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ABSTRACT 

We present a mathematical model to describe the dynamics of the immune 
system in the presence of the causative agent of tuberculosis, Mycobacterium 
tuberculosis. We take into consideration the relations between the bacteria, 
T lamphocytes, and macrophages. We compute the basic reproductive num
ber to determine under which conditions we get certain disease states: no 
infection, latency, and infection. The behavior depicted by our model, under 
certain parameters, demonstrates the dynamics of these three conditions of 
the disease. We consider a treatment and analyze its effect on the dynamics 
of the system. 
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1 Introduction 

During the 1800s, tuberculosis was an epidemic disease throughout the world. 
Due to improvements in living conditions and advances in medicine, the in
cidence of tuberculosis began to decline in the 1900s. However, it has re
mained a major cause of death in developing countries. It is transmitted 
through coughs and sneezes by a person with infectious (active) tubercu
losis. Healthy persons who are infected have a high probability of being 
asymptomatic. There is a 10% risk of developing active tuberculosis after 
being infected [Hopewell 1994]. When tuberculosis is latent, it is incapable 
of being transmitted and does not cause any symptoms [Miller 1993J. 

Currently the number of cases of tuberculosis again is on the rise. Ap
proximately one third of the global population is infected by Mycobacterium 
tuberculosis [Sudre et al. 1992J, the causative agent of the disease. This 
makes tuberculosis one of the most common infectious diseases in the world. 
Some of the factors that have caused this increase of the disease are: immi
gration, overcrowded living conditions, substance abuse, and AIDS. Newly 
evolved strains that are resistant to one or more drugs used in treatment 
have developed with this new resurgence of tuberculosis. 

An increase in awareness has motivated basic research on the pathogenesis 
of the bacteria and the mechanisms of the immune response. Our research 
is based on the microbiological perspective of tuberculosis and the immune 
system. The focus is on the immune system-pathogen interaction. Work 
using this approach has been done with Chagas' disease [Velasco-Hernandez 
and Perez-Chavela 1992] and the HIV virus. 

In tuberculosis, the interaction among the causative agent, the macrophages, 
and the T cell (CD4jCD8) populations establishes the state of the disease. 
The interaction between the bacteria and the immune system can be viewed 
as the combination of two ecological processes: predator-prey and pathogen
host interaction. Using this blended model, we analyze the potential out
comes resulting from human exposure to Mycobacterium tuberculosis. Three 
outcomes will be examined: no infection, a latent state of infection, and an 
infectious (active) state. The present paper seeks to model the dynamics 
between the Mycobacterium tuberculosis and the cells of the immune system 
by considering five separate populations: Mycobacterium tuberculosis, empty 
macrophages, inactivated macrophages, activated macrophages, and T cells. 
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We seek to determine which initial states and which parameters lead to dif
ferent outcomes in the health of the infected individual. From these findings 
we will have a better understanding of the immune system and its response 
to Mycobacterium tuberculosis. This may enable scientists to foresee and 
prevent the death of an infected indi vidual. 

2 Mathematical Model 

A realistic model of the interactions between the immune system and My
cobacterium tuberculosis is required to elucidate the dynamics of these in
teractions. A notable limitation in the construction of this model has been 
the lack of understanding the mechanisms involving the immune response to 
Mycobacterium tuberculosis. To account for these limitations it is necessary 
to make some assumptions about the process and incorporate them into our 
model. There is still an ongoing debate as to the importance of the role of 
the humoral response, but in order to simplify the model we have assumed 
that it is negligible and have concentrated exclusively on the cell-mediated 
response. 

The cell-mediated immune response includes the action of macrophages, 
or phagocytic cells able to digest foreign material, and T cells which facilitate 
the activation of the response by secreting growth and cell-activating factors. 
The model discussed here includes effects of CD4+ and CD8+ T cells. We 
do not distinguish between these two subpopulations. More explicitly, we 
have taken the liberty to consider their total effects as additive, Therefore 
we focused on a broader concept of a T cell which combines the outcomes of 
both these subpopulations. 

