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Abstract

Prostate cancer is the most common cancer in men aside from skin cancer and has the potential to
progress into advanced, metastatic disease in some patients. Initially, prostate cancer is testosterone-
dependent; therefore, androgen deprivation therapy (ADT), which lowers testosterone production and
blocks androgen receptors, effectively reduces tumor burden. However, essentially all tumors treated with
ADT eventually progress into castration-resistant prostate cancer (CRPC). In addition, ADT significantly
lowers patient quality of life. An ”early-warning” system that can accurately predict approaching CRPC
could enable clinicians to refine treatment strategies and enhance both the length and quality of life
for patients. Here we show that signals of castration resistance are present in serum PSA dynamics
data. First, the decay rate of PSA during treatment correlates with CRPC progression. Second, a
simple mathematical model of evolving CRPC fit to serum PSA data from the first cycle of ADT can
accurately predict the subsequent cycle dynamics, including onset of CRPC in some patients. This
result demonstrates the potential of mathematical models to predict treatment response in a given cycle
using information from preceding cycles. Our model, however, was not universally accurate; predictions
failed dramatically in a subset of patients. Nevertheless, our simple model is general enough to allow
its application to study treatment resistance in most cancers with minimal adjustments. This model
takes another step along the path towards personalized therapeutic strategies in oncology, and can be
applied to improve adaptive therapy, allowing clinicians to better plan treatment to delay progression of
treatment resistance.

1 Introduction

Cancer treatment resistance poses a significant challenge in achieving favorable patient outcomes and prolong-
ing survival. The evolution of resistance to drug therapies often leads to tumor progression and diminished
effectiveness of treatments. To address this pressing issue, there is a growing need for the development of
robust models that can predict and monitor treatment resistance in individual patients, facilitating person-
alized treatment strategies and improved quality of life [3].

Cancer is defined as the uncontrollable growth of cells – the absence of cellular homeostasis. Likewise,
prostate cancer is the abnormal, uncontrollable growth of cells within the prostate gland. Prostate cancer is
caused by mutations in the genome that are responsible for the universal ”6 Hallmarks of Cancer” : evasion
of cell death, limitless replicative potential, sustained angiogenesis, tissue evasion, metastasis, insensitivity
to antigrowth signals, and self sufficiency in growth signals [2]. However, prostate cancer is unique as the
factor of testosterone compounds cellular growth and longevity. Testosterone enters the cell membrane of
a prostate cell and is converted into DHT(dihydrotestosterone) via the 5 α reductase, which can then bind
with an (AR) androgen receptor, phosphorylating the AR. After the phosphorylation of the AR, the AR can
then bind to the DNA and with the help of transcription factors can activate the oncogenes responsible for
enhanced cellular growth and longevity.

Due to testosterone inadvertently activating the fore-mentioned oncogenes being the driver of prostate
cancer, most modern treatment consists of eliminating the production of testosterone in the testes, adrenal
gland, and from prostate cells themselves. This treatment is referred to as androgen deprivation ther-
apy(ADT), and a combination of cyproterone, leuprolide acetate, and abiraterone are used in this treatment
plan. Cyproterone (CPA), The most common execution of this treatment is maximum tolerated dose (MTD),
where the patient is continuously prescribed the maximum dosage of ADT medication that they can tolerate
until the prostate cancer, inevitably, becomes resistant.

1



There are 6 pathways to treatment resistance in prostate cancer cells: hypersensitive pathway, promis-
cuous pathway, outlaw pathway, bypass pathway, and the lurker cell pathway. The hypersensitive pathway
is a mechanism where the AR becomes more sensitive to the presence of DHT via a higher population of
ARs to intercept DHT, increased sensitivity to DHT, or increased enzyme activity to convert testosterone
into DHT. The ”promiscuous pathway” allows for ligands outside of DHT to bind to the AR and activate
the same set of oncogenes responsible for prostate cancer.

