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Abstract 

This paper studies the dynamics of the tick population affected by Rick­
ettsia rickettsii in order to understand how this disease affects other species. 
This project modifies the Busenberg-Cooke (BC) model to better account for 
biological aspects. Mathematical analysis assesses the effect of parameters 
on the dynamics of the model. One main result is obtained: the populations 
behavior is found to be chaotic in a region of parameter space that differs 
from that observed in the BC model. More importantly, the nature of the 
attractors seems qualitatively different. 
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1 Introduction 

The disease Rickettsia r'ickettsii affects many species of animals, including 
humans. This is the most important rickettsial disease for humans in the 
U.S., since there are more than 1000 reported cases per year. The most 
important vector in the transmission of this disease is the American dog 
tick (Dermacentor variabilis) which is widespread in the Northeastern U.S. 
If not treated, this disease may be fatal. The original model (proposed by 
B & C in 1982) and our modified model focus on the population dynamics 
of ticks, the main vectors of this disease. In addition to RMSF, ticks carry 
diseases such as Lyme Disease and Heartwater. Organisms that serve as 
reservoirs of the disease and live in rural areas (generally small mammals such 
as rodents) are a constant source of infection to ticks, which in turn infect 
domestic animals like dogs and rats. Domestic animals bring the infected 
ticks into close contact with humans, who are the terminal hosts of ticks. 
Dogs, however, are not efficient reservoirs of the disease since they recover 
after three days. 

The life history of the various species of ticks that carry R. rickettsi 
follows the same general pattern. However, there is a difference in the time 
required for each species to reach maturity. Some may live less than a year, 
while others have a life span of up to four years. They have three main 
life stages: larval, nymph, and adult. Larvae and nymphs feed on small 
mammals, whereas adults feed on large mammals, including humans. 

Both models-the model proposed by Busenberg and Cooke (BC model) 
and our modified model-consider two types of transmission: horizontal and 
vertical. Horizontal transmission, which depends on the host, occurs be-. 
tween members of the same generation of ticks, whereas vertical transmis­
sion is passed from one generation to the next. Both horizontal and vertical 
transmission are described by their own set of equations: continuous and 
discrete, respectively. We choose different parameter values for these equa­
tions to determine if the population dynamics of ticks will tend to chaos. Our 
model is not intended to be a detailed description of the relationship between 
hosts and ticks, but rather an attempt to expand on what has already been 
modeled by Busenberg and Cooke [1993]. 

The following sections in this study describe the model equations and 
numerical results. The model equati6'nssection describes the modified model 
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and the method used to simulate the problem. The part. on numerical results 
shows an analysis of the graphs acquired by implement.ing the model. 

2 Model Equations 

We start with six basic assumptions. First, the host groups demography 
is insignificant and its population size is constant. Second, the probability 
of transmission from tick to host is equal to that from host to tick, given 
contact. Third, there is a probability that imrriigrant ticks are infected or 
susceptible. The probability of susceptibility, F, is a relatively arbitrary 
value based loosely on the dynamics from simulations. Fourth, , includes all 
possible causes of death in ticks. Fifth, recovered hosts remain susceptible. 
Sixth, the immigration rate (A) is constant in this model. 

To study the spread of R. rickettsii, it is necesary to understand the 
groups involved. First the ticks are separated into two classes, susceptible 
and infected. Second, the infection is spread through hosts, which are also 
divided into susceptible and infected classes: dln/dt, dSn/dt, dh/dt, dSh/dt 
are the rates of change in the number of infected and susceptible ticks (n) 
and hosts (h), respectively, over time. With these criteria, we formulate a 
model that more accurately describes the relationship between the host and 
the tick than the one presented by Busenberg and Cooke. 

h/dt 

dSh/dt 

dln/dt 

dSn/dt 
k 

L 

LShln - 'I!h 

-LShln + 'I!h 

(1 - F)A + kSnh - ,In 

FA - kSnh -,Sn 

pCn/Nh 
pCh/Nn. 

The susceptible ticks which get infected will move into the infected tick 
group at a rate of KSnh, where K is the horizontal transmission factor. 
Snln represents a susceptible tick coming into contact with an infected host. 
This horizontal factor represents the probability per contact per individual, 
that is, the probability that the infection will be spread from one tick to 
another tick of the same generation. The term K Snlh is added into the same 
equation for the infected ticks because the newly infected ticks are entering 
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the group, while it is subtracted from the equation for the susceptible ticks 
because it represents the ticks which are leaving the group due to infection. 

Ticks that die are also t.aken into account. The t.erm 'YSn is subtracted 
from the differential equation for susceptible ticks, and 'YIn is subtracted from 
the differential equation for infected ticks. 

The immigration of ticks into the tick community is represented by the 
symbol A. The probability that the incoming ticks will be infected is (1- F), 
so (1 - F) is added to the equation for infected ticks. The probability that 
the incoming ticks are not infected is F, and F is added to the equation for 
susceptible ticks. 

