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Abstract 

This study examines a mathematical model in which a vaccine without 
complete effectiveness is applied to a core group. The prevalence of the dis­
ease within the core group determines the recruitment rate into the core 
group. The recruitment function in this model is set up for the case depen­
dent on the proportion of infectious individuals. In particular, we study the 
possible oscillations of the disease over time caused by the vaccination rate 
and vaccine efficiency. 

BU-1368-M 



Introduction 

Induced immunity against infectious diseases has been a primary COIl­

cern for centuries, from the inoculation of individuals in the Ming dynasty 
to Edward Jenner's small pox vaccination. In the late 1700's, during the 
widespread European epidemic of small pox, Jenner observed milkmaids' im­
munity to small pox. Further investigation revealed that the microbe species 
infecting cows with cow pox was closely related to small pox. Vaccination 
originated when Jenner inoculated susceptible individuals, persons capable of 
becoming infected, to induce small pox immunity with material taken from a 
pustular cow pox lesion. In 1760, Daniel Bernoulli introduced the first math­
ematical model to study the spread of infectious diseases and the benefits of 
vaccination. 

A vaccine provides either permanent or temporary immunity. Success­
ful implementation of a vaccination strategy will ultimately result in disease 
eradication. However, a vaccine can adopt any of the following properties: 
permanent immunity and complete effectiveness, temporary immunity and 
complete effectiveness; permanent immunity and partial effectiveness or tem­
porary immunity and partial effectiveness. 

Social relevance of vaccination models is significant. Vaccination models 
are used by health care officials to combat an infectious disease epidemic. 
Viruses do not recognize geographical or political borders. As a result, most 
successful disease eradication programs require cooperation of international, 
governmental, and local officials. Vaccination models are applied to improve 
the management of financial and human resources; vaccinating the core group 
requires less financial effort than vaccinating an entire population. 

Our research examines the effects of a vaccination in a core group model. 
A core group is a subgroup of the population whose members are more prone 
to becoming infected and transmitting the disease. The concept of core 
group was first introduced by Hethcote and Yorke (1984), who studied ef­
fective treatment methods for gonorrhea in a prostitute core group. The 
results enabled limited financial resources to be used efficiently to control 
the epidemic. 

Our research will incorporate vaccination into a similar model studied by 
Velasco-Hernandez, Brauer, and Castillo-Chavez (1996), in order to explore 
the behavior of a disease as the vaccination rate and the vaccine inefficiency 
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vary. This study is organized as follows: Section A defines and describes the 
equations used in this model; Section B describes computation and analysis 
of the basic reproductive number and the disease-free equilibrium; Section C 
proves the numerical existence of an endemic equilibrium; Section D includes 
graphical interpretations of the model; Section E considers death induced by 
disease; Section F concludes the paper and presents limitations to the model. 

Section A: The Model 

Let S, 1 and V represent the population size of susceptible, infected and 
vaccinated individuals respectively in the core group. The model equation is 
as follows: 

dS 
Ae-(//N) - /1S - ¢>S - [3S ~ 

dt 
d1 1 1 

(*) 
dt 

[3S- - /11 + o-[3V-
.N N 

dV 1 
dt 

¢>S - /1V - 0-[3-
N' 

Let the population of the core group be denoted by N, where N = S + 
1 + V. The susceptible individuals become infected through contact with 
infected individuals at a rate [3. Susceptible individuals are vaccinated at a 
rate ¢> individuals per unit time. Although the vaccination is permanent, it 
is 'not completely effective. As a result, there exists a, group of vaccinated 
susceptibles. Vaccine inefficiency is measured by 0-, where 0 < 0- < 1. If 
0- = 0 the vaccine is one hundred percent effecti ve and if 0- = 1, the vaccine 
is completely ineffective. The natural mortality rate is represented by /1. A 
is the recruitment rate of susceptible individuals into the core group from the 
general population. The fear or information factor affecting the recruitment 
of the non-core group into the core group is defined as Q. 

The following compartmental diagram schematically illustrates the model. 