A very important note to consider is that our model presumes infection 
and concentrates on the possible outcomes of this infection. We consider 
infection only in the primary infection site. We do not consider spread of the 
bacteria via travel of the alveolar macrophages into other parts of the body 
nor do we consider systemic infection. We have considered three general out
comes which are summarized in Figure 1. All outcomes presume engulfment 
of bacilli by the alveolar macrophage. Once in the macrophage, the bacilli 
can restrain their growth and remain unnnoticed for years. The length of 
time which these bacilli can remain unnoticed inside macrophages depends 
on the individual. Genetic patterns have been observed with respect to the 
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length of this latent state (Rossman & Macgregor 1995). If the bacilli repli
cate once inside the macrophage, the stress of this activity will lead to an 
immune response involving the T cells. From the latent state we can have 
reactivation of bacterial replication which will lead to a similar response. The 
mechanisms which acti vate this replication in latent-state bacilli remain un
clear. Once an immune response is mounted we have two possible outcomes: 
defeat of the bacilli due to their destruction and elimination, and uncon
trolled infection whereby the immune response was not strong enough to 
eliminate the pathogen, leading to symptomatic tuberculosis. Thus we con
sider the outcomes of infection as latency, infection progression, or infection 
elimination. 

2.1 Macrophage growth and infection 

In order to consider the relation of the macrophages to the system we have 
to consider the roles they play in the immune response mounted against the 
bacteria. We consider three states of the cell. The first is the free state 
before its encounter with a bacilli (M). In this state it simply remains 
prepared for an encounter with a foreign antigen. The next state is the 
inactive state from chance encounters with a tuberculosis bacilli (M*). In 
the inactive state it now contains the bacilli within its cytoplasm (i.e., it is 
now full) yet remains inactivated. The third state consists of the activated 
full macrophage (M**). Activation occurs from chance encounters of a T cell 
which, after recognizing it, begins to mount an attack partly by activating the 
macrophage. The actual process of activation is also unclear, although there 
are some hypotheses, including the belief that when the T cell activates the 
macrophage it enables it to produce nitrogenous compounds which the bacilli 
cannot resist. As a model for these three states we suggest the following: 

dM/dt 

dM* /dt 

dM** /dt 

13- 8M - EMP, 

EMP - aTM* - (8 + g)M*, 

aTM* - 8M", 

(1) 
(2) 
(3) 

where 13 represents the birth rate of macrophages as seen in the bone mar
row of a healthy adult; 8 the natural cell death rate; E the engulfing rate 
of a macrophage with respect to a bacillus; a the activation rate of a full 
macrophage with respect to its encounter with a T cell; and 9 the rate of 
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bursting of a macrophage as a result of the unbounded proliferation of bacilli 
inside its cytoplasm. 

We have left out the possibility of a varying birth rate, although taking 
this possibility into account would make our model more realistic, since there 
is an increase in macrophages when a full one meets up with a T cell. 

2.2 T cell proliferation 

Immune response depends on chance encounters of T cells with M* macrophages. 
The T cell recognizes the M* macrophage and begins mounting an attack 
that not only activates the macrophage but also allows for the secretion of 
substances such as INF')' (which kills free bacteria as well as destroys sur
rounding tissues). The T cells also self-replicate in the process. Thus we 
consider the following equation to model the dynamics of the T cells: 

dTjdt = A +rTM* -8T T. (4) 

where A is the birth rate for the formation of the T lymphocyte in the bone 
marrow of a healthy adult; 8T is the natural cell death rate of the T cell; and 
r is the rate of replication of the T cell upon encountering a full macrophage. 
We have assumed that the birth rate is constant but we are aware that it 
should be represented as a function of T. 