Similarly, susceptible hosts are transferred into the infected host group 
at the rate of LShIn, where ShIh represents a susceptible host coming into 
contact with an infected tick, and L is the horizontal transmission factor. 
The recovery rate for the host is \II h, which is added to the equation for 
susceptible hosts and subtracted from the equation for infected hosts. Since 
the host is immortal from the perspective of the tick, the number of hosts, 
Nh = h + Sh , is a constant. 

Vertical transmission is represented by the difference equations: 

Since the differential set of equations only deals with the horizontal trans­
mission and not with the vertical transmission of the disease, the values of 
infected and susceptible ticks in a generation, In(n) and Sn(n), respectively, 
depend on the number of both groups from the previous generation. The 
life span of a tick is between 2 to 3 years. In the model we normalize this 
period to one unit of time, that is, each generation lives one unit of time. 
Ticks take a certain length of time to mature, after which they are able to 
lay eggs; ml and m2 are the lower and upper boundaries, respectively, of the 
time interval in which a female tick can lay eggs. The interval ml - m2 is 
called the maturation window. Vertical transmission occurs when the female 
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tick passes the infection to her offspring. Therefore, to measure the vertical 
transmission would mean to take t.he integral from ml t.o m2. Thus, we have 
t.he int.egral taken from ml + n - 1 to m2 + n - 1, where n - 1 is the end of 
the previous generation. 

In t.he difference equation for the infected t.ick population (1 - p) / (m2 -
ml) represents the probability that the new generation is infected. The term 
bt(t)In-l(t) represents the number of infected born from previous infected 
generations. The second term, [1 - In-1(t) - Sn-l(t)] is the logistic control 
on t.he oviposition, or the laying of the eggs. 

In the difference equation for the susceptible ticks, the first term inside the 
integral, [bs(t)Sn-l (t)+pbI(t)In- 1 (t)], represents the births for the susceptible 
ticks of the previous generation and the probability of susceptible births from 
the previous infected generation. 

The second term inside the integral is the logistic control on the ovipo­
sition. The term outside the integral shows that there is no change in the 
spread of the infected from the previous generation during the maturation 
window. 

In this model, the maturation window has been modified. It is as­
sumed that all female adult ticks lay their eggs simultaneously, that is, 
ml - m2 = m. By applying the fundamental theorem of calculus to the 
difference equations, this new set of difference equations is obtained: 

[(1 - p)bI(M + N - 1)IN- 1(M + N - 1] 

[1- IN-1(M + N - 1) - SN-l(M + N - 1)] 

[bs(M + N - l)SM+N-l + pbI(M + N - 1)IN- 1(M + N - 1)] 

[1 - IN-1(M + N - 1) - SN-l(M + N - 1)]. 

Using the difference and differential sets of equations, two Matlab pro­
grams were developed and run on SunSparc4 and SunSparc5 for various val­
ues of m, bI, and bs . The first program, "driver" (see Appendix 1) depends 
on the second, "difchaos" (see Appendix 2). We assign arbitrary initial condi­
tions to the four differential equations. Then we solve them for h, In, Sh, Sn. 
We graph these solutions over a time interval. At the end of this simulation, 
we obtain values for these variables, taking into consideration only In and 
Sn because they refer to the tick population. We ignore the variables Sh and 
Ih because they deal with the hosts, and relative t.o the lifespan of the ticks, 
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the hosts have a much longer life span and can be assumed to live forever. 
The ODEs are solved for the time interval nand n + m, where n + m will 
provide the population size at time n + m, when female ticks lay eggs. These 
are plugged into the difference equations to obtain the population sizes of 
In, Sn, h, Sh at the beginning of the next generation. The ODEs are solved 
between nand n + 1 and the values at n+ 1 are plotted. Then the process is 
repeated for the new initial values obtained from the difference equations. 

3 Numerical Results 

Using the computer simulations, we obtained several graphs which illustrate 
the chaotic behavior of our model. In Figures 1 and 2 we plot In versus 
Sn for n = 101 : 1000 (i.e., generation numbers n ranging between 101 and 
1000) with the constant parameter values bs = b8 = 3.6, bI = bI = 4.0, 
p = 0.01, L = 0.5, W = W = 0.5, A = A = 0.4, r = G = 0.3, K = 0.4, 
F = 0.35 and initial conditions: 1(1) = 0.3, 8(1) = 0.6. As m was varied 
(m = 0.02 for Fig. 1, and m ~ 0.5 for Fig. 2), we observed that the shape of 
the attractor also changed. This result indicates that m plays an important 
role in determining the dynamics of the systems. 

In Figures 3 and 4, we tried to identify the transient and true at tractors 
for m = 0.05, b8 = 4.0, bI = 3.6 (all other constant parameter values were 
kept). In Figure 3 we plotted In versus 8n for n = 101 : 1000. As expected, 
we found points that more or less seemed evenly distributed. In Figure 4, 
we plotted In versus 8n for n = 101 : 100,000. We obtained a more or less 
evenly distributed region of points which intuitively indicated the existence 
of only one true attractor. 