In this study, our focus lies in optimizing the administration of drug medications for prostate cancer
to enhance patient outcomes and extend lifespan. Specifically, we aim to create a predictive model that
utilizes prostate-specific antigen (PSA) as an indicator to assess treatment resistance. PSA, a biomarker
commonly used in prostate cancer management, holds promise as a valuable tool in understanding the
response of cancer cells to treatment interventions. By monitoring PSA levels during treatment cycles, we
can potentially identify early signs of treatment resistance, allowing for timely adjustments to the therapeutic
approach.

The significance of this research lies in the potential to provide medical scientists and clinicians with
a universally applicable model that takes into account individual patient parameters, including PSA levels
and other relevant blood markers. By incorporating these parameters into a robust predictive model, we
can improve our understanding of how cancer cells develop resistance to treatment regimens and optimize
drug administration strategies accordingly. This, in turn, has the potential to enhance the quality of life for
cancer patients and extend their lifespan.

The current challenge lies in finding a model that can effectively capture the complexities of treatment
resistance across various patients and cancer types. Each patient presents a unique biological landscape,
and capturing this heterogeneity is crucial in developing a comprehensive and accurate predictive model.
Through careful statistical tests, dynamic modeling and multi-linear regression analyses, we aim to validate
the parameter values for our model and ensure its reliability and applicability in diverse clinical scenarios.

2 Data

The data we are using comes from “Canadian Prospective Phase II Trial of Intermittent Androgen Suppres-
sion” [1], a clinical study on advanced prostate cancer patients with recurring prostate cancer after radiation
therapy. The data set includes information on PSA levels, testosterone levels, cycles, periods, medicine
administered, dates, notes, and hematology. In this study, patients receive treatment for prostate cancer and
their PSA is monitored, if at 24 and 32 weeks PSA is not normalized they are classified as treatment resis-
tant and pulled from the study. If PSA is normalized at these benchmarks, then they are withdrawn from
treatment after 36 weeks and their PSA is monitored every 4 weeks. Once the PSA surpasses a threshold of
10 ng/ml, treatment is resumed.

2.1 Data analysis methods

The data were initially filtered to remove patients with sparse data. To model the off and on phases, we
use the exponential and Gompertz model respectively. The Gompertz model is represented by the following
differential equation:

N ′(t) = α̂N(t) ln

(
K

N(t)

)
. (1)

Table 1 describes each parameter in the Gompertz model.
For both the on and off treatment phases, we look for a signal of oncoming treatment resistance by

investigating how the mean/medians of the decay rates, basic growth rates, and carrying capacities of the
groups—progressor, non-progressor, death/illness, and miscellaneous—compare to each other.

For the Off treatment phases, MATLab was used to fit both the Gompertz and exponential model to the
patients PSA quantity within a given time interval. The Gompertz model gives us the best fitting because
it accounts for the inflections and the sigmoidal nature of our data, although the basic growth rate from
this model does not agree with our mechanistic model. Thus, the basic growth rate was derived from the
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Table 1: Description of parameters from Gompertz Model (??).

Parameter Description Units Value

N(t) Number of Cancerous Cells # of cells R+

α Growth Rate of Cancerous Cells 1/time(s) R+

K Carrying Capacity # of cells R+

exponential model. The basic growth rate, α̂, and the carrying capacity, K, from the Gompertz model
needed to be filtered due to anomalies that contradicted the biology of cancer growth

There were scenarios where negative α̂ values occurred, the corresponding patient - cycle was removed
as cancer growth should not be decreasing when off treatment.

A significant amount of the data yielded K values that were abnormally large and had no biological
significance, these values were disregarded when doing further analysis. The justification removing these K
values are as follows: time does not go on long enough for there to be an observable inflection point, there
is not enough data to make a sensible fitting with, and there are strange fluctuations that lead to a complex
r2 values. The process for determining which K values are ”abnormal” involved analyzing instances where
K values exceeded 100. It was thus determined that K values above 118 ng/ml should be disregarded due
to time not progressing far enough to have an observable inflection point.

