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Abstract

The malarial parasite Plasmodium vivax has infected humans for millennia. As such,
alleles like the FY*O allele in the Duffy Antigen Receptor for Chemokines (DARC) and
the sickle cell allele (HbS) have been naturally selected for in malaria-endemic regions
because they confer resistance to malaria, thereby increasing the survival and repro-
ductive success of individuals carrying these protective alleles. As resistance becomes
more common in a population, malaria incidence is expected to decline, reducing the
evolutionary pressure for additional resistance. In this work, we explore the interac-
tion between these processes. We construct a model with seasonality that tracks the
frequency of Duffy genotypes and leverages fast/slow dynamics to analyze the coupled
dynamics of malaria transmission and changes in the gene frequency of the DARC geno-
type. Specifically, we investigate how the burden of malaria changes with the fractions
of people with the various DARC genotypes. Additionally, we calibrate our model using
data from the Amazonas region in Brazil, which has a polymorphic population with
respect to DARC, and still reports a substantial number of P. vivax cases. Analysis
of our model determines the proportion of the population that must be Duffy-negative
in order for the entire population to be protected against P. vivax without any fur-
ther interventions. Furthermore, we assess how different proportions of Duffy-negative
individuals influence the monthly incidence of P. vivax cases.
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1 Introduction

1.1 Influence of Genetics on the Epidemiology of Malaria

Malaria is an infectious disease spread by mosquitoes that are infected with Plasmodium
parasites. Whereas P. falciparum is the most dangerous strain and the most prevalent in
Africa, P. vivax is the most geographically widespread strain of malaria and the most common
in the rest of the world [13]. Malaria is a perennial affliction to many tropical countries: in
2022, it caused an estimated 249 million cases globally, resulting in more than six hundred
thousand deaths and billions of dollars in global costs [23].

The selective pressure induced by malaria has demonstrably influenced the genetic com-
position of tropical populations. Examples include hemoglobinopathies like the sickle cell
trait in Sub-Saharan Africa and β-thalassemia in the Eastern Mediterranean. The sickle
cell trait is caused by a missense mutation of the β-globin gene, resulting in the abnormal
synthesis of the β-globin protein. The vast majority of people with sickle cell trait and
sickle cell disease live in Sub-Saharan Africa. Similarly, β-thalassemia is characterized by
the obstructed synthesis of the β-globin chain, which causes numerous phenotypes that may
be asymptomatic or debilitating. People with sickle cell trait and some phenotypes of β-
thalassemia have significant protection against P. falciparum malaria compared to people
without either condition [6, 8, 11].

Another example of an adaptation against malaria is the absence of the Duffy antigen
receptor for chemokines (DARC) on human red blood cells. P. vivax protozoa rely on the
interaction between DARC and the Plasmodium vivax Duffy-binding protein (PvDBP) to
invade human reticulocytes. Having the Duffy-negative trait thereby removes a mode of
invasion into reticulocytes by P. vivax protozoa. Nonetheless, infections by P. vivax have
been observed in Duffy-negative individuals, but the mechanism of infection in these cases
are not fully understood [20].

The transmission patterns of malaria are highly influenced by the Duffy-negative trait.
Duffy-negativity is very common in sub-Saharan Africa, so the fraction of the population
at risk of vivax malaria is very small. Consequently, the majority of malaria infections are
caused by P. falciparum. Although P. vivax infections is exceedingly rare in sub-Saharan
Africa, it is the most common malarial parasite in the rest of the world [10].

Our system models the dynamics of P. vivax malaria in the Amazonas state of Brazil,
because this population is much more polymorphic with respect to the Duffy antigen trait
than most parts of the world. Kano et al. [16] conducted a longitudinal study on the influence
of DARC on people’s susceptibility to vivax malaria in Rio Pardo, which is located in the
Brazilian state of Amazonas. In this study, they sampled antibody response to vivax malaria,
and disaggregated it by Duffy genotype to ascertain the influence of natural immunity. We
used data from the longitudinal work of Kano et al to determine the populations of interest
in our study.
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1.2 Previous Mathematical Models of Natural Protection Against
Malaria

Previous mathematical models of malaria transmission dynamics frequently use epidemio-
logical compartmental models like the SIR model. In this paper, we use ordinary differential
equations to characterize the dynamics of vivax malaria in Rio Pardo, Brazil, with relation
to the Duffy antigen. We reference previous population genetics models that relate to the
sickle cell trait. Feng et al. [7] used a system of ordinary differential equations to describe the
relationship between malaria transmission dynamics and the genetic frequency of the S-gene
that causes sickle cell anemia. Furthermore, Feng and Castillo-Chavez [6] used an expanded
system of ordinary differential equations with three elements to characterize the complex
dynamics of the S-gene beyond the standard two-element system.

We use the Rio Pardo area studied by Kano et al. [16], because it is more polymorphic
than most parts of the world. This has implications for transmission dynamics of vivax
malaria in the region. Figure 1 denotes the genotypic frequencies of the Duffy trait in Rio
Pardo.

Figure 1: Distribution of Duffy antigen polymorphisms in Rio Pardo, Amazonas,
Brazil.

The above graph shows that the large majority of people in Rio Pardo are Duffy-positive,
but a considerable minority are also homozygous Duffy-negative. The characteristics of the
Duffy antigen suggest that people who are Duffy negative (FY*O/FY*O) are highly unlikely
to contract vivax malaria. This is supported by Figure 2, which shows the vivax malaria
cases by genotype in the Kano study [16].
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Figure 2: Malaria cases by genotype in a longitudinal study conducted in Rio Pardo,
Amazonas, Brazil. Besides corroborating the protective effects of the Duffy-negative
trait, this data also suggests that the FY*B trait has limited protective effects against
vivax malaria.

The paper is structured as follows: we introduce the terms, parameters, and variables
of our mathematical model. We then describe our model and its dynamics. We formulate
the slow system, from which we deduct its manifold and the fitness of the X-gene. We use
this information to simulate the fast system and to determine its next generation matrix,
basic reproduction number, and equilibria. We conduct a global sensitivity analysis on the
model, eventually including biting rate seasonality, and then estimate our parameters. We
then conclude the paper by assessing the results and implications of our model.

2 Model

2.1 Model Formulation

There are four possible phenotypes of the Duffy antigen: Duffy-positive, where two of the
alleles (FY*A and/or FY*B) alleles are present; the two heterozygous Duffy-positive traits,
where one of the two alleles is present and the other is silent; and the homozygous Duffy-
negative trait, where neither the FY*A or FY*B allele is expressed. For our paper, we use
the following nomenclature for the Duffy blood group [12, 16, 18]:
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Meaning Phenotype Alleles & Genotype Classification

Duffy-Positive Fy(a+ b+) FY*A/FY*B XX
Fy(a+ b−) FY*A/FY*A XX

FY*A/FY*O XO
Fy(a− b+) FY*B/FY*B XX

FY*B/FY*O XO

Duffy-Negative Fy(a− b−) FY*O/FY*O OO

In this paper, we use the term XX to refer to the presence of two expressed Duffy alleles,
XO for the presence of one expressed Duffy allele and one silent Duffy allele, and OO for
the presence of two silent Duffy alleles. The subscript i denotes the genotype: i = 1 for XX,
i = 2 for XO, and i = 3 for OO.

