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ABSTRACT 

Using S-I-R and S-E-I-R models, it was possible to simulate two Ebola out­
breaks: the 1976 outbreak in Yambuku, Zaire and the 1995 outbreak in Kik­
wit, Zaire. The dynamics of these models are determined by the per-capita 
death rate of infected individuals and the per-capita effective contact rate 
of an individual contracting the disease. The basic reproductive number, R, 
determines the infectiousness of the disease. For Ebola, 1. 72 :::; Ro :::; 8.60, 
and this implies that Ebola is not as infectious as previously postulated. The 
results of these outbreak simulations will equip scientists in future outbreaks 
with information that may enable them to minimize potential deaths. 
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Introduction 

The origin of the Ebola virus is somewhat obscure. There have been 
only three major known outbreaks of the Ebola virus, and all have happened 
in West Central African countries. The latest major outbreak occurred in 
Kikwit, Zaire in 1995. The outbreak took the lives of 79 people. 

Ebola is a unique member of the ribonucleic acid virus family that has no 
known natural reservoir. The incubation period of Ebola is 2-21 days, and 
the infectious period is 4-10 days. The onset of Ebola is characterized by 
severe headaches, malaise, fever, vomiting, bloody diarrhea, and rash. Severe 
bleeding and shock are usually followed by death. Diagnosis of Ebola can be 
difficult, because Ebola is frequently misdiagnosed as typhoid and malaria. 
Currently there is no treatment of Ebola [3]. The mortality rate of Ebola is 
anywhere from 50-90%. Ebola is transmitted through primary contact with 
health workers who are in direct contact with body fluids from the infected. 
Ebola can also be transmitted through secondary contact by family members 
caring for the infected. Finally, Ebola can be transmitted where infection 
control mechanisms are not in practice. These control mechanisms can be 
as simple as wearing gloves, or as complicated as level-four disease control. 
Airborne spread has not been proven as a means of transmission. 

Our objective is to better understand the mathematical dynamics of a 
population infected by Ebola when an outbreak occurs. To model this out­
break, we are using systems of differential equations. Several distinct models 
will be used to study the known data; each model differs in the way the pa­
rameters are acquired. From these different models we will choose the model 
that best fits the data. 

Inaccuracies in the model are to be expected since the parameters dic­
tating the behavior of the model are obtained from only a few data points. 
There have been so few major outbreaks that the amount of data available 
is limited. The model's precision is dependent on this limitation. 

1. Ebola outbreak of 1995 in Kikwit, Zaire. 

The object of this part of the project is to model Zaire's 1995 Ebola epi­
demic, using the Susceptible-Infectious-Recovery (SIR) model (Brauer and 
Castillo-Chavez, 1994). The dynamics of this system happen in two stages: 
susceptible to infected, and infected to dead. This is a closed system where 
those that are susceptible could become infected at some point in time. This 
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model assumes that the initial population is equal to the population that 
will eventually be infected. The parameters are p" the per-capita death rate; 
and (3, the probability that a susceptible host will become infected. The 
parameter (3 can vary from a constant function to an exponential function 
of decay with respect to the number of infected at time t. Once the param­
eters are found, the system modeling the data is solved using Mathematica 
2.22. Mathematica uses the Runge-Kutta method to solve these differential 
equations. 

The population studied is divided into three Classes: S(t), the number of 
susceptible individuals; I(t), the number of individuals infected; and R(t), 
the number of dead individuals at time t. We will assume that the population 
studied will be a constant population during the outbreak, meaning there are 
no deaths due to outside factors and the number of births that occurred are 
so small that we can essentially ignore them. (This is a valid assumption 
since the lengths of the Ebola epidemics are not longer than three to four 
months.) We will denote our total population at time t by N, so at any time 
t, N = S(t) + I(t) + R(t). 