2.3 M. tuberculosis growth in an infected individual 

The causative agent of tuberculosis is transmitted via the inhalation of in
fectious droplets emitted during an infected person's coughing, sneezing, or 
spitting. The contraction of the disease by a susceptible guinea pig or rabbit 
depends on the inhalation of droplets limited to the size of 1 to 3 bacilli in 
order to facilitate their engulfment by macrophages. Equivalent data is not 
found on humans so we have assumed a similar pattern of dependence in 
modeling the immune response for humans. As a model we propose: 

dPjdt = bP - 8p P - EMP + (8N + gL)M*, (5) 

where P is the number of bacilli as would be measured in the blood; 8p the 
natural cell death rate; N the number of bacilli inside a macrophage when 
it dies a natural cell death; and L the number of bacilli required in order to 
burst a macrophage. 
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3 Analysis and Simulations 

3.1 Analysis 

Our model consists of the following set of differential equations: 

dM/dt -- {3 - oM - EJvl P (6) 

dM* /dt E~MP - oTM* - (0 + g)M* (7) 
dM** /dt aTM* - oM** (8) 

dT/dt A+rTM* -oTT (9) 

dP/dt bP - opP - EMP + (oN + gL)M*. (10) 

To begin the analysis of the system we compute the steady states for (6) -
(10). For the disease-free equilibrium we take P = 0, M* = 0, and M** = 0, 
since in the absence of bacteria we would have no engulfing, hence no M* 
nor M** cells. From (1) and (4) we have 

0= {3 - oM and ° = A - oTT 

so 
Eo = (Mo,M;,M;*,To,Po) = ({3/0, 0, 0, A/oT, 0). 

The Jacobian matrix of the system at Eo is 

-0 ° ° ° -tf!.. 

-(o+g+a~) 
{j 

° ° ° tf!.. 
{j 

JEo = ° a A -0 ° ° {jr 

° ° ° -0 ° ° oN+gL ° ° b - () - Ef!.. P {j 

Let 

C = ( - (0 + 9 + a~) tq (3) . 
oN + gL b - b - e-P {j 

For the stability of Eo, we can see that the real part of all eigenvalues of the 
matrix JEo is negative if and only if both 

det(C) = (aA/oT + 0 + g) (E{3/0 + op - b) - (oN + gL)(E{3/0) > 0, 
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and 
tr(C) = -(aA/oT + 0 + g) - (EfJ/8 + 8p (b) < o. 

The condition in the determinant is equivalent to 

(EfJ/8)(8N+gL) 1 
(E/3/8 + 8p - b)(aA/8T + 8 + g) < . 

We define the basic reproductive number as 

(EfJ/8)(8N + gL) 
(E/3/8 + 8p - b)(aA/8T + 8 + g). 

This parameter relates the average number of engulfings per lifetime of M 
(E/3 / 8) per "true" lifetime of bacteria (E/3 / 8 + 8p - b) with the average number 
of released bacteria (8N +gL) per "true" lifetime of M* cells (aA/8T +8+g). 
IlQ reflects the interplay of epidemiological, predator-prey, and population 
growth factors in our model. It relates epidemiological factors for the M -

. M* - M** dynamics; predator-prey interactions between the M and P 
population, and the population dynamics of P. 

For IlQ to make sense we should have E/3/8 + 8p - b > O. If we consider 
the case when E/3/8 + 8p - b < 0, then bacteria will increase exponentially. 
To see why this happens, from (1) we can see that M < /3/8. From (5) we 
have 

dP/dt ~ (b - 8p - E/3/8)P; 

thus 
P(t) ~ P(0)e(b-6p -€/3/6)t _ 00 as t _ 00. 

To determine endemic equilibria, we set equations (1) - (5) equal to zero. 
From (4) and (5) , 

T = A8T - rM* for M* < 8T /r and P = (8N + gL)M
P *. 

8p +EM-b 

Substituting these equations in (1) and (2), we have 

0= f3 - 8M _ EM(8N + gL)M* 
8p + EM - b 
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and 
(bN + gL)M* A 

O=EM -0' M*-(b+g)M*. (*) 
bp + d'v! - b bT - rM* 

Adding these two equations and solving for M gives us 

M = ~ [fJ- O'AM* - (b + g)M*]. 
b bT - rM* 

Let x = M*, then let gl(X) = bT - rx, g2(X) = [fJ - b + g)X]gl(X) - O'Ax. 
Then M can be expressed as 

M = g2(X) with x = M*. 
bg1(x) 

Substituting M in the second equation from (*) and considering M* > 0 we 
define 

Take 

F(x) = E(8N + gL)g2(x) _ (b + g) = O. 
(bp - b)bg1(x) + Eg2(X) 

O'A 
e2(x) = -(-) + (8 + g). 

gl X 

Solving for x (= M*) would be finding x such that these two curves intersect: 
e1(x) - e2(x) = O. 