We structure our model similarly to the that Feng and Castillo-Chavez [6] used to describe
the dynamics of the sickle cell trait. Distinct differences between our models exist: whereas
the sickle cell model developed by Feng incorporates a death rate associated with the sickle
cell trait, our model does not implement a death rate due to the Duffy antigen. Furthermore,
our model considers the impact of seasonality on our numerical simulations. The variables
of our initial model are described in Table 1 and a summary of the parameters is presented
in Table 2.1.

Table 1: Variables and description for original model. Our values for Pi and wi are based
in Rio Pardo, Brazil.

State Variable Description

ui Uninfected individuals of genotype i
vi Infected individuals of genotype i
z Fraction of infected mosquitoes
xi Fraction of uninfected individuals of genotype i
yi Fraction of infected individuals of genotype i
wi Fraction of individuals in each genotype
N Total population
Sm Number of uninfected mosquitoes
Im Number of infected mosquitoes
M Total number of mosquitoes
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Table 2: Parameters, descriptions, values, units, and source. The values for Pi and wi are
for Rio Pardo, Brazil.

Human Parameters Description Value Unit Source

P1
Fraction of total births
with XX genotype

0.6657 people [16]

P2
Fraction of total births
with XO genotype

0.3003 people [16]

P3
Fraction of total births
with OO genotype

0.0339 people [16]

w1 Fraction of XX people 0.6623 N/A [16]
w2 Fraction of XO people 0.3072 N/A [16]
w3 Fraction of OO people 0.0304 N/A [16]
N Total Population 690 People [16]
b Base human birth rate 1.26e-5 1/day [4]

K
Density dependent

reduction in birth rate
10000 people [6]

θ1
Probability of infection
from infected bite for XX

0.78 N/A [5]

θ2
Probability of infection
from infected bite for XO

0.78 N/A [5]

θ3
Probability of infection

from infected bite for OO
0.00702 N/A [5, 16]

γ1 Recovery Rate for XX 1/24 1/day [27]
γ2 Recovery Rate for XO 1/24 1/day [27]
γ3 Recovery Rate for OO 1/24 1/day [27]
m Natural human death rate 3.78e-5 1/day [4]

α1
Disease-induced death rate

for XX People
0.0003 Deaths/infection [19]

α2
Disease-induced death rate

for XO People
0.0003 Deaths/infection [19]

α3
Disease-induced death rate

for OO People
0.0003 Deaths/infection [19]

Mosquito Parameters

a Biting Rate 0.5 1/day [24]
c Mosquitoes per Human 2.3 - 4.36 Mosquitoes/Human [25]

ϕ1
Probability a mosquito is

infected from XX
0.326 N/A [1]

ϕ2
Probability a mosquito is

infected from XO
0.326 N/A [1]

ϕ3
Probability a mosquito is

infected from OO
0.30 N/A [22]

δ Mosquito Death Rate 0.315 1/day [3]
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Let u(t) be the total number of uninfected people and v(t) be the total number of infected
people at time t. Thus, the total population is given by N(t) = u(t) + v(t). Furthermore,
let the subscript i = 1 describe individuals with the Duffy genotype XX; i = 2 describe
individuals with the XO genotype; and i = 3 describe individuals with the OO genotype.
For example, u1 denotes the number of uninfected people whose Duffy genotype is XX, and
v2 denotes the number of infected people with the XO genotype. Lastly, let Sm(t) be the
total number of susceptible mosquitoes and Im(t) be the total number of infected mosquitoes,
where the total number of mosquitoes in the population is given by M(t) ≡ Sm(t) + Im(t) at
time t.

The mathematical model is derived based on the following assumptions:

1. New uninfected people of genotype i are born at the rate PiNb(N), where b(N) rep-
resents the per capita birth rate as a function of the total population, and Pi is the
fraction of births with genotype i. Arbitrarily, we define b(N) as b(1 − N

K
), where b

is the base birth rate and K is the carrying capacity. We assume that people die of
non-disease-induced causes at the rate of m. Infection occurs in humans at the rate of
aθic, where c is the mosquito-to-human ratio, a is the mosquito biting rate and θi is
the probability a human becomes infected after being bitten by an infected mosquito.
Lastly, infected individuals recover and enter the uninfected class at the rate γi.

2. Individuals enter the infected compartment at a rate aθic. We assume individuals either
die of natural causes at a rate m, or die due to malaria at a rate αi. Additionally,
infected individuals may recover and leave the infected class at a rate γi.

3. The mosquitoes are born into the susceptible class at rate bm. The term Sm

∑3
i=1

[
aϕi

vi
N

]
describes the transition from susceptible to infected mosquitoes, where a is the mosquito
biting rate, and ϕi represents the probability that a mosquito becomes infected after

biting an infected human of genotype i. Note that
vi
N

can be thought of as the proba-

bility that a mosquito bites a person of genotype i given that they bite an individual.
Lastly, we assume both susceptible and infected mosquitoes die at the rate of δ. We
then add the susceptible and infected mosquito classes to create the compartment
dM

dt
= bm − δM , which we use to monitor the total population of mosquitoes.
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Thus we have the system:

dui

dt
= PiNb(N)︸ ︷︷ ︸

Birth

− mui︸︷︷︸
Natural death

− aθiczui︸ ︷︷ ︸
Infection

+ γivi︸︷︷︸
Recovery

dvi
dt

= aθiczui︸ ︷︷ ︸
New infections

− mvi︸︷︷︸
Natural death

− γivi︸︷︷︸
Recovery

− αivi︸︷︷︸
Disease-induced death

dSm

dt
= bm − Sm

(
aϕ1

v1
N(t)

+ aϕ2
v2

N(t)
+ aϕ3

v3
N(t)

)
︸ ︷︷ ︸

Rate of infection by blood meal

− δz︸︷︷︸
Natural death

dIm
dt

= Sm

(
aϕ1

v1
N(t)

+ aϕ2
v2

N(t)
+ aϕ3

v3
N(t)

)
︸ ︷︷ ︸

Rate of infection by blood meal

− δIm︸︷︷︸
Natural death

(1)

The flowchart below describes how people and mosquitoes move between their respective
classes.

Birth

Figure 3: Flowchart of the population dynamics of humans (above) and mosquitoes (below), as
described in (3).

2.2 Human population genetic model

Our model requires distinguishing between the dynamics of each population’s genotype, be-
cause malaria dynamics occur on two time scales. Thus, we used Punnett squares to deter-
mine the fraction of total births of each genotype, in the Rio Pardo locality of Amazonas,
Brazil, denoted by Pi. We combine the expressed alleles FY*A and FY*B into a singular
theoretical allele X. Likewise, we use O to represent the silent allele FYES (where ES means
“erythrocyte silent”). Let wi be the fraction of the total population by genotype. An example
calculation of P1 is below. Note that since P1 is the fraction of births with genotype XX, we
only consider the possible crosses that can produce a child with XX when calculating P1.
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Parent 2 (w1)

Parent 1 (w1)

X X
X XX XX
X XX XX

=⇒
w1 x w1

Genotype Probability

XX 1

Parent 2 (w1)

Parent 1 (w2)

X X
X XX XX
O XO XO

=⇒

w1 x w2

Genotype Probability

XX 1/2

XO 1/2

Parent 2 (w2)

Parent 1 (w1)

X O
X XX XO
X XX XO

=⇒

w2 x w1

Genotype Probability

XX 1/2

XO 1/2

Parent 2 (w2)

Parent 1 (w2)

X O
X XX XO
O XO OO

=⇒

w2 x w2

Genotype Probability

XX 1/4

XO 1/2
OO 1/4

P1 = 1 (w1w1) +
1

2
(w1w2) +

1

2
(w2w1) +

1

4
(w2w2)

= (w1)
2 + (w1w2) +

1

4
(w2)

2.