After filtering the data, the data was then transported to the Python workspace using the Pandas library
and the statistical analyses were performed. The ANOVA is used on both the α̂ and K values, the QQ
- plot and Bartlett tests were used to test the assumptions of the ANOVA. The ANOVA, Q-Q plot, and
Bartlett test were functions imported from the statistics library by SciPy. All figures/graphs were created
using Matplotlib.

3 Mechanistic model

In addition to fitting these essentially phenomenological mathematical expressions to the data, we also
attempted to develop a more detailed model that captures the underlying biology of the evolution of treatment
resistance.

3.1 Derivation

We assume that the resistant prostate cancer cells and the sensitive prostate cancer cells are competing
for the same resources. The well-known Lotka-Volterra competition model describes the dynamics of two
competing species. Let x(t) and y(t) be the populations of the sensitive cells and resistant cells at time t,
respectively. The model can be represented by the following system of ordinary differential equations:

dx

dt
= rx

(
1− x+ αy

K

)
,

dy

dt
= ry

(
1− y + βx

K

)
,

where r is the instrinsic growth rate of the cancer cells, α and β represent the effects of interspecific compe-
tition, and K is the carrying capacity of the cells. We introduce a new parameter µ, which is a function of
time that is 0 when a patient is off treatment, and when a patient is on treatment, it is a positive constant
that represents the per capita death rate caused by treatment. Next we assume that treatment causes a
linear increase in the death rate of sensitive cells. We also introduce a new parameter, s, which measures
the physiological effect of resistance. We will assume that the death rate caused by treatment is decreased
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by e−s in the resistant cells. Our model then becomes the following:

dx

dt
= rx

(
1− x+ αy

K

)
− µx,

dy

dt
= ry

(
1− y + βx

K

)
− µe−sy.

We then introduce a new parameter, η, which represents how much the resistance mechanism affects the
sensitive cell’s ability to compete. We assume that resistance can increase death rate from competition by
ηs. Also, we assume that resistant cells can have a lower instrinsic growth rate as they are mutated and less
competant. The final parameter we introduce is ψ, which is a proportion that is a measures of cost to the
resistant cell’s instrinsic growth rate. The final assumption we make is that the cell’s resistance mechanism
can decrease its intrinsic growth rate by e−ψs. Thus our final model is the following:

dx

dt
= rx

(
1− x+ αy

K

)
− µx, (2a)

dy

dt
= re−ψsy

(
1− y + (β + ηs)x

K

)
− µe−sy. (2b)

Table 2: Description of parameters from Model (2).

Parameter Description Value Units

r intrinsic cell growth rate of sensitive cells (0, ∞) per time
K carrying capacity (0, ∞) cells
µ death rate caused by treatment (0, ∞) per time

η
measures how the cell’s resistance mechanism
affect its ability to compete

[0, ∞) unitless

s
physiological measure of the cell’s resistance
to treatment

(0, ∞) unitless

α
competition coefficient between resistant cells
and sensitive cells

(0, ∞) unitless

β
competition coefficient between sensitive cells
and resistant cells

(0, ∞) unitless

ψ
measure of cost to the resistant cells’ intrinsic
growth rate

[0, ∞) unitless

3.2 Model analysis

Here we analyze the dynamical properties of our mechanistic model.

3.2.1 On treatment

In this subsection we analyze the on-treatment case; that is, consider model (2) where t ∈ Tx (i.e., µ > r).
In this case, system (2) has the following equilibria:

E0 = (0, 0),

E1 =

(
K(r − µ)

r
, 0

)
,

E2 =

(
0,
K(r − µes(ψ−1))

r

)
,

E3 =

(
K(−αµr + α+ µr − 1)

αβ + αηs− 1
,
K(−βµr + β − ηµrs+ ηs+ µr − 1)

αβ + αηs− 1

)
.
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Figure 1: The parameter values used to create the graph above were r = 3, α = 10, β = 15 η = 50, K = 33.8466, µ = 5.02,
s = 0.8167, and ψ = 0.3.