Following a model proposed by Kermack and MacKendrik (1927) to ex­
plain the frequent rapid rise and fall of cases observed frequently in epidemics 
such as the Great Plague in London (1665-1666), the cholera epidemic in Lon­
don (1865) and the plague in Bombay (1906), we are able to propose a model 
that approximates the outbreak reasonably well: 

dS 
-(3SIIN, 

dt 
-

dI 
(3S1 IN - J-LI, 

dt 
-

dR 
p,l. -

dt 

This model takes into consideration the number of people infected due to 
direct contact with an infected individual at time t: (3S1 I N, where (3 = pc; 
p is the probability of successfully getting infected when coming into contact 
with an infected individual, and c is the per-capita contact rate. The death 
rate is denoted by J-LI, where p, is the per-capita death rate. . Even though 
recoveries do occur, we will not return these individuals to the susceptible 
class since there has never been a person who has recovered from Ebola and 
contracted the disease again in the same epidemic. 
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The data which we are studying is of the number of people that died each 
day during the outbreak in Kikwit, Zaire in 1995 [4J. See Figures 1 and 2. 
The second data set is the total number of dead individuals at time t, which 
can also be interpreted as the integral of the daily death data. From this 
relation we will be able to estimate the parameter j3 by solving the second 
differential equation for small values of t and relating it to the number of 
dead at time t. Since dI/dt = j3SI / N - J-lI, for small t, dI /dt ~ j3I - /11; 
solving this equation, l(t) = 1(0) Exp[(j3-J-l)t], where 1(0) = 1. Under these 
conditions, we can assume that l(t) ex R(t+ 1/ J-l), because 1/ J-l is the average 
time for an infected individual to die. So Exp[(j3 - J-l)t] = kR(t+ 1/ J-l), where 
k = 1/0.77 and 77% of infected people eventually die. 

We have data that represents the total number of dead people at time t, 
cumulative of R(t), so we fit the data with the curve. We take the natural 
log of the data so that our fit will be a linear fit: 

(j3 - J-l)t = Ln[1/0.77J + Ln[R'(t + 1/ J-l)J. 

The slope of the line which best fits the data is 0.14. By substitution, 

(j3 - J-l)t - Ln[R(t + 1/ J-l)]' 

0.14t - Ln[R(t + 1/ J-l)]' 

(j3 - J-l)t - 0.14t, 

so j3 - 0.14 + J-l. 

Since the slope of this graph is so sensitive to the number of data points used 
in the fit, an average of these slopes is used to solve for j3. This average slope 
was taken for fits for 10-20 data points. The average slope is 0.113. With· 
this information we are able to calculate a range for the basic reproductive 
number Ro, where R o = j3/J-l. For our range of J-l between 1/6 and 1/31, R o 
ranges from 1.57 to 5.03. We are now ready to look at the solution of the 
system of differential equations: 

dS 
-j3S1/N, -

dt 
dl 

j3S1/N - 111, 
dt 

-

dR 
J-ll. 

dt 
-
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Since we only have numerical 1:iolution1:i, we can only view the graph of 
the solutions of each of these equations [see Figure 3J. The solutions plotted 
there contain the number of susceptible at time t, 5(t), the number of dead 
at time t, R( t), and the number of infected at time t, I (t). 

We want to use the relation between I (t) and R' (t) to plot I (t) to fit R' (t) 
the best. Recall that R'(t) = pI, so the data being considered is fitted by fJ,I 
plus a shift of l/p. to account for the average time from infection to death. 
We first consider how p. varies: 1/31 < fl. < 1/6. For the graphs of Figure 
4, we have taken p = 1/22, 1/5, and 1/30, and N(O) = 900. The respective 
graphs show exactly what one expects, since by increasing the period that 
an infected individual lives, 1/p., there is an increase in the number of dead 
which the model predicts. 

The next variable that we have to take into account is N(O). The range 
for this variable is attained by taking an educated guess as to who the true 
susceptible individuals are in the population. These individuals are the fam­
ily members and medical staff that care for the sick. This is a reasonable 
assumption since the only individuals who are at risk are those that have per­
sonal contact with the infected individuals. The lowest possible value of N(O) 
would be about 250 individuals since only 244 died in this outbreak. A possi­
ble top limit for the greatest value of N(O) could be around 900-1000, taking 
into consideration only the population size of families, health-care workers, 
and others involved in close and personal contact with infected individuals 
[refer to Figure 5]. 