The other formulations of Pi are determined using a similar method. Thus, the formulas
are as follows:

P1 = (w1)
2 +

1

2
(2w1w2) +

1

4
(w2)

2,

P2 =
1

2
(2w1w2) +

1

2
(2w2w3) +

1

2
(w2)

2 + (2w1w3),

P3 = (w3)
2 +

1

4
(w2)

2 +
1

2
(2w2w3).

To simplify our analysis, we let w3 = 1−w1 −w2. Then, our Pi expressions are reduced:

P1 = (w1)
2 + (w1w2) +

1

4
(w2)

2,

P2 = (w1w2) + (w2w3) + 2(w1w3) +
1

2
(w2)

2

P3 = (w3)
2 + (w2w3) +

1

4
(w2)

2

(2)

The assumptions above lead to the following nonlinear ordinary differential equations,
which model the disease dynamics of each genotype:
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dui

dt
= PiNb(N)−mui − aθiczui + γivi,

dvi
dt

= aθiczui −mvi − γivi − αivi,

dSm

dt
= Birth− Sm

(
aϕ1

v1
N(t)

+ aϕ2
v2

N(t)
+ aϕ3

v3
N(t)

)
− δz,

dIm
dt

= Sm

(
aϕ1

v1
N(t)

+ aϕ2
v2

N(t)
+ aϕ3

v3
N(t)

)
− δIm, i ∈ {1, 2, 3}.

(3)

2.3 Re-scaled model

The re-scaling of the model is done for the sake of simplification. By re-scaling our original
model, we can use the proportion of genotypic populations in Rio Pardo, Brazil, and apply
the model to different populations in other regions. After this, perturbation analysis allows
us to separate the fast and slow dynamics in our system. As infection happens on a much
faster scale than human birth, death and evolution, it is crucial to create this separation so
we can determine the fitness of our genotypes, and to study the rate of infection by genotype.

Let xi ≡
ui

N
and yi ≡

vi
N

to represent the fraction of people with genotype i who are

uninfected and infected, respectively. Thus, wi ≡ xi + yi is the fraction of the population

with genotype i. We define z ≡ Im
M

as the fraction of mosquitoes that are infected. Lastly,

we let
dwi

dt
=

dxi

dt
+
dyi
dt

and substitute
dxi

dt
and

dyi
dt

; similarly,
dN

dt
is found using the relation

N =
∑3

i=1 [ui + vi]. We then have the following re-scaled model:

dxi

dt
= Pib(N)−mxi − aθiczxi + γyi − xi

Ṅ

N
,

dyi
dt

= βhiz(wi − yi)− (m+ γi + αi)yi − yi
Ṅ

N
,

dz

dt
= (1− z) (βv1y1 + βv2y2 + βv3y3)− δz,

dwi

dt
= Pib(N)−mwi − αiyi − wi

Ṅ

N
,

dN

dt
= N [b(N)−m− α1y1 − α2y2 − α3y3] .

(4)

2.4 Slow Dynamical System

We use a fast-slow decomposition to analyze the dynamics of our model. The slow system
employs the time-scale τ = ϵt, for some small positive value ϵ. As such, large changes in t
result in small changes to τ , making analysis of the slow system well suited to investigate
dynamics which unfold over long periods of time, such as evolution. Model (4) provides a
template for modeling the slow and fast dynamics of malaria transmission in the Rio Pardo.
In the slow system, time is parameterized to be measured in τ = ϵt. From this equation, we
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determine that
dt

dτ
= 1/ϵ.

For further simplification, we define βhi = aθic to replace the infection rate of humans
after being bitten by mosquitoes, and βvi = aϕi to replace the infection rate of mosquitoes
after biting humans. By letting m = ϵm̃, αi = ϵα̃i and b = ϵ̃b we obtain the following,

dyi
dτ

=
dyi
dt

· dt
dτ

=⇒ ϵ
dyi
dτ

=
dyi
dt

.

A similar pattern applies to all derivatives with respect to t. In this fashion, the original
model of the system is simplified to the slow system as follows:

ϵ
dyi
dτ

= βhiz(wi − yi)− γyi − ϵyi

[
ϵ̃b(N) + ϵα̃i − ϵα̃1y1 − ϵα̃2y2 − ϵα̃3y3

]
, (5a)

ϵ
dz

dτ
= (1− z)(aϕ1y1 + aϕ2y2 + aϕ3y3)− δz, (5b)

dN

dτ
= N

[
b̃(N)− m̃− α̃1y1 − α̃2y2 − α̃3y3

]
, (5c)

dwi

dτ
= (Pi − wi)̃b(N)− α̃iyi + wi [α̃1y1 + α̃2y2 + α̃3y3] . (5d)

2.4.1 Manifold of Slow System

This system has a three-dimensional slow manifold:

M = {(y1, y2, y3, z, N, w1, w2, w3) : yi = y∗i (w1, w2, w3, N), i = 1, 2, 3, z = z∗(w1, w2, w3, N)} .

The functions y∗i ,i = 1, 2, 3 and z∗ are given in (21) and (22). The slow dynamics on M are
described by the following equations:

dN

dτ
= N

[
b̃(N)− m̃− α̃1y

∗
1 − α̃2y

∗
2 − α̃3y

∗
3

]
,

dwi

dτ
= (Pi − wi)̃b(N)− α̃iy

∗
i + wi [α̃1y

∗
1 + α̃2y

∗
2 + α̃3y

∗
3] .

(6)

2.4.2 Determining Fitness of the X-gene

The fitness of the X gene, that being the presence of the Fya and/or Fyb antigens in retic-
ulocytes, determines the capacity of the Duffy-positive gene to be passed down to future
generations. By calculating the fitness of the X gene, we determine the influence of selection
on the prevalence of the Duffy-negative trait in our region of study. We denote the frequency
of the X-gene by p = w1 +

1
2
w2, where w1 is the frequency of XX individuals and w2 is the

frequency of XO individuals. The invasion ability of the X-gene is described by

1

p

dp

dτ

∣∣∣∣∣
p=0

. (7)
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We will use this quantity to define the fitness of the X-gene, F . We assume all genotypes
have the same death rate, m. We define the following out of convenience:

Thi =
βhi

γi
. (8)

Using equations from the slow system dynamics for wi we obtain

dp

dτ
=

(
P1 +

P2

2
− p

)
b̃(N)− α̃2

2
y∗2 − α̃1y

∗
1 + p

(
3∑

i=1

α̃iy
∗
i

)
, (9)

= a+ b+ c+ d.

We have that 0 ≤ w1, w2 ≤ q. So, when p = 0, we must have that w1 = w2 = 0 and
subsequently w3 = 1. Substituting the expressions for P1 and P2 in (2) in (9) we obtain:

1

p
a|p=0 = 0.

Assume α̃1 = α̃2 = α̃ and Th1 = Th2 = Th. Note also that z∗|p=0 = z∗|w1=w2=0 =
R03 − 1

R03 + Th3

. Then,

1

p
(b+ c)

∣∣∣
p=0

=
1

p

(
− α̃2

2
y∗2 − α̃1y

∗
1

)
=

1

p

(
− α̃

2

w2Th2z
∗

1 + Th2z
∗ − α̃

w1Th1z
∗

1 + Th1z
∗

)
,

=
−α̃Thz

∗

1 + Thz∗
=

−α̃Th(R03 − 1)

R03(1 + Th)− Th + Th3

.