Theorem 3.1 (Equilibria Dynamics On Treatment). E0 always exists, and it is locally asymptotically stable
if and only if µ > re−s(ψ+1). E2 only exists when −µeψ−1 + r < 0, and it is always locally asymptotically
stable when it exists. E1 and E3 never exist in the positive cone.

Proof. Since µ > r, E1 will always be negative, so we can disregard it. Let Nx be the set of points in the
phase plane that satisfy dx

dt = 0. This set can be partitioned into 2 distinct subsets:

Nx1 := {y ; x = 0}, and

Nx2 :=

{
(x, y) ; y =

K

r
(r − µes(ψ−1))− (β + ηs)x

}
.

Similarly, we define the set Ny as the set of points such that dy
dt = 0, which also can be partitioned as follows:

Ny1 := {x ; y = 0}, and

Ny2 :=

{
(x, y) ; y =

K(r − µ)

αr
− 1

α
x

}
.

Both Nx2 and Ny2 are decreasing linear functions of x. Since the x-intercept of Ny2 is negative, no point in
this set is positive. Therefore, the E3 fixed-point, which occurs at the intersection of Nx2 and Ny2, never
exists in a biologically relevant portion of the phase plane.

The general Jacobian matrix of this system is the following:

Jon(x, y) =

r
(
1− (αy + x)

K

)
− rx

K
− µ −αrx

K

−ry(β + ηs)e−ψs

K
r

(
1− (x(β + ηs) + y)

K

)
e−ψs − rye−ψs

K
− µe−s

 , (3)

which when evaluated at E0 becomes

Jon(0, 0) =

[
r − µ 0
0 e−s

(
re−s(ψ−1) − µ

)] .
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The eigenvalues are easily seen to be r − µ and e−s(re−s(ψ−1) − µ). The first eigenvalue is always negative
because, by assumption, µ > r. The second eigenvalue is negative when re−s(ψ−1) − µ < 0. Also, E0 must
always exist because Nx1 and Ny1 always exist and they intersect at exactly (0, 0). Thus E0 always exists,
and it is locally asymptotically stable when re−s(ψ−1) − µ < 0.

At E2,

Jon =

[
r − µ− α

(
−µes(ψ−1) + r

)
0

−(β + ηs)
(
−µes(ψ−1) + r

)
e−ψs e−s

(
−µ+ re−s(ψ−1)

)] .
The eigenvalues of this matrix are: [e−s

(
µ− res(ψ−1)

)
, α

(
µes(ψ−1) − r

)
+ r − µ]. The first eigenvalue is

negative when µ− res(1−ψ) < 0. This inequality is equivalent to µes(ψ−1) − r < 0, so if the first eigenvalue
is negative, the second eigenvalue must also be negative. E2 exists when r − µes(ψ−1) > 0 because that
is when the point is positive. This inequality is also equivalent to the previous one, so E2 exists when
r − µes(ψ−1) > 0, and it is always locally asymptotically stable when it exists.

Table 3: Summary of boundary equilibrium dynamics for Model (??). LAS: locally asymptotically stable.

Equilibrium Existence Stability

E0,0 Always
• LAS iff r − µes(ψ−1) < 0,

otherwise it is unstable.

E0,y∗ =
(
0, K(r−µes(ψ−1)

r

)
r − µes(ψ−1) > 0

• Always LAS when it exists.

Theorem 3.2. If E0 is the only equilibrium point that exists on treatment, it is globally asymptotically
stable.

Proof. When x = 0 and arbitrary initial condition y(0) ≥ 0, the solution of the system will be (0, y(t)).
Thus, the solution will stay on the y-axis. By the uniqueness theorem of ODEs, no solution whose initial
conditions are positive can cross the y-axis. We can use the same reasoning to show that no solution whose
initial conditions are positive can cross the x-axis. Thus the positive quadrant of the phase plane is positively
invariant. We seek to apply the theorem of Lyapunov, which requires that we find a positive definite function.

