i
k
)

M(τ+ i
k
) )

Nymphs Feed NI → AI AI(τ + i+1
k ) = NS(τ + i

k )

NS → AI AI(τ + i+1
k ) = NS(τ + i

k )e
−cβN

MI (τ+
i
k
)

M(τ+ i
k
)

NS → AS AS(τ + i+1
k ) = NS(τ + i

k )(1− e
−cβN

MI (τ+
i
k
)

M(τ+ i
k
)
)

Larvae Hatch → LS LS(τ + i+1
k ) = Ls(τ + i

k ) + cΛT

Table 6: Discrete terms associated with flow rates in the system.

*c is the proportion of the year for which the particular process takes place. This is not constant
for a given compartment transition and depends on the ordering of events and transitions being
divided into multiple events.
***M(τ) = MI(τ) +MV (τ) +MS(τ) is the total mouse population at time τ .
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6.2 Appendix 2 - Model Derivation

Let M(τ)= M(τ) and N(τ)=NI(τ) +NS(τ).

1. Mice are vaccinated

MS(τ +
1

11
) = MS(τ)e

−ψω
4

MV (τ +
1

11
) = MV (τ) +MS(τ)(1− e−

ψω
4 )

2. Nymphs infect mice

MS(τ +
2

11
) = MS(τ +

1

11
)e

−βM
2

NI (τ)

N(τ)

= MS(τ)e
−ψω

4 e
−βM

2

NI (τ)

N(τ)

MI(τ +
2

11
) = MI(τ +

1

11
) +MS(τ +

1

11
)

(
1− e

−βM
2

NI (τ)

N(τ)

)

= MI(τ) +MS(τ)e
−ψω

4

(
1− e

−βM
2

NI (τ)

N(τ)

)

3. Susceptible and infected nymphs feed on mice and become infected adults

AI(τ +
3

11
) = NI(τ +

2

11
) +NS(τ +

2

11
)

(
1− e

−βN
2

MI (τ+
2
11 )

M(τ+ 2
11 )

)

= NI(τ) +NS(τ)

⎛
⎜⎜⎜⎝1− e

−βN
2

MI (τ)+MS(τ)e
−ψω

4

⎛
⎜⎝1−e

−βM
2

NI (τ)
N(τ)

⎞
⎟⎠

M(τ)

⎞
⎟⎟⎟⎠

Susceptible nymphs become susceptible adults

AS(τ +
3

11
) = NS(τ +

2

11
)

(
e
−βN

2

MI (τ+
2
11 )

M(τ+ 2
11 )

)

= NS(τ)(e
− 3α3

4 )

⎛
⎜⎜⎜⎝e−

βN
2

MI (τ)+MS(τ)e
−ψω

4

⎛
⎜⎝1−e

−βM
2

NI (τ)
N(τ)

⎞
⎟⎠

M(τ)

⎞
⎟⎟⎟⎠
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4. Mice die

MS(τ +
4

11
) = MS(τ +

3

11
)e−

μ
4

= MS(τ)e
−μ

4 e−
ψω
4 e

−βM
2

NI (τ)

N(τ)

MI(τ +
4

11
) = MI(τ +

3

11
)e−

μ
4

= MI(τ)e
−μ

4 +MS(τ)e
−μ

4 e−
ψω
4

(
1− e

−βM
2

NI (τ)

N(τ)

)

MV (τ +
4

11
) = MV (τ +

3

11
)e−

μ
4

= MV (τ)e
−μ

4 +MS(τ)e
−μ

4 (1− e−
ψω
4 )

5. Mice are born

MS(τ +
5

11
) = MS(τ +

4

11
) +

ΛM

4

= MS(τ)e
−μ

4 e
−ψω

4 e
−βM

2

NI (τ)

N(τ) +
ΛM

4

6. Larvae hatch

LS(τ +
6

11
) = LS(τ +

5

11
) + ΛT

= ΛT

7. Larvae Die

LS(τ +
7

11
) = LS(τ +

6

11
)e

−α1
4

= e−
α1
4 ΛT
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8. Larvae feed, possibly get infected, and transition to nymphs

NS(τ +
8

11
) = LS(τ +

7

11
)

(
e
−βL

4

MI (τ+
7
11 )

M(τ+ 7
11 )

)

= ΛT e
−α1

4

⎛
⎜⎜⎜⎜⎜⎝e

−βL
4

MI (τ)e
−μ

4 +MS(τ)e
−μ

4 e
−ψω

4

⎛
⎜⎝1−e

−βM
2

NI (τ)
N(τ)