The model, for larger values of N(O), overestimates the number of ex­
pected individuals that will die. This observation may give the impression 
that the model badly represents the data, but in reality this overestimation 
could be of use to health-care workers who plan for how bad an outbreak may 
become by knowing statistics about the first 10-20 days of the outbreak. 

2. Ebola outbreak of 1976 in Yambuku, Zaire. 

We will now model the 1976 outbreak of Ebola in Yambuku, Zaire. The 
data that we will use for this outbreak was obtained from the Center for 
Disease Control (CDC) in Atlanta, GA. We will model the total infections 
that occurred during the outbreak using a modification to the S-I-R model. 
In this model, we will differentiate between the incubation period and the 
infectious period of the disease. As before, the number of susceptible indi-
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viduals at time t will be denoted as S(t). Wf'. will rf'.fer to the incubation 
period of the disease as the latent stage. The numher of latent individuals 
at time t will be denoted hy E(t). Individuals that are infected with the dis­
ease and are suffering the symptoms of Ebola will be classified as infectious 
individuals. The number of infectious individuals at time t will be denoted 
by I(t). Similarly, the number of dead individuals at time t will be denoted 
by R(t). 

The population studied will be a constant population during the outbreak; 
i.e., the total population at time t will be denoted by N where N = S(t) + 
E(t) + I(t) + R(t). Our model is: 

dS 
-{3S(I + qE)/N -

dt 
dE 

{3S(I + qE)/N - 8E -
dt 
dI 

8E -"II -
dt 

dR 
"II. 

dt 
-

This model takes into consideration the number of people infected due to 
direct contact with an infected individual and the number of people infected 
due to direct contact with a latent individual: {3S(I +qE)/N. In this model, 
{3 = pc where p is the probability of successfully getting infected when coming 
into contact with an infected individual, and c is the per-capita contact rate. 
The parameter q (0 ::::; q ::::; 1) is a weight factor added to the model since it is 
known that a susceptible individual has a higher chance of getting infected 
from an infectious individual than from a latent individual [3]). 

The individuals in the latent stage eventually show the symptoms of the 
disease, and pass on to the infectious stage. This is denoted by 8E, where 
8 is the per-capita infectious rate. Then 1/8 becomes the average time for 
a latent individual to become infectious. This will be denoted by "II, where 
"I is the per-capita death rate. Then, 1/"1 becomes the average time it takes 
an individual to die once he/she has entered the infectious stage. As before, 
death and reCQvery are taken to be the same, since there has not been a case 
in which a person who survived Ebola contracts the disease again. 
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Figure 6 shows t.he number of people who became infected each day during 
the outbreak in Yambuku, Zaire in 1976. From this data we can now estimate 
13 using a similar method t.o the one in the previous model. To do this, we 
first make three assumptions: 

Assumption 1: In the beginning of the epidemic, N(t) = S(t). 

Assumption 2: Initially, there is a constant number of individuals infected. 
Those individuals infect other individuals who become latent. It takes 1/0 
days for the latent individuals to become infectious. Therefore, for the first 
1/0 days, the rate of change of the infectious individuals is 0 (i.e., dI/dt = 0.) 

Assumption 3: In order for an individual to become infectious, they must 
pass through the latent stage. Thus, the data for the latent stage is the same 
as the data for the infectious stage, the only difference being that the latent 
stage dat.a occurred 1/0 days before. Since 1/0 is the average time it takes 
for a latent individual to become infectious, and the latent stage ranges from 
2 to 21 days, we choose 1/0 = 12. Similarly, since 1/",( is the average time it 
takes for an infectious individual to die, and of the infectious stage ranges 4 
to 10 days, 1/",( = 7. Thus, we then look at the following equation to estimate 
13: 

dE 
j3S(I + qE)/N - oE 

dt 
-

dE 
j3(I + qE) - oE (*) dt 

-

by the first assumption; 
dI 

oE - "'(I = 0 => oE = "'(I => 1= oE/",( 
dt 

-

by the second assumption. 

If we substitute I into *, then dE/dt = [13(0/",( - o)]E. 