Definition 1 (Positive definite function). Let Ω be an open subset of R2 that contains a point, p. Consider
a C1 function, V (x, y), defined on Ω. This function V (x, y) is positive definite on Ω if

1. V (p) = 0; and

2. V (p) > 0 for all (x, y) ∈ Ω such that (x, y) ̸= p.

Let us first consider the case when E2 does not exist. Let

V (x, y) = x2 + y2. (4)

Note that V (x, y) ∈ C1, V (0, 0) = 0 and V (x, y) > 0 everywhere else. Therefore, V (x, y) is positive definite
in R2.

Lemma 3.3 (Lyapunov’s Theorem). Suppose p is a fixed point of model (2). If V (x, y) is a positive definition
function on domain Ω containing p and V ′(q) < 0 for all q ∈ Ω such that q ̸= p, then p is an asymptotically
stable fixed point in which all solutions with (x(0), y(0)) ∈ Ω approach p asymptotically.

Consider the positive definite function V (x, y) in equation (4), and note that

dV

dt
= 2x

dx

dt
+ 2y

dy

dt
(5a)

= 2x

(
rx

(
1− x+ αy

K

)
− µx

)
+ 2y

(
re−ϕsy

(
1− y + (β + ηs)x

K

)
− µe−sy

)
(5b)

= 2x2 (r − µ)− 2x

(
x+ αy

K

)
+ 2y2e−s

(
res(−ψ+1) − µ

)
− 2y2re−ψs

(
y + (β + ηs)x

K

)
. (5c)
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By assumption, x(0) and y(0) are positive; since the positive quadrant is positively invariant, x(t) and
y(t) must be positive for all t. Since µ > r, the first term in expession (5c) must be negative. Since the
second term only contains positive numbers, it must also be negative. The third term will be negative if
res(−ψ+1) − µ < 0, which is the same as the condition for when E0 is the only non-negative equilibrium
point. Finally, the fourth term will also be negative as all the terms in it are positive. Thus dv

dt < 0, so by
Lemma (3.3) E0 is globally asymptotically stable.

Theorem 3.4. If E2 exists, it is globally asymptotically stable.

Proof. Let f be our system on treatment, and let u = dx
dt and v = dy

dt . We begin by showing that f ∈ C1(Ω),
where we define Ω to be the positive cone.

∂u

∂x
= r − µ− 2rx

K
− rαy

K

This is a linear function of x, so it must be continuous.

∂u

∂y
=
rαx

K

This is a constant function, so it must be continuous. By the same reasoning, the first order partial derivatives
of u must be continuous, so we can conclude that f is C1.

Lemma 3.5 (Bendixon’s Criterion). Let f ∈ C1(Ω). If divf = ∂u
∂x + ∂v

∂y is non-zero and does not change
sign Ω, then there are no limit cycles in Ω.

When we expand and simplify div f we get the following:

divf = (r − µ)(1 + e−s)− r (e−s (2y + (β + ηs)x) + 2x+ αy)

K

Since µ > r, the first term is always negative. Previously, we showed that x and y are positively invariant,
so the second term must also always be negative. Thus we can conclude that div f is non-zero and remains
negative throughout the whole solution set, which shows that no limit cycles can exist.

Lemma 3.6 (Poincaré-Bendixson Theorem). Consider a planar system of differential equations:

dx

dt
= f1(x, y), (6)

dy

dt
= f2(x, y), (7)

and suppose f1, f2 ∈ C1. Let Ω be a positively invariant region of the phase space for system (6) containing
a finite number of fixed points. Let Γ (x, y) be a solution through point p ∈ Ω. Then the asymptotic limit of
Γ (x, y) is either (1) an asymptotically stable fixed point, or (2) an asymptotically stable limit cycle.

dx
dt is negative throughout the whole first quadrant. If the solution is above E2,

dy
dt is negative, and if the

solution is below E2,
dy
dt is positive. We also know that the solution set is positiveley invariant. All of this

shows that solutions cannot diverge to infinity in the x direction or the y direction, and they must stay in
a bounded region. Since there are no limit cycles, every solution will converge to a locally asymptotically
stable equilibrium point. From our previous analysis, we know that when E2 exists, it is the only locally
asymptotically stable equilibrium, so E2 will be globally stable.