⎞
⎟⎠

e
−μ

4 M(τ)+
ΛM
4

⎞
⎟⎟⎟⎟⎟⎠

NI(τ +
8

11
) = LS(τ +

7

11
)

(
1− e

−βL
4

MI (τ+
7
11 )

M(τ+ 7
11 )

)

= ΛT e
−α1

4

⎛
⎜⎜⎜⎜⎜⎝1− e

−βL
4

MI (τ)e
−μ

4 +MS(τ)e
−μ

4 e
−ψω

4

⎛
⎜⎝1−e

−βM
2

NI (τ)
N(τ)

⎞
⎟⎠

e
−μ

4 M(τ)+
ΛM
4

⎞
⎟⎟⎟⎟⎟⎠

9. Nymphs die

NS(τ +
9

11
) = NS(τ +

8

11
)e−

3α2
4

= ΛT e
− (α1+3α2)

4

⎛
⎜⎜⎜⎜⎜⎝e

−βL
4

MI (τ)e
−μ

4 +MS(τ)e
−μ

4 e
−ψω

4

⎛
⎜⎝1−e

−βM
2

NI (τ)
N(τ)

⎞
⎟⎠

e
−μ

4 M(τ)+
ΛM
4

⎞
⎟⎟⎟⎟⎟⎠

NI(τ +
9

11
) = NI(τ +

8

11
)e−

3α2
4

= ΛT e
− (α1+3α2)

4

⎛
⎜⎜⎜⎜⎜⎝1− e

−βL
4

MI (τ)e
−μ

4 +MS(τ)e
−μ

4 e
−ψω

4

⎛
⎜⎝1−e

−βM
2

NI (τ)
N(τ)

⎞
⎟⎠

e
−μ

4 M(τ)+
ΛM
4

⎞
⎟⎟⎟⎟⎟⎠
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10. Mice die

MS(τ +
10

11
) = MS(τ +

9

11
)e−

3μ
4

= MS(τ)e
−μe−

ψω
4 e

−βM
2

NI (τ)

N(τ) +
ΛM

4
e−

3μ
4

MI(τ +
10

11
) = MI(τ)e

−μ +MS(τ)e
−μe−

ψω
4 (1− e

−βM
2

NI (τ)

N(τ) )

MV (τ +
10

11
) = MV (τ)e

−μ +MS(τ)e
−μ(1− e−

3μ
4 )

11. Mice are born

MS(τ + 1) = MS(τ)e
−μe−

ψω
4 e

−βM
2

NI (τ)

N(τ) +
ΛM

4
e−

3μ
4 +

3ΛM

4

= MS(τ)e
−μe−

ψω
4 e

−βM
2

NI (τ)

N(τ) +
ΛM

4
(e−

3μ
4 + 3)

12. Final equations

NI(τ + 1) = ΛT e
− (α1+3α2)

4

⎛
⎜⎜⎜⎜⎜⎝1− e

−βL
4

MI (τ)e
−μ

4 +MS(τ)e
−μ

4 e
−ψω

4

⎛
⎜⎝1−e

−βM
2

NI (τ)
N(τ)

⎞
⎟⎠

e
−μ

4 M(τ)+
ΛM
4

⎞
⎟⎟⎟⎟⎟⎠

NS(τ + 1) = ΛT e
− (α1+3α2)

4

⎛
⎜⎜⎜⎜⎜⎝e

−βL
4

MI (τ)e
−μ

4 +MS(τ)e
−μ

4 e
−ψω

4

⎛
⎜⎝1−e

−βM
2

NI (τ)
N(τ)

⎞
⎟⎠

e
−μ

4 M(τ)+
ΛM
4

⎞
⎟⎟⎟⎟⎟⎠

MS(τ + 1) = MS(τ)e
−μe−

ψω
4 e

−βM
2

NI (τ)

N(τ) +
ΛM

4
(e−

3μ
4 + 3)

MI(τ + 1) = MI(τ)e
−μ +MS(τ)e

−μe−
ψω
4

(
1− e

−βM
2

NI (τ)

N(τ)

)

MV (τ + 1) = MV (τ)e
−μ +MS(τ)e

−μ(1− e−
ψω
4 )
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6.3 Appendix 3: Analysis

1. Total mouse population constant year-to-year

M(τ) = MS(τ + 1) +MI(τ + 1) +MV (τ + 1)

= MS(τ)e
−μe−

ψω
4 e

−βM
2

NI (τ)