We show the existence of such an x, hence the existence of endemic 
equilibria. We restrict the analysis to the interval [0, bT/r). Note that 
F(O) = e2(0)(Ro-l). For Flo > 1 we have F(O) > O. Now consider x* = bT/r. 
Note that 

lim e! (x) = bN + gL, and lim e2(x) = 00. 
x-+x* x-+x* 

Then 
lim F(x) = -00. 

X-+X* 

Since F(O) > 0 and for some h, F(bT/r - h) < 0, then F(c) = 0 for some 
c E (0, bT/r). This shows the existence of an endemic equilibrium. We now 
show that for bp ~ b the endemic equilibrium is unique. Computing F'(x), 

O'Ar 
F'(x) = bE(b - 8p )(8N + gL)[(b + g)gi + O'Ag! + rO'Ax] - -2 ' 

gl 

we can see that for bp ~ b, F'(x) is strictly negative. This shows that there 
is only one c E (O,bT/r) such that F(c) = 0, when Flo > 1. 
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3.2 Simulations 

We complete our analysis through computer simulations. In the previous 
section, we determined analytically the conditions for stability of the disease
free equilibrium, the existence of endemic equilibria for Ro > 1, and the 
uniqueness of an endemic equilibrium for the case where 8p 2: b, with Ro > 1. 

Through the simulations we corroborated our analytical results and ex
tended them. The main purpose of the simulations was to find the three 
possible stages of tuberculosis: active, latent, and no TB. We identified the 
active stage with an exponential growth of the bacteria, the latent stage 
with an endemic equilibria, and the no-TB stage with the disappearance of 
bacteria. 

While doing the simulations, we considered the cases where Ro < 1 and 
Ro > 1. This was done because of the lack of information on most of the 
parameters. We define 

8N+gL 
and R2 = A/£ £ a UT + U + 9 

For each of the cases, we considered three sub-cases, each a different 
combination of values for Rl and R2. For Ro < 1 we considered: 1) Rl < 1, 
R2 < 1; 2) Rl > 1, R2 < 1; 3) Rl < 1, R2 > 1. For Ro > 1 we considered 
the cases: 1) Rl > 1, R2 > 1; 2) Rl > 1, R2 < 1; 3) Rl < 1, R2 > 1. In each 
of these cases we paid most attention to the behavior of P(t) (bacteria) and 
M (t) (macrophages). 

We obtained no TB (P(t) -+ 0, M(t) -+ /3/8) in the cases where Ro < 1 
and Rl < 1. This can be interpreted as follows: Rl < 1 is true only if 8 p > b. 
Since bacteria is dying at a higher rate than their birth we would expect a 
settled growth of bacteria. With Ro < 1 this behavior settles to the disease
free equilibrium. 

Our model showed latency (P(t) -+ kl' M(t) -+ k2 ) in the case where 
Ro > 1, with Rl < 1 and R2 > 1. Rl < 1 means 8p > b, and R2 > 1 means 
that there is a higher "release" rate of bacteria with respect to the removal 
of 11,1* cells through activation. A latent stage is expected with high release 
rate and high death rate for bacteria since it is plausible to get a "balanced" 
system. 
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We found active TB (P(t) -;. 00, M(t) -;. 0) in the case where flo > 1, 
Rl > 1 and R2 > 1. This can be interpreted as the consequence of b > 0 P 

(Rl > 1) and ahigh release rate (R2 > 1). 

We also obtained interesting results for the cases where Rl > 1 and 
R2 < 1, both with flo < 1 and flo > 1. For some initial conditions, as the 
ratio Rd R2 increased we could observe a transition from a disease-free state 
to an active stage of exponential growth for P(t). This was obtained for 
Ro > 1 and Ro < 1. The transition was sensitive to initial conditions. We 
do not give a biological interpretation because of the complex behavior. See 
Appendix for graphs. 