Table 4: Summary of boundary equilibrium dynamics for Model (??). Globally stable: globally asymptotically
stable.

Equilibrium Existence Stability

E0,0 Always
• GAS if r − µes(ψ−1) < 0,

otherwise it is unstable.

E0,y∗ =
(
0, K(r−µes(ψ−1)

r

)
r − µes(ψ−1) > 0

• Always GAS when it exists.
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Figure 2: The parameter values used to create the graph above were alpha = .7, beta = .4, eta = .2, K = 18, and s = 1.

3.3 Off Treatment

The equilibrium points for the off treatment system are the following:

E0 = (0, 0),

E1 = (K, 0),

E2 = (0,K),

E3 =

(
K(α− 1)

αβ + αηs− 1
,
βK + ηKs−K

αβ + αηs− 1

)
,

Theorem 3.7. When a patient is off treatment E0 always exists, and it is always unstable. E1 and E2 both
always exist, and are stable when α > 1 and β + ηs > 1 respectively. E3 exists when α < 1 and β + ηs < 1
OR α > 1 and β + ηs > 1. It is stable when α < 1 and β + ηs < 1, and it is unstable otherwise.

Proof. The general Jacobian matrix, J , of the off treatment system is the following:

J =

r
(
1− αy + x

K

)
− rx

K
−αrx
K

−ry(β + ηs)e−ψs

K
e−ψsr

(
1− x(β + ηs)

K

)
 .

Evaluated at E0, J becomes

J0 :=

[
r 0

0 re−ψs

]
,

which has eigenvalues [r, re−ψs]. By assumption, r > 0; therefore, both eigenvalues are always positive, and
E0 always exists and is always unstable.

The other two boundary fixed points, E1 and E2, must always exist because, by assumption, K > 0. At
E1 the Jacobian matrix becomes

J1 :=

[
−r −αr
0 r(1− (β + ηs))e−ψs

]
,
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with eigenvalues [−r, e−ψsr(1− (β+ηs))]. The first eigenvalue is always negative and the second is negative
when β + ηs > 1. Thus E1 is locally asymptotically stable when β + ηs > 1. At E2 we have

J2 :=

[
r (1− α) 0

r(β + ηs)e−ψs −re−ψs

]
,

which has eigenvalues [r(1 − α),−re−ψs]. The first eigenvalue is negative when α > 1, and the second
eigenvalue is always negative. Thus, E2 is locally asymptotically stable when α > 1.

Figure 2 is a graph that displays the nullclines off treatment, and their intersection, E3.

y intercept of x nullcline = y1 = (0,K)

y intercept of y nullcline = y2 =

(
0,
K

α

)
x intercept of x nullcline: = x1 =

(
K

β + ηs
, 0

)
x intercept of y nullcline := x2 = (K, 0)

In order for E3 to exist in the first quadrant, y1 > y2 and x2 > x1 or the inverse must be true. This means
that either α < 1 and β + ηs < 1 OR α > 1 and β + ηs > 1. When we evaluate the Jacobian at E3 and find
its characteristic polynomial we get the following:

λ2 +
re−ψs

(
(α− 1)eψs + β + ηs− 1

)
α (β + ηs)− 1

λ− r2e−ψs(α− 1)(β + ηs− 1)

α (β + ηs)− 1

We can use the Routh-Hurwits theorem to show the local stability of this point. This theorem states that
if both coefficients of the characteristic polynomial are positive, then the point is locally stable. If evaluate
the coefficients when α < 1 and β+ηs < 1, we can see that both coefficients of the characteristic polynomial
are positive. If evaluate the coefficients when α > 1 and β + ηs > 1, we can see that both coefficients of
the characteristic polynomial are negative. Thus, E3 exists when α < 1 and β + ηs < 1 OR α > 1 and
β + ηs > 1. It is locally asymptotically stable when α < 1 and β + ηs < 1, and it is unstable otherwise.