(10)

Further, given that y1|p=0 = 0, y2|p=0 = 0 and

y3|p=0 =
z∗Th3

z∗Th3 + 1
,

we have that

1

p
|p=0 =

α̃3z
∗Th3

z∗Th3 + 1
=

α̃3Th3(R03 − 1)

R03(Th3 + 1)
.

Combining the terms yields

F = −α̃W1 + α̃2W2,

where W1 =
Th(R03 − 1)

R03(1 + Th)− Th + Th3

and W2 =
Th3(R03 − 1)

R03(Th3 + 1)
.

We plot the fitness of the X-gene utilizing the parameters obtained from the literature in
Fig. 4. Notice that as the infection rate for OO people decreases, the fitness or the inva-
sion ability of the X gene decreases. Also, notice that as the recovery rate for OO people
increases, the fitness of the X gene decreases meaning the X gene invades less.
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Figure 4: The left plot shows the fitness of the X gene plotted with respect to γ3 (recovery rate
for Duffy-negative people) and βh3 (infection rate for Duffy-negative people).The right plot is the
contour plot that shows the boundary where the fitness is greater or less than zero or rather when
the X-gene invades.

2.5 Fast Dynamical System

The fast system, which describes short-term disease dynamics, uses t as the time variable
applied to disease transmission. Whereas the slow system operates in a matter of decades
depending on the value of ϵ, the fast system operates on a more limited scale in a matter of
days. This neglects birth rates and death rates, and instead focuses on P. vivax transmission
and recovery. Let ϵ > 0 be small, and let m = ϵm̃, αi = ϵα̃i and b = ϵ̃b. Substituting into
system (4) yields:

dyi
dt

= βhiz(wi − yi)− ϵm̃yi − γiyi − ϵα̃iyi −
yi
N

dN

dt
,

dz

dt
= (1− z)(βv1y1 + βv2y2 + βv3y3)− δz,

dwi

dt
= Pi

[
ϵ̃b

(
1− N

K

)]
− ϵm̃wi − ϵα̃iyi −

wi

N

dN

dt
,

dN

dt
= N

[
ϵ̃b

(
1− N

K

)
− ϵm̃− ϵα̃1y1 − ϵα̃2y2 − ϵα̃3y3

]
.

(11)

In the fast system, the parameter ϵ approaches zero so that the birth and death rate are

negated. Because limϵ→0

(
Ṅ

N

)
= 0, then as ϵ → 0, the fast system then becomes
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dyi
dt

= βhiz(wi − yi)− γiyi, (12a)

dz

dt
= (1− z)(βv1y1 + βv2y2 + βv3y3)− δz, (12b)

dwi

dt
= 0, (12c)

dN

dt
= 0. (12d)

2.6 The Next Generation Matrix and the Basic Reproduction
Number of the Fast System

The next generation matrix is used to calculate the basic reproduction number, which predicts
the number of P. vivax cases caused by one preceding incidence. We use the remaining
equations in the fast system to form the initial matrices

F =


βh1z(w1 − y1)
βh2z(w2 − y2)
βh3z(w3 − y3)

(1− z)(βv1y1 + βv2y2 + βv3y3)


T

and V =


γ1y1
γ2y2
γ3y3
δz


T

. (13)

Taking the Jacobian of F and V , respectively, yields:

F := J [F ] =


−βh1z 0 0 βh1(w1 − y1)

0 −βh2z 0 βh2(w2 − y2)
0 0 −βh3z βh3(w3 − y3)

−βv1(z − 1) −βv2(z − 1) −βv3(z − 1) −βv1y1 − βv2y2 − βv3y3

 ,

V := J [V ] =


γ1 0 0 0
0 γ2 0 0
0 0 γ3 0
0 0 0 δ

 .

Thus, at the disease free equilibrium E0 where (y1, y2, y3, z) = (0, 0, 0, 0), the next gener-
ation matrix is:

FV −1 =


0 0 0 βh1w1

0 0 0 βh2w2

0 0 0 βh3w3

βv1 βv2 βv3 0



γ1 0 0 0
0 γ2 0 0
0 0 γ3 0
0 0 0 δ


−1

=


0 0 0 (βh1w1)/δ
0 0 0 (βh2w2)/δ
0 0 0 (βh3w3)/δ

βv1/γ1 βv2/γ2 βv3/γ3 0

 .

The spectral radius of the next generation matrix is our basic reproduction number,
denoted by R0.
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R0 = a

√
c(γ2γ3θ1ϕ1w1 + γ1γ3θ2ϕ2w2 + γ1γ2θ3ϕ3w3)

δγ1γ2γ3
, (14)

(R0)
2 =

a2cγ2γ3θ1ϕ1w1

δγ1γ2γ3
+

a2cγ1γ3θ2ϕ2w2

δγ1γ2γ3
+

a2cγ1γ2θ3ϕ3w3

δγ1γ2γ3
(15)

= w1
(acθ1)(aϕ1)

δγ1
+ w2

(acθ2)(aϕ2)

δγ2
+ w3

(acθ3)(aϕ3)

γ3
(16)

= w1R01 + w2R02 + w3R03, (17)

where R0i =
βhiβvi

δγi
. For convenience, we define

R0 = w1R01 + w2R02 + w3R03,

which doesn’t affect the validity of the inequalities R0 > 1 and R0 < 1.

2.7 Conditions for Stability of Disease-Free Equilibrium

Theorem 1. The disease free equilibrium E0 is locally asymptotically stable if R0 < 1 and
unstable if R0 > 1.

Proof. To determine the stability of E0, we first find the Jacobian of the fast system and
evaluate it at E0.

J =


−(βh1z + γ1) 0 0 βh1(w1 − y1)

0 −(βh2z + γ2) 0 βh2(w2 − y2)
0 0 −(βh3z + γ3) βh3(w3 − y3)

βv1(1− z) βv2(1− z) βv3(1− z) −(βv1y1 + βv2y2 + βv3y3 + δ)

 (18)

J(E0) =


−γ1 0 0 βh1w1

0 −γ2 0 βh2w2

0 0 −γ3 βh3w3

βv1 βv2 βv3 −δ

 (19)

Note that J(E0) can be expressed as M −D where M and D are both non-negative matrices
and D is additionally a diagonal matrix.

J(E0) = M −D where M =


0 0 0 βh1w1

0 0 0 βh2w2

0 0 0 βh3w3

βv1 βv2 βv3 0

 , and D =


γ1 0 0 0
0 γ2 0 0
0 0 γ3 0
0 0 0 δ

 .

From here, we use the following theorem.

Theorem 2. Let M and D be matrices such that every entry is nonnegative and D is a
diagonal matrix and let H = M −D. If the dominant eigenvalues of MD−1 are less than 1,
then the real part of the eigenvalues of H are less than 0. [6]
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It can be shown that the matrix MD−1 has two eigenvalues of 0 and the remaining two
are

λ1, λ2 = ±

√
w1

βh1βv1

δγ3
+ w2

βh2βv2

δγ2
+ w3

βh3βv3

δγ3
.

Making the substitution R0 = w1
βh1βv1
δγ1

+ w2
βh2βv2
δγ2

+ w3
βh3βv3
δγ3

yields

λ1, λ2 = ±
√

R0.