The information for dE / dt is given by the daily infection data; the infor­
mation for E is the cumulative of the daily infection data. Thus, we have a 
linear relationship, and we can estimate the slope by doing a linear fit. Using 
Mathematica and the data for the first 12 days, we obtain the fit shown in 
Figure 7 where equation of the line is 0.3893t. Thus, we now have the slope 
of the best fit line, and 13 = (0.3893 + 0)/(0/",( + q) = 0.567114, if we take 
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q = 0.25 and the values of band "1 given above. The choice for q is arbitrary 
and is picked ::;0 that the model be::;t fits the supplied data. 

Another important number that needs to be computed is the basic repro­
ductive number, Ro. Thi::; number tell::; us how fast the disease will spread 
at the beginning of the epidemic. To calculate the value for Ro , we need to 
find the Jacobian matrix of the system of equations. We then evaluate it at 
the disease-free state. Since the four- dimensional system can be reduced to 
a three-dimensional system, only the first three equations need to be consid­
ered. It is easy to show that the disease-free state is (S, E, I, R) = (N, 0, 0, 0). 
Once the Jacobian is evaluated at this point, the determinant and the trace 
must both be greater than zero to insure that the disease-free state is an 
unstable fixed point. Once all of this is accomplished, we obtain a value for 
Ro: 

Ro = ((31"1)(1 + q'Y18) = 5.67. 

All the parameter values are known, and thus we can solve our system of 
differential equations. The system of differential equations cannot be solved 
explicitly, so Mathematica is used to solve the system numerically. Figure 8 
shows two numerical solutions to the system plotted with the initial infectious 
data. Note the label of the axes. It reads "Positive Part of dI 1 dt" because the 
given data only takes into account the recruitment rate of infectious people. 
The data does not reflect the infectious individuals that die; therefore, only 
the positive part of dI 1 dt is plotted. As can be seen in the plots, the numerical 

. solutions are very good in the first part of the epidemic. After the peak is 
reached, the model is not very accurate. 

3. Ideas for Future Research. 

Both of the models that were presented in this research project used a 
constant effective contact rate, (3. This is probably not the best model for 
(3 since the probability of contracting the Ebola virus varies as the disease 
becomes more widespread. People are more careful with whom they have 
contact, and thus the number of contacts decreases as time elapses or as the 
number of infected increases. Therefore, it makes sense to have (3 decrease. 
Another idea for enhancing the model is to consider quarantine. When in­
fected people are isolated, the number of contacts that can transmit the 
disease decreases. This is something that could be taken into account in 
future work with these models. 
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More research needs to he conducted to estimate N, the total population. 
A good number for N is very important, since as it varies, the accuracy of 
the model also varies, as was seen in the numerical solutions of the models. 
Information that may prove helpful in estimating N includes the number of 
staff members in hospitals, family size, and other data that may help deter­
mine the total susceptible population at the beginning of an Ebola outbreak. 

Research on q is also essential. It is intuitively clear that individuals 
showing symptoms of the Ebola disease are more infectious than latent in­
dividuals who show no symptoms. Therefore, a better value for q would 
make the model more accurate in predicting the dynamics of a future Ebola 
outbreak. 

4. Conclusions. 

The calculated no values ranged from 2.6 to 8.6 for the Yambuku, Zaire 
outbreak in 1976; meanwhile the range for no for the 1995 epidemic in Kik­
wit, Zaire was slightly lower: 1.57::; no ::; 5.03. This makes sense since it 
shows that Ebola patients were infected more during the first epidemic due 
to misunderstanding and misdiagnosis of the Ebola virus. The values calcu­
lated for the basic reproductive number were lower than one may expect for 
Ebola, and were lower than for other diseases. For example, no ranged from 
16-18 for the measles in England and Wales between 1950-68; and no for 
HIV in Hampara, Uganda for heterosexuals between 1985-7 was 10-11 (An­
derson and May, 1991). This may be due to Ebola's method of transmission 
and the fear people have of contracting Ebola. 

These models are very important because they can put an upper bound 
on the number of deaths, and thus can help health officials plan for the latter 
part of an outbreak by calculating the parameters from the data at the start 
of the epidemic. The number of deaths can also be minimized by altering 
the environment; i.e., lowering f3 (the effective contact rate). This can be 
accomplished by implementing quarantine. 
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Data of Daily Deaths in Yambuku, Zaire in 1976 Outbreak 
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