Table 5: Summary of boundary equilibrium dynamics for Model (??) (off treatment). LAS: locally asymptotically
stable.

Equilibrium Existence Stability
E0 = (0, 0) Always • Unstable

E1 = (K, 0) Always • GAS if β + ηs > 1 and α < 1

E2 = (0,K) Always • GAS if β + ηs < 1 and α > 1

E3 =
(

K(α−1)
α(β+sη)−1 ,

K(β+sη−1)
α(β+sη)−1

) α < 1 and β + ηs < 1
OR α > 1 and
β + ηs > 1

• GAS if α < 1 and β + ηs < 1

Table 6: Global Stability Conditions for Different Cases

Case Global Stability

α > 1 and β + ηs < 1 E1 is GAS
α < 1 and β + ηs > 1 E2 is GAS
α < 1 and β + ηs < 1 E3 is GAS
α > 1 and β + ηs > 1 E1 or E2 is GAS
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Table 7: Description of parameters from Gompertz Model (??).

Parameter Description Units Value

N(t) Number of Cancerous Cells # of cells R+

α Growth Rate of Cancerous Cells 1/time(s) R+

K Carrying Capacity # of cells R+

4 Searching for Signals of Treatment Resistance

4.1 On Treatment

We aimed to investigate the dynamics of sensitive cells and treatment resistance in prostate cancer patients
during the On-Treatment phase. We focused on monitoring the changes in PSA levels as a reflection of the
underlying cell behavior.

During the On-Treatment phase, it was anticipated that the population of sensitive cells would diminish as
a result of the therapeutic interventions. Accordingly, we employed an exponential decay model, represented
by the equation y = x0e

−rt, where y represents the PSA level, x0 is the initial PSA level, r denotes the
decay rate, and t signifies the elapsed time during the treatment phase.

To estimate the decay rate (r) during the On-Treatment phase, we utilized the mean slope of the log-
transformed prostate-specific antigen (PSA) values for each patient and treatment cycle. This approach
allowed us to capture the overall trend of PSA level changes over time and obtain a quantitative measure of
the decline in the population of sensitive cells.

However, it was noted that in a subset of patients, treatment resistance emerged, leading to a lack of
response or even an increase in PSA levels. In these cases, the PSA levels remained relatively stable or
exhibited an upward trend, suggesting the persistence or growth of treatment-resistant cells.

To ensure the accuracy and reliability of our analysis, certain data preprocessing steps were implemented
prior to calculating the decay rate. These steps were aimed at addressing potential sources of bias and noise
in the dataset.

First, it was observed that the initial PSA value in each treatment cycle often deviated significantly from
the subsequent measurements. Consequently, to minimize bias, the first PSA value within each cycle was
excluded from the analysis. This step was necessary to prevent the abnormal initial value from affecting the
estimation of the decay rate.

Additionally, values below 0.02 were removed from the dataset. These values were considered noise as
they fell below the threshold of sensitivity for the assay used to measure PSA levels. Including such values
could introduce inaccuracies and adversely impact the linear regression analysis.

4.2 Off Treatment

During the Off - Treatment phase, sensitive cells will begin to increase in growth at a rate α̂. This growth
has a sigmoidal shape over time, and can best be approximated with the ”Gompertz” equation:

N ′(t) = α̂N(t) ln

(
K

N(t)

)
(8)

4.2.1 Basic growth rate, α

Parameter, α̂, is the growth rate for both the sensitive and resistant cells when on off period but is not used
in the model

The alpha values collected from data set range from 0.00018 to 0.0614. The mean α̂ value is 0.00882,
meaning the average growth rate of cancer growth during the off-cycle is 0.00882.