3.3 Treatment 

It is interesting to note the possible effect of treatment on the dynamics of 
the system. We consider a drug with an intracellular and an extracellular 
effect. Equations (2) and (5) would be modified in the following way: 

dM*/dt = EMP- aTM* - (0 + g)M* - ¢M*, 

and 
dP/dt = (b - op)P - EMP + (oN + gL)M* - ¢P. 

The corresponding basic reproductive number is 

(Ef3/0) (oN + gL) 
Ro(¢) = (Ef3/0 + op - b + ¢)(aAjoT + 0 + g)¢)' 

From Ro(¢) we can note that the effect of treatment is an expansion of 
the domain of parameters that stay within the conditionRo < 1, with Rl < 1 
and R2 < 1. 

4 Discussion 

Our paper we proposes a system of differential equations to describe what 
happens when tuberculosis is in an infected individual. We found in our 
solution analysis the three possible results of TB after it attacks the body: 
latent or inactive TB, active TB, or a full recovery from the infection. 
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Our first important step in the analysis of our model was obtaining Ro, 
the basic reproductive number, which gave us the conditions of the three 
possible outcomes of TB when it attacks the individual. We also were able 
to find the stability condition in the disease-free state. In addition, we were 
able to prove the existence of an endemic state when Ro > 1. In particular, 
if lib > b then we are guaranteed uniqueness of this endemic equilibrium with 

Ro> l. 
In our analysis, we saw the importance of the engulfing mechanism. The 

macrophages served as a "reservoir" for the Mycobacterium tuberculosis. Ei
ther the bacteria are released into the immune system by explosion or the 
macrophages annihilate the bacteria. Through computer simulations, we 
were able to identify the important factors of the system that gave us dif
ferent outcomes. These factors are: the birth of the bacteria, the death of 
the bacteria, the engulfment rate of the bacteria by the macrophages, the 
release of the bacteria by the macrophages, and the activation rate of the 
macrophages by the T-cells. Another important result was the interesting 
outcomes during the latent state of the disease. Latency was eitherperma
nent, temporary, or the person made a full recovery from the disease. From 
our system of differential equations, we found the three outcomes that we 
wanted to find, depending on the value of Ro , Rl ,and R2 . 

However, our model did behave strangely; some of the analytical inter
pretations did not coincide with the computer analysis. There are special 
conditions in the model, such as a "gray area" where a slight change in the 
value of certain parameters changes the state of tuberculosis .. A plausible 
explanation for the unusual behavior in the model is that many of the pa
rameters in the model have not been found. For example, the engulfing rate 
of the bacteria is questionable. Also, we do not know the duration of the 
hibernation period of the bacteria in the macrophage. The lack of biological 
parameters limited our interpretation of our mathematical model. 

The immunological model was further extended to include an intracellular 
and an extracellular treatment. This new parameter would be subtracted 
from the P and M* equation. This would affect the Ro because the new term 
would appear in the denominator of the basic reproducti ve number. Time 
did not permit us to do a complete analysis but from our interpretation of 
the model; we see that the likelihood of proper treatment raised the chances 
to a full recovery. 
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------------------------------------------------------------ ---~-~----------~-------- --------------------------~---------~----------------- -------~------~ 

A possible area for further research is to extend the model to include 
another factor that is causing a weak immune system, such as HIV. -Anyone 
infected with HIV is more likely to die of tuberculosis because HIV weakens 
the system, often allowing the tuberculosis to take over the immune system. 
Studies have shown -that certain groups are more likely to become infected 
with tuberculosis than others, such as substance abusers, smokers, and the 
poor. We could accommodate the model to become specific to high-risk 
groups. We may be able to find similar patterns between each of these 
groups and be able to easily identify others who will fall in the defined high
risk group. Can a target treatment be designed for these high-risk groups? 
What happens if we consider resistant strains? We hope this project will 
lead others to study these important questions concerning the disease. 
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6. Appendix 

Figure 1 . 
Visible dynamics of Tuberculosis and the Immune System 
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Figure 4 

R2 

A Model Describing the Immune System to M. tuberculosis. 
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Outcomes after exposure: 1 - No TB, 2 - Latent TB, 3 - Active TB, depending on the 
values of parameters R) and R2. The region under the curve is when Ro < 1; over the 
curve we llave Ro > 1. 