S --t 1 --t V 

The rate of change of the population of susceptible individuals is deter­
mined by the product of the constant recruitment rate (A) and the prevalence­
dependent factor (e- aI/ N ) less the sum of the natural mortality of suscepti­
bles, the number of vaccinated susceptibles, and the number of susceptihles 
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becoming infected. The rate of change of the population of infected individ­
uals consists of the sum of susceptibles becoming infected and the number 
of vaccinated individuals who became infected less the natural mortality of 
the infected individuals. The rate of change of the population of vaccinated 
individuals consists of vaccinated susceptibles less the individuals who die 
naturally and those who become infected. The inefficiency of a vaccine di­
rectly contributes to the sum of infected individuals, because the ineffective 
vaccine causes the susceptible individual to become infected through contact 
with infectious individuals. 

In order to simplify the model several assumptions were made: 

• Infectious individuals die at the same rate as susceptible and vaccinated 
individuals. 

• Disease induced death was not taken into consideration. 

• The number of infected individuals outside the core-group is negligible; 
there is no chance that an infected individual will join the core group. 

Section B: Reproductive Number 

The analysis of the model begins with the computation of the basic repro­
ductive number R3 . The basic reproductive number expresses the average 
number of individuals that an infectious person infects when he/she is in­
troduced into a population that is previously uninfected. Since Ro assumes 
an initially uninfected population, we begin by computing the disease-free 
equilibrium (So, 10, Va). Since R assumes an initially uninfected population, 

we begin by computing the disease-free equilibrium, (SoJa, Va)T. 

( 

Ae-i3SI/N ) 
p,+tjJ 

F(S, 1, V) = {3Sl+u{3VI/N • 

tjJ-ufVI/N 
p, 

Since (SoJa, Va) T is the fixed point of F for which 10 = 0, it follows that 

(So'!o, Vo) = ( ~) p,+tjJ 

o 
tjJA . 

p,(p,+tjJ) 
( ~N) == 0 

. p,!tjJN ' 
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where N = ~(= So + 10 + Vo). 
J1. 

The dominant eigenvalue of the Jacobian matrix of F, J, evaluated at 
the disease-free equilibrium reveals the basic reproductive number. 

The resulting dominant eigenvalue, which is also the basic reproductive num­
ber, R, is (J I f-L (f-L + a¢» I (f-L + ¢». Since vaccination is considered in this 
model, R is taken as a function of ¢>, the vaccination rate, and a, the ineffi­
ciency of the vaccination such that: 

If R( ¢>, 0:) < 1 then the disease-free equilibrium, (So'!), Va) T, is asymptoti­
cally stable. Considering R(Phi, a) when there is no vaccination (i.e.,¢> = 0) 
it is found: 

R(O,a) = (Jlf-L = Ro· 

Consideration of a completely ineffective vaccination, (a = 1), results in: 

R(¢>, 1) = (Jlf-L = ~. 

Ro = (J I f-L is the basic reproductive number of the model without vaccination. 
Notice that if (J < jl, the disease dies out naturally and no vaccination is 
necessary. 

Considering that, 

• 1 I f-L is the mean duration of infectiousness, 

• II¢> is the mean duration of susceptibility, 

• 1/(f-L + ¢» is the average life of a susceptible, and 

• 1/(f-L + a¢» is the average life of a vaccinated, 
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R can be rewritten as 

R(¢ (J) = Ro' 1/(J-t + ¢) = Ro. average life as susceptible 
, 1 I (J-t + (J¢) average life as vaccinated' 

When (J > 1, the vaccine increases the chance of a susceptible becoming 
infected; consequently, R)¢, (J) increases. In contrast, when (J < 1, the vac­
cine decreases the chance of a susceptible becoming infected, and R(¢,(J) 
decreases. Infection caused by vaccination is not biologically feasible and is 
not considered relevant, thus we take (J < 1. 

Section C: Endemic Equilbrium 

In th~ previous section, the disease-free equilibrium was explicitly calcu­
lated. Finding the exact expression of a single endemic point is difficult so 
that only its existence will be discussed. 

The endemic points (8, I, V) T of the system are the fixed points of F for 

which I > O. Setting A'= liN, the equations F((8,I,T)T) = 0 can be 
written as: 

8 
Ae-ar f38r ---
J-t+¢ J-t+¢ 

I f3 
(*) -(8 + (JV)r 

J-t 

V 
¢ (Jf3Vr 

- -8-
J-t J-t 

The next steps involve some manipulating of the equations in order to reach 
a single equation representing the entire system. 

so 

thus 

I + V = 8(f3r + ¢) = N - 8 
J-t 

SIN = J-t 
J-t + ¢ + f3r 
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From (*), 

F/N -- P..~ - o-r~~ 
p N p N 

V/N = S ( ¢ ) 
N p + a-(3f . 