N(τ) +
ΛM

4
(e−

3μ
4 + 3)+

MI(τ)e
−μ +MS(τ)e

−μe−
ψω
4

(
1− e

−βM
2

NI (τ)

NS(τ)+NS(τ)

)
+

MV (τ)e
−μ +MS(τ)e

−μ
(
1− e−

ψω
4

)
M(τ) = e−μ

(
M(τ) +

Λm

4
e

μ
4 +

3

4
eμΛM

)

Equilibrium Solution : M(τ) =
ΛM

4

e
−3μ
4 + 3

1− e−μ

2. Total nymph population constant year-to-year

N(τ) = NS(τ + 1) +NI(τ + 1)

= ΛT e
− (α1+3α2)

4

⎛
⎜⎜⎜⎜⎜⎝e

−βL
4

MI (τ)e
−μ

4 +MS(τ)e
−μ

4 e
−ψω

4

⎛
⎜⎝1−e

−βM
2

NI (τ)
N(τ)

⎞
⎟⎠

e
−μ

4 [MI (τ)+MS(τ)+MV (τ)]+
ΛM
4

⎞
⎟⎟⎟⎟⎟⎠

+ ΛT e
− (α1+3α2)

4

⎛
⎜⎜⎜⎜⎜⎝1− e

−βL
4

MI (τ)e
−μ

4 +MS(τ)e
−μ

4 e
−ψω

4

⎛
⎜⎝1−e

−βM
2

NI (τ)
N(τ)

⎞
⎟⎠

e
−μ

4 [MI (τ)+MS(τ)+MV (τ)]+
ΛM
4

⎞
⎟⎟⎟⎟⎟⎠

= ΛT e
− (α1+3α2)

4
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3. Disease-Free Equilibrium

With Vaccination

NI(τ) = 0

NS(τ) = ΛT e
− (α1+3α2)

4

MI(τ) = 0

MS(τ) =
ΛM

4

(
e

−3μ
4 + 3

)
(
1− e−μ−ψω

4

)

MV (τ) =
ΛM

4

(
e

μ
4 + 3eμ

)(
1− e

ψω
4

)
(−1 + eμ)

(
−1 + eμ+

ψω
4

)

Without Vaccination

NI(τ) = 0

NS(τ) = ΛT e
− (α1+3α2)

4

MI(τ) = 0

MS(τ) =
ΛM

4

(
e

−3μ
4 + 3

)
(1− e−μ)

MV (τ) = 0

6.4 Appendix 4: Existence of Solution Equation

M∗
I = M∗

I e
−μ + (M0 −M∗

V −M∗
I )e

−μe−
ψω
4

(
1− e

−βM
2

N∗
I

N0

)

M∗
V = M∗

V e
−μ + (M0 −M∗

V −M∗
I )e

−μ(1− e−
ψω
4 )

N∗
I = N0

⎛
⎜⎜⎜⎜⎜⎝1− e

−βL
4

M∗
I e

−μ
4 +(M0−M∗

V −M∗
I )e

−μ
4 e

−ψω
4

⎛
⎜⎝1−e

−βM
2

N∗
I

N0

⎞
⎟⎠

e
−μ

4 M0+
ΛM
4

⎞
⎟⎟⎟⎟⎟⎠
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Solving equation 2 for M∗
V in terms of M∗

I .

M∗
V = M∗

V e
−μ + (M0 −M∗

V −M∗
I )e

−μ(1− e−
ψω
4 )

M∗
V (M

∗
I ) =

(
−1 + e

ψω
4

)
(M0 −M∗

I )(
−1 + eμ+

ψω
4

)
Solving equation 1 for M∗

I in terms of N∗
I .

M∗
I = M∗

I e
−μ + (M0 −M∗

V −M∗
I )e

−μe−
ψω
4

(
1− e

−βM
2

N∗
I

N0

)

M∗
I (N

∗
I ) =

(
−1 + e

N∗
I β

2N0

)
M0

−1 + e
N∗
I
β

2N0
+μ+ψω

4

Solving equation 3 in terms of N∗
I .