Note that λ2 = −
√

R0 is always less than 1 since R0 is always greater than or equal to 0.
Additionally, λ1 < 1 when R0 < 1 and λ1 > 1 when R0 > 1. By Theorem 2, the real part of
all the eigenvalues of J(E0) are negative when R < 1, meaning the disease-free equilibrium
is locally asymptotically stable when R0 < 1. Likewise, E0 is unstable when R0 > 1.

2.8 Location of Nontrivial Equilibrium

The nontrivial equilibrium E∗ = (y∗1, y
∗
2, y

∗
3, z

∗) is a solution to the following system.

0 = βh1z
∗(w1 − y∗1)− γ1y

∗
1

0 = βh2z
∗(w2 − y∗2)− γ2y

∗
2

0 = βh3z
∗(w3 − y∗3)− γ3y

∗
3

0 = (1− z∗)(βv1y
∗
1 + βv2y

∗
2 + βv3y

∗
3)− δz∗

(20)

For convenience, we define Thi =
βhi

γi
. Substituting and simplifying yields the following

expression for y∗i :

y∗i =
βhi

wiz
∗

γi + βhi
z∗

=
Thi

wiz
∗

Thi
z∗ + 1

. (21)

To find the solutions for z∗, we substitute out y∗1, y
∗
2, and y∗3 in (20) and divide out the

trivial solution of z∗ = 0. Additionally, we let w = w1 + w2 and assume Th1 = Th2 and
R01 = R02. This yields the quadratic:

0 = k2(z
∗)2 + k1(z

∗) + k0,

where

k2 = Th1Th3 + R03Th1(1− w) + R01Th3w,

k1 = Th3 + Th1 + R03(1− Th1)(1− w) + R01w(1− Th3),

k0 = 1− R03(1− w)− R01w.

(22)

Note that k0 can be rewritten as k3 = 1− R0, and let h(z) = k2(z)
2 + k1(z) + k0. Note that

z∗ is by definition a solution to the equation h(z) = 0.

Lemma 1. If 0 < R0 < 1 then k1 > 0.
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Proof. Let 0 < R0 < 1 and define T0 = max(Th1, Th3). Based on these two statements,

Th3 + Th1 − T0R0 ≥ 0. (23)

Additionally, since T0 ≥ Th1 and T0 ≥ Th3, we know

R03T0(1− w) + R01T0w ≥ R03Th1(1− w) + R01Th3w. (24)

From our definition of k1 (22),

k1 = Th3 + Th1 + R03(1− Th1)(1− w) + R01w(1− Th3),

= Th3 + Th1 + R03(1− w) + R01w − R03Th1(1− w)− R01Th3w,

= Th3 + Th1 + R0 − R03Th1(1− w)− R01Th3w.

From here, using relation (24) yields

k1 ≥ Th3 + Th1 + R0 − R03T0(1− w)− R01T0w,

k1 ≥ Th3 + Th1 + R0 − T0R0,

and relation (23) implies

Th3 + Th1 − T0R0 + R0 ≥ R0.

Combining the two results above yields k1 ≥ R0. Therefore, if 0 < R0 < 1, then k1 > 0.

Theorem 3. Assuming all parameters are biologically possible, the fixed point E0 in the fast
system (12a) is biologically impossible when R0 < 1 and biologically possible when R0 > 1.

Proof of Theorem 3. Let all parameters be biologically possible and 0 < R0 < 1. From
Equation 22 it follows that k2 > 0 and k0 > 0, due to the respective conditions above.
Additionally, Lemma 1 implies, k1 > 0.

Let z∗1 , z
∗
2 be the two solutions to the quadratic h(z) = 0. Then, by Vieta’s formulas, the

solutions to h(z) = 0 satisfy

z∗1 · z∗2 =
k0
k2

z∗1 + z∗2 = −k1
k2

and using the conditions k0, k1, k2 > 0, they simplify to

z∗1 · z∗2 > 0 z∗1 + z∗2 < 0

The inequality on the left rules out the possibility that exactly one of the roots of h(z)
is positive and the inequality on the left implies that the roots cannot both be positive.
Therefore, neither z∗1 or z

∗
2 are positive. As such, when 0 < R0 < 1, the nontrivial equilibrium

is not biologically possible since E∗ would require a negative or complex fraction of mosquitoes
to be infected, neither of which are possible in the real world.

To prove the second part of Theorem 3, let all parameters be biologically possible and let
R0 > 1. Similar to earlier, these two conditions imply k2 > 0, k1 < 0 and k0 < 0. Similar to
before, applying these conditions to Vieta’s Formulas yields

z∗1 · z∗2 =
k0
k2

=⇒ z∗1 · z∗2 < 0.
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Since k1, k2, k3 are all real numbers, z∗1 , z
∗
2 must also, so the inequality above must imply that

either z∗1 or z∗2 is positive, but not both. Let z∗ be this unique positive solution to h(z) = 0.
Next, we wish to show that 0 < z∗ < 1. Since R0 > 1, we know k0 < 0 by Lemma 1.

Additionally,

h(0) = k0 =⇒ h(0) < 0

h(1) = 1 + Th3 + Th1 + Th3Th1 =⇒ h(1) > 0

since Th1 and Th3 are greater than 0 when all parameters are biologically possible. Because
h(z) is a continuous function with h(0) < 0 and h(1) > 0, the Intermediate Value Theorem
implies that there exists a solution to h(z) = 0 between z = 0 and z = 1. Since z∗ is the only
positive solution to h(z) = 0, we conclude that

0 < z∗ < 1. (25)

Recall that z∗ represents the fraction of mosquitoes at the equilibrium point E∗. As such,
z∗ is biologically possible when R0 > 1 since 0 < z∗ < 1.

Lastly, we wish to show that y∗1, y
∗
2, y

∗
3 are also between 0 and 1 when all parameters are

biologically possible. Recall that Equation 21 tells shows

y∗i =
Thiwiz

∗

Thiz∗ + 1

Since wi represents the fraction of the population with genotype i, wi must satisfy 0 ≤ wi ≤ 1
in the real world. As such, the denominator for y∗i is necessarily greater than the numerator.
Therefore, at the nontrivial equilibrium, 0 ≤ y∗i < 1, meaning y∗1, y

∗
2, and y∗3 are all biologically

possible. As such, we conclude that E∗ is biologically possible when all parameters are
biologically possible and R0 is greater than 1.

2.9 Conditions for Stability of Endemic Equilibrium

In the previous section, we proved that the endemic equilibrium E∗ exists in biologically
possible space only when R0 > 1. We now present the following theorem on the stability of
E∗.

Theorem 4. If R0 > 1 and all parameters are biologically possible (i.e. E∗ is biologically
possible), then the fixed point E∗ is stable.

Proof. Taking the Jacobian of the fast system (18) and evaluating it at E∗ yields

J(E∗) =


−(βh1z

∗ + γ1) 0 0 βh1(w1 − y∗1)
0 −(βh2z

∗ + γ2) 0 βh2(w2 − y∗2)
0 0 −(βh3z

∗ + γ3) βh3(w3 − y∗3)
βv1(1− z∗) βv2(1− z∗) βv3(1− z∗) −(βv1y

∗
1 + βv2y

∗
2 + βv3y

∗
3 + δ)

 .

19



Note that J(E∗) = M − D where M and D are both non-negative matrices and D is a
diagonal matrix.