In Figures 5 and 6 we illustrated the dynamic behavior by plotting the last 
hundred points for infected and susceptible tick populations out of Fig. 3 and 
Fig. 4 versus time; at m for each generation n, we obtain points with respect 
to time which describe the size of the infected and susceptible populations 
of the next generation. These points are connected so as to provide a better 
visual idea of the chaotic behavior of the system. 
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4 Conclusion 

Based on the characteristics of chaos given by Kaplan and Glass (Under-­
standing Nonlinear- Dynamics 1995), we conclude by saying that our model 
seems to have chaotic behavior. It is important to note that our modified 
model has an attractor that seems to differ from that in the Be model. From 
a biological point of view because there is no pattern to follow in order to 
reach specific conclusions. More mathematical analysis is needed to see the 
biological implications of the systems behavior. Due to time constraints, this 
was not possible. 

Suggestions for Future Study 

In order to form a better model, revising the model is suggested so that 
a broader maturation window can be included in it. More simulations would 
enhance the hypothesis and help characterize chaos in a more precise way. 
Another way to describe the boundaries of chaos more clearly is to find the 
bifurcation diagram for this model. Unfortunately, the end of the summer 
also brought dissolution of our research group. 
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Figure 1 

This is the graph for the infected ticks versus susceptible ticks for 1000 
generations. The maturation window is 0.02, the birthrate of susceptible 
ticks is 3.6, and the infected birthrate is 4.0. 

Figure 2 

In this graph, all parameters were kep the same from the previous figure 
except that the maturation window is 0.5, which is of greater value. This 
graph also shows the simulation over 1000 generations. 

Figure 3 

In this figure, the value for the maturation window is 0.05, but the infected 
and susceptible birthrates have been switched. This graph also shows the 
simulation over 1000 generations. 

Figure 4 

This graph shows the simulation of infected versus susceptible ticks. The 
maturation window is 0.05, the infected birthrate is 3.6 and the susceptible 
birthrate is 4.0. 

Figure 5 

Last 100 generations of population of infected ticks with respect to the 
generations, graphing only every 15th generation of Fig. 3. 

Figure 6 

The last 100 generations of the population of susceptible ticks with respect 
to the generations, graphing only every 15th generation of Fig. 3. 
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Computer Programs. 

The following section contains the computer programs in Matlab used to 

generate the simulations. 



function xdot = difchaos(t,x) 

L=.5; 
Psi=.5i 
Lam=O.4i 
G=O.3i 
K=.4i 
F=O.35i 

t X(l)~Id(t), x(2)=Sd(t}, x(3)=In(t), x(4)=Sn(t) 

tsystem of ODE's 
xdot(l) = L*x(2) .*x(3) - PSi*x(l)i 
xdot(2) = -L*x(2) .*x(3) + PSi*~(l)i 
xdot(3) = K*x(4) .*x(l) - G*x(3) + (l-F)*Lami 
xdot(4) = -K*x(4) .*x(l) - G*x(4) + F*Lami 



function y =driver(RR) 

%parameter values will change at each simulation 
bi=3.6; bs=4.0; p=O.Ol; 

%initial 
i=li 
its=15i 
m=.5; 
xO=[.2 .8 

time and number of ticks and dogs 

%we save only every "its"th point 
%maturation point, time when ticks start laying eggs 

.3 .6]' i %initial values Id, Sd, In, and Sn for generation 1 

%initializes a matrix of zeroes where the solutions y will be saved 
y=zeros(round«RR-100)/its) ,2); 

%finds the solutions for every generation, from 1 to RR 
for n=l:RR 

%finds solutions to the ODE system from the beginning of the generation 
%up to time n+m 
[t2,x2]=ode45 ('difchaos' ,n,n+m,xO); 

%finds the last component of the ODE solution x2 
d2=length(x2(:,l» ; 

xO =x2 (d2, : ) , ; 

%finds solutions to the ODE system from the beginning of the generation 
%up to time n+l 
[tl,xl]=ode45 ('difchaos' ,n+m,n+l,xO); 

%finds the last component of the ODE solution xl 
dl=length(xl(:,l» ; 

%x(3,d) = # infected ticks at end of the generation 
%x(4,d) = # susceptible ticks at end of the generation 

%set of difference equations 
In=(1-p)*bi*x2(d2,3)*(1-x2(d2,3)-x2(d2,4» i 
Sn=(bs*x2(d2,4)+p*bi*x2(d2,3»*(1-x2(d2,3)-x2(d2,4» ; 

%new initial points for the next generation 
xO=[xl(dl,l) xl(dl,2) In Sn]' i 

%saves only every "its"th point 
if «rem(n, its) == 0) & (n > 100) 

end; 

end; 

y(i,1:2)=[Xl(dl,4) xl(dl,3)] i 
i=i+li 