N∗
I = N0

⎛
⎜⎜⎜⎜⎜⎝1− e

−βL
4

M∗
I e

−μ
4 +(M0−M∗

V −M∗
I )e

−μ
4 e

−ψω
4

⎛
⎜⎝1−e

−βM
2

N∗
I

N0

⎞
⎟⎠

e
−μ

4 M0+
ΛM
4

⎞
⎟⎟⎟⎟⎟⎠

G(N∗
I ) = ln

(
1− N∗

I

N0

)
+

βLM0e
−μ
4 e−

ψω
4

4
(
e

−μ
4 M0 +

ΛM
4

)
⎛
⎝ 1− e

−βM
2

N∗
I

N0

1− e−μe
−ψω

4 e
−βM

2

N∗
I

N0

⎞
⎠ = 0

6.5 Appendix 5: Parameter Estimation

• Calculation of α1, α2, α3: Using data from literature, we used survival proportions of 0.05,
0.1, and 0.2 between each stage of the tick life cycle and calculated the α values based on the
proportions of death that we considered in our model [36].

α1: Egg to larva

e−
α1
4 = 0.05

−α1

4
= ln(0.05)

α1 = −4ln(0.05)

= 11.98
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α2: Larva to nymph

e−
3α2
4 = .1

α2 = −4

3
ln(0.1)

= 3.07

α3: Nymph to adult

e−
α3
2 = 0.2

α3 = 2ln(0.2)

= 3.22

• Calculation of ΛM : Using M(τ) from our equilibrium solution in Appendix 6.3 and the chosen
value for the total mice population M(τ)= 50, along with μ = 4.38, we have

50 =
ΛM

4

e
−3(4.38)

4 + 3

1− e−4.38

and thus ΛM = 65.02.

• Calculation of ΛT : Using M(τ) from our equilibrium solution in Appendix 6.3 and the chosen
value for the total mice population N(τ)= 1000, along with α1 = 11.98 and α2 = 3.07, we
have

1000 = ΛT e
− (11.98+3·3.07)

4

and thus ΛT = 1.998 x 105.

• Estimation of ω: We obtained this value from a study that evaluated vaccines in mice, specif-
ically ones that included the same surface protein that we looked into for this study and
corresponded with the field trial that we referenced throughout[29, 35]. Though the paper
had multiple values for effectiveness, we used the ω that corresponded to 100 ng vaccine; this
value was presented as a proportion and thus no conversion of units was needed.

• Calculation of μ: From literature, we found that the natural death rate of mice was .012/day.
Thus, we multiplied by 365 to obtain the yearly value of 4.38/year.

• Calculation of x: The cost of increasing the vaccination rate by 1/day, is estimated by analysis
of field data from a vaccine field trial [29]. The following data points were used.
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1. White-Footed mouse captures
We took data from Table 1: Number of White-Foot Mouse (WFM) Captures in the
Field, recreated below.

Study Year Unique WFM Captured Nights of Trap Use Total WFM Captures WFM Trapability
2007 700 9472 6043 8.63
2008 240 13824 1647 6.86
2009 716 26112 5399 7.75
2010 877 27136 3806 4.83
2011 1258 24064 6078 4.83

Overall 3791 100608 22973 6.48

2. Plots per year
The field trial also used 64 traps per 1.1 hectare plot for distributing vaccines or as
controls and used the following number of plots every year.

Year 2007 2008 2009 2010 2011

Plots Used 4 5 7 7 7

Using this data we construct the following equation for bait-box contact rate in a year. Due
to the high average captures per mouse we assume that the unique number of mice captured
provides a good estimate to the number of mice in all the plots.

B(t) =
Total WFM Captures

Nights of Trap Use
∗ 64 Number of Plots Used

Unique WFM Captured

We average B(t) across the five study years to obtain BMean = .1366 per day. The study
achieved successful vaccination in a mouse after approximately 5 captures so we estimate the

study’s vaccination rate, ψ =
BMean

5
= .02732/day = 9.9718/year. We assume the cost of

a bait box distributing vaccine to be equal to a bait box distributing acaricide which are on
average priced at $50 per box per year [14]. The cost to vaccinate 1.1 hectares at a rate

ψ = 9.9718 is calculated by
$50 ∗ 64
year

=
$3200

year
. We then solve for x:

CV accination = x ∗ ψ
3200 = x · 9.718

x = $329.29.

• Calculation of θ: From values from a study on health care costs of Lyme disease, we used the
following equation[1]:

θ =
health care costs
for an acute case of
Lyme disease

+
probability of developing
Post-Treatment
Lyme Disease Syndrome

∗ average yearly
cost of PTLDS

= $2, 968 + .15($3, 798)

= $3537.70
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Probability of .15 was taken from the same source as an average of the range of probabilities
of developing PTLDS (10%-20%).

• Calculation of ρ: The source cites the probability of Lyme disease after a tick bite to be from
.012 to .05[19]. Averaging these two values gives .031 for our ρ value.
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