Since N = S + I + V, it follows that 

A = ~ = 1- (S + V) 
N N N, 

- 1 - ~ ( 1 + p + ~(3f ) 

C+:+f1r) (1+ ,"+~f1r) 
(¢a-(3 + (3p + (32a-r)f 

(p + ¢ + (3f) (p+ a- + (3f) . 

For r :I 0 (in particular we are interested in f > 0) this equation reduces to: 

f2 + af+ b = 0, 

where 

and 
b = p(p + ¢) - (3(p + a-¢) 

(32 a- . 

When solving roots of f, the quadratic equation results in: 

_ -a ± J(a2 - 4b) 
f - 2 . 

Hence, to have f > 0, b < 0 is necessary: 

b < 0 
p(p + ¢) (3(p + a-¢) 

< (32 a- (32 a-

(3 p + a-¢) 
1 < 

p (p + ¢)" 
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However, R( ¢, (5) = ~ (r/1-+:~); therefore, it can be concluded that an endemic 
point exists if: 

R(¢, q) > 1. 

By introducing a vaccine into a core group, it is expected that the disease 
and the core population will coexist (note that this implies that stability 
of the endemic equilibria is expected). This coexistence will take place in 
either of two forms: one possibility is that the core population will reach a 
stable equilibrium, meaning that the population will reach a fixed proportion 
of susceptible, infected and vaccinated individuals; the second possibility is 
that the population of susceptibles, infected and vaccinated individuals will 
fluctuate. There will be a bound on how large and how small the population 
can reach. This fluctuation is what is the reoccurrence of epidemics. The 
introduction of the vaccine should attempt to stabilize the population, or if 
that is not possible, limit the fluctuation to a small range. It is crucial to 
note that the number of infectious, susceptible and vaccinated individuals is 
never zero. 

Section D: Graphical Analysis 

Case 1: 

Figure 1 depicts a vaccination rate of 0.70 with a vaccine ineffectiveness 
of 0.05. The vaccinated population increases rapidly, implying that the re­
cruitment rate and the susceptible population increase while the infected 
population decreases. A portion of the susceptible and the vaccinated pop­
ulations becomes infected because the vaccine is not completely effective. 

In this graph, the vaccinated population is larger than the susceptible 
population which in turn is larger than the infected population. Therefore, 
the infection within the core group is not eradicated, but contained by the 
vaccme. 

Figure 2 graphically represents a vaccination rate of 0.70 and a vaccine 
inefficiency of 0.30. After the initial increase of the vaccinated population and 
the susceptible population, the infected population begins to increase. The 
spread of the infection slows the recruitment into the core group such that 
less people are susceptible and less people are vaccinated. At the minima of 
the vaccinated population, the infected population is the largest population. 
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This is due to the large vaccme inefficiency m combination with a large 
vaccination rate. 

Figure 3 shows the effect of a high vaccination rate, 0.70, with a high 
vaccine inefficiency, 0.30, and a relatively low fear factor, 3. Initially, the 
populations of the vaccinated and the susceptible individuals increase. The 
population of infected· individuals increases due to the high inefficiency of the 
vaccine. We note the recruitment rate will approach a constant value since 
0', the fear factor, is relatively small. The vaccinated population remains 
greater than the infected population and the susceptible population. 

Case 2: 

Figure 4 above displays a vaccination rate ¢ of 0.137, a vaccine ineffi­
ciency (J of 0.05, and a relatively high fear factor 0' of 6. As recruitment rate 
decreases, all populations decrease to constant values. The infected popu­
lation is the largest of the three populations, because the vaccination rate 
is relatively low. The limit on the spread of infection is not affected by the 
vaccination of the susceptibles in the core group, and reflects an: indirect 
quarantine. 

Figure 5 above graphically represents a fear factor of 6, a vaccination 
rate of 0.137, and a vaccine inefficiency of 0.30. In this graph the popula­
tions of the infected, susceptible, and vaccinated approach constant values. 
The spread of infection is also limited in this graph. The recruitment rate 
decreases because the proportion of infected individuals is high. 

