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ABSTRACT. In this paper we consider a stochastic spatial SIR (Susceptible­
Infectious-Recovered) model. We assume that the population is distributed 
in separate cells. The disease is transmitted within the cell by direct contact, 
and from cell to cell through an external object (vector or vehicle) capable 
of carrying the disease. We simulate this model in a 10 x 10 grid of cells, 
and investigate the effects of the relative rates of transmission within and 
between cells on the predictability and progression of the disease. Results 
of simulation indicate that as the rate of intercellular transmission increases 
relative to intracellular transmission, the mean number becoming effected 
within each cell increases but so does the spatial variability. We also found 
that the time for the epidemic to run its course reaches a maximum average 
value at intermediate relative rates as does the spatial variability. 
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1. Introduction 
The common mathematical models for diseases are the SIS (Susceptible­

Infectious-Recovered) models, developed by Kermack and McKendrick (see 
discussion in [2], [5J and [6]). In the case when infective individuals recover 
and again become susceptible to the disease, the model used is the SIS. In the 
case when infective individuals recover and attain permanent immunity, we 
use an SIR model. The classical models do not consider how the population 
is distributed in space, only the number of individuals in each class. 

In this paper we describe a spatially discrete model, and simulate this 
model in a lOx 10 grid of cells. The effects of the relative rates oftransmission 
within and between cells on the predictability and progression of the disease 
are investigated. 

2. The Spatial Model 
The classical SIS and SIR models do not take into account how the indi­

viduals are distributed in space. However, spatial models have been studied. 
For instance, D. G. Kendall (see discussion in [lJ and [2]) formulated the 
following model: assuming that the individuals are continuously distributed 
on a region of the plane with density (J' individuals per unit area, S(x, y, t), 
J(x, y, t), and R(x, y, t) being the density of susceptible, infectious and re­
covered individuals, respectively, at point (x, y) and at time t, we have the 
equations 

as(x, y, t) 
at 

aJ(.T, y, t) 
at 

aR(x, y, t) 
at 

- -j3S(x, y, t) J(x, y, t) 

- j3S(x, y, t) J(x, y, t) - ,J(x, y, t) 

- ,J(x, y, t) 

where j3 is the infection rate, , is the recovery rate, and (1) is a spatially 
weighted average of J given by 

(1) (x, y, t) = J J w [(x' - x), (y' - y)J J(x', y', t) dx'dy', 

W being an appropriate nonnegative weighting coefficient satisfying 

/ J w [(x' - x), (y' - y)J dx'dy' = 1. 
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The model above assumes a continnous distrihuted population. In this paper, 
however, we will consider the case in which the population is distributed in 
separate cells. 

We assume that the population is distributed in a grid of cells. The 
individuals inside each cell are free to move within their cell, but there is 
no direct contact (contagion) among the individuals of different cells. The 
infection is transmitted within cells at rate /3, and between cells by a vector or 
vehicle at transmission rate a. Individuals recover with a rate "I and become 
immune to the disease. We also assume that the dynamics of the disease are 
on a fast time scale compared to the birth and death rates of the population 
so that the population can be considered fixed. Then we have the following 
deterministic version of the model describing this system: 

dSx,y 
dt 

dlx,y 
dt 

dRx,y 
dt 

- - (/3Ix,y + a I: W(k, m)Ix+k,y+m) ~'y 
k,m X,y 

( 
"'. ) Sx,y /3Ix,y + a L...- W(k, m)Ix+k,y+m N

x 
- "IIx,y 

k,m ,y 

where Nx,y = Sx,y + Ix,y + Rx,y (the total number of individuals in cell (x, y)), 
Sx,y, Ix,y, and Rx,y are the number of susceptible, infectious and recovered in­
dividuals, respectively, and W is a nonnegative weighting function satisfying 
Lk,m W(k, m) = l. 

The above model is quite general for most spatial processes where popu­
latins are confined locally or migration is on a longer time scale than that of 
the disease. Examples are diseases in breeding farms, where the affected an­
imals are confined but transmission can take place by pests or vehicles such 
as maintenance tools or feed. This model could also be applied to hospitals, 
where a disease could be transmitted between wards by staff or visitors. 

3. Simulations 

The stochastic version of the above model is too complicated to be stud­
ied analytically. Computer simulations are an alternative of studying com­
plicated systems such as this. In our model a, /3 and "I are as above, and 
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we assume that a cell can only be infected by its four immediate neighhors 
(nondiagonal), as the next diagram shows: 

In the diagram we represent. the process inside each cell (:r, y) as sus­
ceptibles hecoming infected, and after a time recovering and then hecoming 
immune to the disease. The dotted lines represent indirect transmission of 
the disease from the neighboring cells. This particular case is then described 
by the set of equations 

dSx,y 
dt 

dlx,y 
dt 

( ex"" .) SX,lI 
- j3Ix,y + 4' L,; h,m N 

( ex"" ) Sx,y - j3Ix,y + 4' L,; h,m N - 'Y1x,y 

dRx,y 
dt = 'Y1x,y, 

where the sum is taken over the four immediate neighbors of cell (x, y). Note 
that here 