M =


0 0 0 βh1(w1 − y∗1)
0 0 0 βh2(w2 − y∗2)
0 0 0 βh3(w3 − y∗3)

βv1(1− z∗) βv2(1− z∗) βv3(1− z∗) 0

 ,

D =


βh1z

∗ + γ1 0 0 0
0 βh2z

∗ + γ2 0 0
0 0 βh3z

∗ + γ3 0
0 0 0 βv1y

∗
1 + βv2y

∗
2 + βv3y

∗
3 + δ

 .

Recall that Theorem 2 states that the real part of the eigenvalues of J(E∗) are negative if
the dominant eigenvalue of MD−1 is less than 1.

It can be shown that MD−1 has a double eigenvalue of 0 and the other two are

λ+, λ− = ±

√
A1

(
βv1(1− z∗)

βh1z∗ + γ1

)
+ A2

(
βv2(1− z∗)

βh2z∗ + γ2

)
+ A3

(
βv3(1− z∗)

βh3z∗ + γ3

)
(26)

where

Aj =
βhj(wj − y∗j )∑3
i=1 [βviy∗i ] + δ

(27)

Note that λ− is always less than 1 provided that all parameters are within biologically possible
bounds. Next, we wish to show that λ+ is also less than 1.

From Equation 20, recall that

0 = (1− z∗)(βv1y
∗
1 + βv2y

∗
2 + βv3y

∗
3)− δz∗.

Manipulating this equation to isolate z∗ yields

z∗ =

∑3
i=1 [βviy

∗
i ]∑3

i=1 [βviy∗i ]− δ
.

Using the equations of form γjy
∗
j = βhjz

∗(wj −y∗j ) from Equation 20, we obtain the following
expression for z∗.

z∗ =
γjy

∗
j

βhjz∗(wj − y∗j )
, j ∈ {1, 2, 3}

Setting these two expressions for z∗ equal and multiplying both sides by the fraction
βhj(wj − y∗j )∑3

i=1 [βviy∗i ]
yields

βhj(wj − y∗j )∑3
i=1 [βviy∗i ]− δ

=
γjy

∗
j∑3

i=1 [βviy∗i ]
, j ∈ {1, 2, 3}
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Note that the left side of this expression is equivalent to our definition of Aj, Equation(27).
As such,

Aj =
γjy

∗
j∑3

i=1 [βviy∗i ]
, j ∈ {1, 2, 3}.

Furthermore,

Aj

[
βvj(1− z∗)

βhjz∗ + γj

]
=

γjy
∗
j∑3

i=1 [βviy∗i ]

[
βvj(1− z∗)

βhjz∗ + γj

]
, j ∈ {1, 2, 3}

=
βvjy

∗
j (1− z∗)∑3

i=1 [βviy∗i ]

[
γj

βhjz∗ + γj

]
.

From here, since all parameters are assumed to be biologically possible, βhj + γj > γj. Using
this inequality, we find

Aj

[
βvj(1− z∗)

βhjz∗ + γj

]
<

βvjy
∗
j (1− z∗)∑3

i=1 [βviy∗i ]
, j ∈ {1, 2, 3}. (28)

Next, we sum Equation (28) over j = 1, 2, 3 to obtain the following. Note that the left side
is equivalent to (λ+)

2 by (26).

3∑
j=1

[
Aj

[
βvj(1− z∗)

βhjz∗ + γj

]]
<

3∑
j=1

[
βvjy

∗
j (1− z∗)∑3

i=1 [βviy∗i ]

]
j ∈ {1, 2, 3}

(λ+)
2 < 1− z∗

Recall from Equation (25) that 0 < Z∗ < 1. Therefore λ+ < 1. Since both λ− and λ+ are
less than 1, Theorem 2 applies, meaning that the real part of the eigenvalues of J(E∗) are
negative. As such, we conclude that E∗ is stable if R0 is greater than 1 and all parameters
are biologically possible.

3 Sensitivity Analysis

We conduct global sensitivity analysis on our model to determine which parameters are
most influential to the model’s behavior. We include biting rate seasonality on our global
sensitivity analysis of the fast subsystem, as outlined by the inter-compartmental approach
from Renardy et al [21].

There are multiple methods to perform global sensitivity analysis. For nonlinear and
monotonic relationships, measures that work the best are Spearman rank correlation coeffi-
cient (RCC or Spearman’s ρ), partial rank correlation coefficient (PRCC), and standardized
rank regression coefficients (SRRC) [17]. The Sobol method is effective for nonlinear non-
monotonic trends, as do the Fourier amplitude sensitivity test (FAST) and its extended
version (eFAST). The derivative based one at a time (OAT) method can be used on any
continuous system where it isn’t computationally difficult to calculate the partial deriva-
tives. Since the relationship in the fast subsystem with seasonality is nonlinear and non-
monotonic with computationally possible derivatives we can either utilize the eFAST or the
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OAT method. We proceed with the OAT method at this time but will conduct eFAST in
the future.

3.1 Calculating The Elasticity of R0

We compute the sensitivity indices of the parameters to determine how much each parameter
influences R0. The sensitivity index for a parameter p is calculated as

∂R0

∂p

p

R0

.

The sensitivity indices are as shown below. A contour plot of the values of R0 depending
on the percentages of the population with XX and XO can be seen in Figure 5. Since the
biting rate a and the mosquito death rate δ rely on the population of mosquitoes, R0 is
most drastically influenced by these parameters. The parameters θ3, ϕ3, and γ3 all have low
elasticities because of the low percentage of the population with absence of the Duffy trait.

Figure 5: Sensitivity indices for R0 for each parameter in Rio Pardo

3.2 Global Sensitivity on Fast System with Biting Rate Seasonal-
ity

The elasticity of R0 substantiates that the mosquito biting rate is the most influential pa-
rameter to R0. We can then account for the seasonality of biting rate by equating a to the
sinusoidal model determined by Iyaniwura et al. [15]:

a = a0 [1 + ϵ cos(2πω(t− tc))] .
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We use derivative-based sensitivity analysis and calculate the normalized sensitivity index
from Arriola and Hyman [2] for the equation denoting the total change in the fraction of

people getting infected. Thus, we are calculating
∂y

∂p

p

y
for each parameter p in y where

y = y1+ y2+ y3 where the other parameters are the baseline values determined by literature.
The average sensitivity indices for the Rio Pardo and Macapa DARC distribution are shown
in Fig. 6. Macapa has a larger percentage of OO people than Rio Pardo. Therefore, w3 has
a greater sensitivity index in Macapa but is still smaller than w1 and w2 due to the reduced
transmission rates for OO people.

Figure 6: Mean sensitivity index of each parameter. The left graph uses the initial conditions and
DARC distribution in Rio Pardo, Brazil while the right graph uses the values from Macapa, Brazil.

4 Parameter Estimation

To estimate the transmission rates of malaria between mosquitoes and humans, we conduct
parameter estimation on the fast subsystem using incidence data from Brazil and by assuming
that Rio Pardo’s Duffy genotype frequency is representative of the wider Brazilian Amazon.

We begin by splitting up time series of cases in Brazil from August 2020 to May 2023
from Garcia et al. [9] to the number of people in each DARC genotype infected.