The distribution is right-skewed as depicted by Figure ??. The mean α̂ value is 0.00882 and ranges from
0.000183 to 0.0614. Initially, it was expected that α̂ would act as a good r parameter for the mechanistic
model but it failed considerably in application with simulations and fitting. Instead, the growth rate from
the exponential model is used in the mechanistic model (see section 5.2.3).
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Table 8: Description of parameters from Gompertz Model (??).

Parameter Normality
Variance
(Bartlett)

Test p-value

r Non-Normal
Non-
homogeneous

Tukey’s
HSD

0.015

dr Non-Normal
Non-
homogeneous

Mann-
Whitney

0.0369

ln(α̂) Normal Homogeneous
One Way
ANOVA

0.4707

ln(K) Normal Homogeneous
One Way
ANOVA

0.1343

Figure 3: Histogram depicting the distribution of K values after abnormalities were removed

To investigate possible signals of oncoming treatment resistance within the off-cycle, α̂ is analyzed to ob-
serve a significant difference in the means of α̂ values in the groups progressors, non-progressors, death/illness,
and miscellaneous. A one-way ANOVA is used to perform such analysis and assumptions made by the one-
way ANOVA were validated. A QQ plot is used to check for normality in the distribution of α̂ residuals
values, it is found that the distribution is not normal so a logarithmic transform is applied to normalize
the distribution. To confirm homogeneity in variance, a Bartlett test is performed yielding a value of 0.186,
which affirms the null hypothesis that the variance amongst the groups is homogeneous. After both condi-
tions were affirmed, a one-way ANOVA was applied, resulting in a p-value of 0.596 which agrees with the null
hypothesis that there is no significant difference in the means of the aforementioned groups. The analysis
implies that there is no signal within the α̂ values of oncoming treatment resistance.

4.2.2 Carrying capacity, K

Parameter K is the carrying capacity or asymptotic limit of the cancer growth for a patient on a particular
cycle during the off-period. K is also a parameter used in the mechanistic model. The distribution of the K
values from applying the Gompertz model to the data is heavily-right skewed . This is due to there being
instances where K is abnormally large and the Gompertz model behaving as an exponential model when
there is no indication of an inflection (see section 5.2)

K is further analyzed to observe whether or not it acts as a reliable signal for anticipating the development
of treatment resistance. To check for normality in the distribution of Ks, a QQ plot is used to observe how
the data maps to the line representing normally distributed data. A natural log transform is applied in an

11



Figure 4: QQ Plot of log K values depicting non-normality

Figure 5: QQ Plot of log transformed K values depicting normality

attempt to normalize the data
Figure 4 shows how the K residuals by themselves are not normally distributed, hence the reason behind

performing a log transform in Figure 5 to get a distribution that is more normalized. A Bartlett test
is performed on the log transformed K values of groups progressors, non-progressors, death/illness, and
miscellaneous. The Bartlett test yielded a p-value of 0.487, which affirms the null hypothesis and indicates
homogeneous variance within the groups of K values. Due to both conditions now being met, a one-way
ANOVA is performed on the groups of K values to check whether or not the null hypothesis that there is
no significance in the means of the groups is true. After applying the ANOVA using the statistics library
from SciPy, it is observed that the p-value is 0.097 therefore the null hypothesis is rejected. Thus, there
is no indication within the carrying capacity values during the off period that there is oncoming treatment
resistance.

4.2.3 Intrinsic growth rate, r

It was found that α̂ does not perform well as a growth rate in our mechanistic model, instead we took
instances where the cancer growth resembled exponential growth (we defined this threshold to be when
carrying capacity was past 118 ng/ml) and used the corresponding mean growth rate from the exponential
fittings as the growth rate for our mechanistic model.
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