{ 

1 k = ±1 
W(k, m) = ! k = 0 

o otherwise 

m=O 
m=±l 

since we are assuming that all contiguous cells have equal weight with respect 
to direction in the external transmission of the disease. The grid size was 
10 x 10 on a torus. To simulate the stochastic process, then, we define the 
following: 

Call the rate of infection B. Then 

( ex"" ) Sx,y Bx,y = j3Ix,y + 4' L,; h,m N 

and call the rate of recovery D. Then Dx,y = 'Y1X,y. The total event rate is 
then L Bx,y + Dx,y or equivalently the mean time between events is 

l' = (I: Bx,y + Dx,y) -1 
x,y 

The time between events (the inter-event times) can be simulated as an 
exponential with S = -1'ln(U1 ) where UI is a uniform (0,1) random variable. 
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The event occurs in a particular cell (i, j) if a second unform random variable 
(U2 ) is 

~i-l,j-l (B + D ) ~i,j (B + D ) 
L..x,1/ X,1/ X,)! < U

2 
< L..x,1/ X,)! X,1/. 

~n,n(B + D) - ~n,n(B + D ) 
L..x,y X,1/ x,y L..x,y x,y x,y 

The probability of an infection given that an event has occurred = Bi,jT and 
the probability of a recovery given that an event has occurred = Di,jT. Then 
to decide if the event is an infection or a recovery we pick a third uniform 
random variable (U3 ) and if 

B·· 0< U < 1,) 

- 3 B .. +D .. ' 
t,) t,) 

then Si,j -t Si,j - 1, Ii,j -t Ii,j + 1, and Ri,j -t Ri,j (an infection occurs) 
and if 

B·· 
t,) < U < 1 

B-. + D .. - 3 - , 
1.,) t,) 

then Si,j -t Si, j, Ii,j -t Ii, j - 1, and Ri,j -t Ri, j + 1 (a recovery occurs). 

We simulated the system with initial conditions 15,5 = I and Ix,y = 0 
for all other (x, y), and Rx ,)! = a for all x and y. Figure 1 represents the 
results after 100 simulations for several pairs (a, (3) with '"'( = 1 and N = 10. 
Setting '"'( = 1 changes our time units to the mean recovery period. The 
surfaces represent the average number of survivors (individuals who remained 
susceptible during the whole development ofthe epidemic), the average times 
for the epidemic to finish, the average maximum of infectious individuals at 
a certain time and the average time when this maximum occurs. The colors 
represent the variance of the results. 

Figure 1 shows the effects that the parameters a and (3 have on the 
system. Our choice of parameter values was severely limited by computer 
time for large values of a and (3. In order to better understand the effect of 
the parameters on the model we established the following relationship. The 
basic reproduction number for the development of the infection inside an 
isolated cell is given by Ro = (3/'"'(. The spatial aspect of the problem leads 
to RS = ((3 + a)/,",(. 

We define the spatial infection number So by 

a 
So = (3' 
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t.he quot.ient hetween the transmission rates inside and ontside the cells, 
which can be interpreted as the ahility of the disease to spread throughout 
t.he cells. We can then writ.e n~ = (1 + So) (3/, = (1 +so)no· 

Figures 2,3,4 and 5 show the results after 100 simulations with, = 1 and 
N = 10, for the values of no = 1, 2, 4 and 8 (since, = 1 these correspond to 
the values of (3 = 1, 2, 4 and 8), and the values of So = 1/100, 1/200, 1/400, 
1/800'and 1/1600. The points plotted are the values of 0: t.hat. correspond 
to the values of So ment.ioned above and t.he average results after t.he set. of 
simulat.ions, where t.he calculat.ions correspond to t.he same calculat.ions as in 
Figure 1. The vert.ical lines represent. one st.andard deviat.ion of t.he data. 

Not.e t.hat. for no = 1 (Figure 2) the average times for the disease to 
die out. are around 1, since we just need to wait for the infected individual 
t.o recover. As we increase no, we see that an epidemic develops, and that 
as we increase So the number of survivors (those that never contract the 
disease) decreases, since the disease at.tacks more cells. Note that for no = 8 
(Figure 5), as we increase the value of So, t.he time for the epidemic to finish 
decreases, assuming a maximum of around 15 at So = 1/400. This means 
t.hat. So also t.ells us the speed of the development. of the epidemic. Not.e t.hat. 
t.he epidemic finishes with maximum average t.ime of 15 recovery periods. 

Simulations of t.he stochastic process lead t.o two int.eresting conclusions. 
First, even though the spatial aspect. of the infection leads t.o lower num­
bers of survivors as the spatial infection number increases (the result one 
would expect from t.he deterministic process), the variability of t.he number 
of survivors increases even more dramatically. And second, the t.ime for the 
infection to run its course reaches a maximum of variability at. intermediate 
values of t.he spat.ial infection number. 
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