4.1 Relative Risk of Infection Based on Genotype

Due to the limitations of available literature, we use our known information to infer the
infection rates of P. vivax malaria, based on the Duffy polymorphisms in Rio Pardo. For our
model, we attempt to weight the relative risk of being infected with P. vivax malaria (ni) by
an individual’s genotype. We presume that if everyone in the population contracts malaria

at the same rate, then
vi
v1

is equal to
wi

w1

. We used the values of variables provided in the

paper by Kano et al. [16] to adjust the risk according to the genotype of each population,
resulting in this system of equations:
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
v2
v1

=

(
n2

n1

)(
w2

w1

)
v3
v1

=

(
n3

n1

)(
w3

w1

)
v1 + v2 + v3 = vtotal

(29)

where ni is the relative risk of infection of P. vivax malaria for someone with a genotype i. By

calculating
v2
v1

and
v3
v1

and solving the system of equations, we can determine the proportion

of the infected population by genotype.
The values of ni must be calculated to determine the relative risk of infection for each

genotype. As determined by Kano et al. [16], let naa be the risk of infection due to the
FY*A/FY*A genotype; nbb be the risk of infection due to the FY*B/FY*B genotype:

n1 =

(
FY ∗ A/FY ∗ A

FY ∗ A/FY ∗ A+ FY ∗B/FY ∗B + FY ∗ A/FY ∗B

)
(naa)+(

FY ∗B/FY ∗B
FY ∗ A/FY ∗ A+ FY ∗B/FY ∗B + FY ∗ A/FY ∗B

)
(nbb)+(

FY ∗ A/FY ∗B
FY ∗ A/FY ∗ A+ FY ∗B/FY ∗B + FY ∗ A/FY ∗B

)
(nab)

=

(
160

160 + 93 + 204

)
(0.92) +

(
93

160 + 93 + 204

)
(1.00) +

(
204

160 + 93 + 204

)
(1.00)

= 0.9719912

(30)

We define n2 as the weighted average of the relative risk of infection a heterozygous genotype
with a silent allele. Let nao be the risk of infection for FY*A/FY*O genotype, and nbo be
the risk of the FY*B/FY*O genotype.

n2 =

(
FY ∗ A/FY ∗O

FY ∗ A/FY ∗O + FY ∗B/FY ∗O

)
(nao)

+

(
FY ∗B/FY ∗O

FY ∗ A/FY ∗O + FY ∗B/FY ∗O

)
(nbo),

=

(
139

139 + 73

)
(0.81) +

(
73

139 + 73

)
(1.26),

= 0.9649528.

(31)

The relative risk
n2

n1

of the heterozygous genotype is therefore calculated as follows:

n2

n1

=
0.9649528

0.9719912
= 0.992758. (32)

Thus, from Equation 29 we solve for
v2
v1

and
v3
v1
:
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v2
v1

=

(
n2

n1

)(
w2

w1

)
v3
v1

=

(
n3

n1

)(
w3

w1

)
= (0.9649528)

(
0.3072

0.6623

)
= (0.09)

(
0.0304

0.6623

)
= 0.4475819 = 0.00413

where
v3
v1

represents the homozygous Duffy-negative genotype.

4.2 Fitting the Fast System with Seasonality

We begin the parameter estimation by fitting the sinusoidal seasonality of biting rate by
fitting the below model from [15] to the incidence cases of Brazil:

a = a0 [1 + ϵ cos(2πω(t− tc))] .

Dual annealing was used to minimize the mean absolute percent error (MAPE) between a and
the incidence of cases. This was used to fit the parameter ω. We then continue to estimate
every parameter except ω with dual annealing where it minimizes the following value:

MAPE(Total incidence) = MAPE(Incidence of XX cases) +

MAPE(Incidence of XO cases) + MAPE(Incidence of OO cases).

Figure 7: Modeled mosquito biting rate and P. vivax incidence in the Brazilian Amazon
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Figure 8: Fit of model to the estimated breakdown of P. vivax by Duffy positivity in the Brazilian
Amazon

In Fig. 7, the biting rate lags the incidence of vivax malaria cases. This is because it
takes time for an increased number of bites to result in more infected mosquitoes, which
would in turn increase in the number of infected people. In Fig. 8, the lines representing
the data look very similar because they differ by a constant factor due to our assumptions
when disaggregating the incidence data. Likewise, the model looks very similar because at
any given time, the rate of Duffy-positive individuals become infected differs from the rate of
infection of Duffy-negative individuals. We assumed that the distribution of people with each
DARC genotype was equal to the distribution in Rio Pardo. The results of the parameter
estimation can be seen in Table 3.

Table 3: Estimated Parameters for Fast System with Biting Rate Seasonality

Human Parameters Description Value

θ1 Probability of infection from infected bite for XX 0.729
θ2 Probability of infection from infected bite for XO 0.729
θ3 Probability of infection from infected bite for OO 0.060
γ1 Recovery Rate for XX 0.0159
γ2 Recovery Rate for XO 0.0159
γ3 Recovery Rate for OO 0.0159

Mosquito Parameters

a0 Average Biting Rate 0.0613
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ϵ Degree of Variation around Biting Rate 0.0986
ω Frequency for seasonal malaria epidemic 0.0025
tc Phase Shift in Periodicity −50.07
c Mosquitoes per Human 1.39
ϕ1 Probability a mosquito is infected from XX 0.520
ϕ2 Probability a mosquito is infected from XO 0.520
ϕ3 Probability a mosquito is infected from OO 0.025
δ Mosquito Death Rate 0.121

5 Results

We developed a multi-scale mathematical model that quantifies the impact of the DARC
genotype on the epidemiology of vivax malaria, and the impact of vivax malaria on the
long-term frequency of Duffy-positivity. From our sensitivity analysis of R0 for the fast
system without seasonal biting rate, we find that the mosquito biting rate, a, has the highest
elasticity index, and therefore the largest impact on the value of R0. Thus, varying the
mosquito biting rate heavily influences the dynamics of P. vivax.

Since malaria incidence data exhibits seasonal fluctuations, we implemented seasonality
into our model by making the biting rate a sinusoidal function of time. Using this updated
model, we then conducted sensitivity analysis on the model’s prediction of the total number
of people infected across genotypes. However, because different places have different percent-
ages of the population with each genotype, we conducted this analysis using the genotype
fractions from Macapa and Rio Pardo, where about 59% and 3% of people are Duffy-negative,
respectively.

When comparing the results of the sensitivity analysis on the model incorporating sea-
sonality, we find that in both Macapa and Rio Pardo, the recovery rates γ1 and γ2 have the
largest impact on the number of total infected people, which reflects our model’s assumption
that people leave the infected class at these rates. Aside from these two parameters, the
average biting rate a0 has the largest sensitivity index, with c, the ratio of mosquitoes to
human, coming in second. The population of mature female mosquitoes per area is thereby
a driving force of infection by P. vivax. Given that the life cycle of mosquitoes is dependent
on temperature and humidity, we defined the biting rate as a sinusoidal function. By fitting
this to our data, we assume that biting rate is the diving force of this cycle. Our sensitivity
analysis confirms this positive correlation between the biological reality of the vector and our
model.

Similarly, mosquitoes are infected by taking a blood meal from human populations; how-
ever, taking this blood meal from a Duffy-negative individual has no effect on the rate of
mosquito infection. Indeed, only ϕ1 and ϕ2 have positive sensitivity indices in both areas. In
Rio Pardo, w3 has a negligible sensitivity index due to the small percentage of Duffy-negative
people in Rio Pardo. In Macapa, w3 has greater sensitivity due to the larger percentage of
Duffy negative people in Macapa. However, w is still smaller than w1 and w2 due to the
reduced transmission rates for Duffy-negative people.

We conducted parameter estimation on the fast system by utilizing a time series of cases
in Brazil [9] to fit the transmission rates of malaria between mosquitoes and humans. Sea-
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sonality is incorporated through the mosquito biting rate in the fast subsystem so as to fit
the seasonality of malaria cases in Brazil. We established a fit to the monthly incidence for
Duffy-positive and Duffy-negative people, and determined a mean average percentage error
of 7.02%. The transmission rates predicted by the parameter estimation are lower than the
ones determined by literature. This leads to conservative R0 values.

We investigate the impact of the fraction of people of XO and OO people on the repro-
duction number R0. Fig. 9 are formulated by utilizing transmission rates obtained through
parameter estimation, and identical transmission rates multiplied by 2.5 to yield a high trans-
mission scenario. The left plot suggests for the transmission rates found through parameter
estimation that the fraction of homozygous or heterozygous Duffy-positive people doesn’t
affect R0. The right plot with higher transmission rates illustrates that at least 85% of the
population needs to be OO for R0 < 1 or in other words P. vivax is controlled.

Figure 9: The white line through both figures is when R0 = 1. The left figure is a contour
plot of how the fraction of homozygous or heterozygous Duffy-positive people affects R0 for low
transmission rates. The right figure is the same but for higher transmission rates.
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Figure 10: Frequencies of Duffy genotypes in different locations. Data from [14].

To quantify the relationship between disease burden and the frequencies of each Duffy
genotype, we obtained Duffy genotype distributions for different locations from a handful of
studies. In Fig. 10 is the map and the Duffy genotype breakdown of each sampled place. It
can be seen that in the cities sampled from Cameroon and Kenya that the whole population is
Duffy-negative while in the cities from China and Sweden the whole population is homozygous
Duffy-positive. Some cities in Brazil have more diverse profiles such as Mazagão and Macapa.

We then use R0 defined in (14) to plot the basic reproduction number vs. the fraction
of people who are Duffy-negative. Additionally, we use the model parameters from Table 3
and w1, w2, w3 from the data mentioned above. Note that some locations present in Fig. 10
have the same Duffy genotype frequencies as other locations, and are thus redundant and
are not included in the scatterplot. To represent scenarios with high malaria transmission,
we multiply the infection rate parameters βhi, βvi, (i ∈ {1, 2, 3}) by a factor of 2.5 to increase
the rates of infection.
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Figure 11: Scatterplots of predicted R0 values versus the frequency of the OO genotype for low
(Left) and high (Right) transmission rates with lines of best fit.

In Fig. 11, the lines of best fit for the low transmission and high transmission scatterplots
are y = −0.8207x+1.0644 and y = −2.052x+2.661, respectively. According to these slopes,
a decrease of about 10 percentage points in the percentage of Duffy-negative people results
in an increase of R0 by about 0.08 when the malaria transmission is low. When we increase
the transmission rates by a factor of 2.5, the same 10 percentage point difference causes a
roughly 2.5 times larger increase to R0 of about 0.21. Additionally, the relation is slightly
nonlinear, as changes to smaller fractions of Duffy-negative people result in a smaller increase
to R0.

6 Discussion

The purpose of our mathematical model is to characterize the epidemiology of P. vivax
malaria in relation to the DARC genotype. We do so by separating the genotype into
three classifications, each relating to the number of alleles that are silent or expressed in a
Duffy polymorphism. Thus, we employ a three-genotype model similar to the one Feng and
Castillo-Chavez [6] developed to describe the sickle cell trait.

Using the slow system of our model, we obtained the fitness of the X-gene, which rep-
resents the likeliness of the expressed Duffy alleles FY*A and FY*B to persist into future
generations. As shown in Fig. 4, as the recovery rate of Duffy-negative people (γ3) increases,
it becomes more advantageous to be Duffy-negative and the X-gene is less likely to be se-
lected for than the silent O-gene. As the infection rate of Duffy-negative people decreases,
the fitness of the X-gene also decreases since it’s more beneficial to be Duffy-negative.

Through sensitivity analysis on both R0 and the equation for the total number of infected
people, we determined that the mosquito biting rate is highly influential parameter in both
quantities, and thus highly influential in P. vivax malaria dynamics.

When we investigated the impact of the frequencies of the DARC genotypes and the
transmission rates on R0, we found that as the fractions of homozygous and heterozygous
Duffy-positive people increase, R0 also increases. Based on the model, there is an nonlinear
inverse relationship between the frequency of Duffy negative people and the basic reproduc-
tive number R0. To gather these results, we used a handful of Duffy genotype population
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breakdowns from various locations. Additionally, increasing the transmission rates resulted
in an increase to the smallest percentage of Duffy-negative people required to keep P. vivax
outbreaks under control.

Our model quantifies how the diversity of DARC genotypes impacts the dynamics of P.
vivax malaria infections. In this paper, we established a framework to determine what per-
centage of Duffy-negative people are required to keep P. vivax outbreaks under control, once
given the transmission rates from a specific geographic area. With statistically representa-
tive genetic data with respect to Duffy genotypes, our model can more accurately determine
which populations are at risk of vivax malaria. Furthermore, once given region-specific in-
fection parameters, this model can be applied to geographic regions around the world with
varying genotypic frequencies. This provides valuable insight for the delegation of resources
to different populations, such as antimalarial drugs, insecticide-treated bed nets, and malar-
ial vaccine trials. Future work includes conducting Markov chain Monte Carlo sampling to
establish confidence intervals for our parameter estimation. In addition, we hope to apply
Extended Fourier Analysis Test (eFAST) to the fast subsystem with biting rate seasonality
to refine the sensitivity analysis. Additionally, we will incorporate evolutionary game theory
into our study, as it presents an interesting approach to further investigate the evolution-
ary dynamics of P. vivax malaria. Different seasonality models such as the two peak model
outlined by White et al. [26] need to be considered as well.
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8 Appendix

8.1 Mosquito Model Re-scale (3)

Taking the derivative of both sides with respect to time, substituting the expression for
dIm
dt

from (3), and simplifying yields

z = Im ·M−1

dz

dt
= M−1

[
dIm
dt

]
+ Im

[
−M−2dM

dt

]
= M−1

[
Sm

(
aϕ1

v1
N(t)

+ aϕ2
v2

N(t)
+ aϕ3

v3
N(t)

)
− δIm

]
− Im

M
M−1dM

dt

Note that z can be substituted for
Im
M

and (1− z) for
Sm

M
because of how we defined z and

because M = Sm + Im.

dz

dt
= (1− z)

(
aϕ1

v1
N(t)

+ aϕ2
v2

N(t)
+ aϕ3

v3
N(t)

)
− δz − z

Ṁ

M

where Ṁ represents
dM

dt
. To maintain a roughly constant mosquito-to-human ratio (param-

eter c), we assume that M is constant. Implementing this assumption yields

dz

dt
= (1− z)

(
aϕ1

v1
N(t)

+ aϕ2
v2

N(t)
+ aϕ3

v3
N(t)

)
− δz.

As such, our model can be expressed in the following equations.

dui

dt
= PiNb(N)−mui − aθiczui + γivi

dvi
dt

= aθiczvi −mvi − γivi − αivi

dz

dt
= (1− z)

(
aϕ1

v1
N(t)

+ aϕ2
v2

N(t)
+ aϕ3

v3
N(t)

)
− δz

(33)

A similar process can be used to derive the equations for
dxi

dt
and

dyi
dt

starting with the

relations xi =
ui

N
and yi =

vi
N
. This results in the following fractional expressions of (3).
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