Figure 6 above depicts a fear factor of 4, a vaccination rate of 0.137 and an. 
inefficiency of 0.30. All populations approach constant values. However, the 
infected population is higher than the graph when the fear factor was 6. This 
behavior is attributed to the fact that the recruitment into the core group is 
less affected by the total infected population (liN) ratio when the fear factor 
is relatively small. The recruitment into the core group approaches a higher 
constant. 

Section E: Death Induced by Disease 

One modification of the model considers death induced by infectious dis­
ease, 61. This would be the case in a disease such as HIV I AIDS (if there 
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were a vaccine for it). It is no longer assumed that infected individuals die at. 
the same rate as susceptible or vaccinated individuals. Death from infectious 
disease surpasses natural mortality. It. is reasonable t.o assume that {; > /1. 
Only one equation changes in (*), that is 

d1 1 r 1 
- = (3S- + eJ(3v - - (/1 + 6)1 
dt N N 

and 
(3SL + eJ(3V L 

1 = N N 
/1+6 . 

The disease-free equilibrium is not affected by the introduction of 6. The 
resulting equilibrium remains the same: 

( ~N) (So, 10, Va) = 0 . 
. ---'!:-N 

J.t+<I> . 

The Jacobian matrix evaluated at (So, 10, Va) results in: 

The only eigenvalue of J[(So, 10, Va) TJ is: 

The only modification in R(¢>, eJ)6 is that, instead of R(O, eJ) = R(¢>, 1) = (3//1, 
we get R(¢>, eJ)6 = Ro(¢>, eJ)6 = (3/(6 + /1). Note that 1/(6 + /1) is the average 
time an infectious individual lives before he/she dies from the disease. We 
find that with the introduction of death induced by disease, we no longer 
encounter oscillations for reasonable values of 6. As 6 approaches zero, -61 
becomes insignificant in dI/dt. In this case, we get our original model and 
conditions for oscillations to occur. 

Section F: Conclusion 
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The recruitment rate, A, is influenced by the fear/information factor, 0:, 

and by the proportion of infected indi viduals in the core group in the following 
manner: Ae-(aI/N). Previous studies have shown that the fear/information 
factor strongly influences oscillatory behavior of a system. Fluctuating val­
ues of the recruitment rate cause these reoccurring oscillations. However, 
the prevalence dependent factor, e-(aI/N), has two other dynamic variables 
I and N. A high percentage of infectious individuals, liN, will cause the 
recruitment into the core group to decrease. In contrast, a lower value of 
liN will cause a higher recruitment. These values are directly affected by 
the rate of vaccination and the inefficiency of the vaccine. If the fear factor, 
0:, is relatively large, then the system oscillates at higher amplitudes with 
increased frequencies. A relatively smaller fear factor causes smaller oscil­
latory amplitudes with smaller frequency. If individuals belonging to the 
non-core group are educated about the actual number of infected individu­
als rather than a percentage of infected individuals (i.e., eliminating N from 
the prevalence-dependent factor) then the recruitment rate will decrease and 
oscillation in the model will cease to exist. 

This model can be utilized to control and eradicate a disease in a core 
group; however, it does not take into account the disease spread in the general 
population. This model is limited by the specific application to diseases for 
which a vaccine has been developed. 

This model has some serious implications when attempting to control 
outbreaks of a disease. It is essential to consider the information people 
receive about the core population and the vaccination procedures within it. 
It can be useful to public health officials in focusing social resources to a core 
population. 
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Section D: Graphical Analysis 

Case 1: 

Figure 1 
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Figure 1 depicts a vaccination rate of 0.70 with a vaccine ineffectiveness of 0.05. The 

vaccinated population increases rapidly, implying that the recruitment rate and the susceptible 

population increase while the infected population decreases. A portion of the susceptible and 

the vaccinated populations becomes infected because the vaccine is not completely effective. 

In this graph, the vaccinated population is larger than the susceptible population which in 

turn is larger than the infected population. Therefore, the infection within the core group is not 

eradicated, but contained by the vaccine. 



Figure 2 
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Figure 2 graphically represents a vaccination efficiency rate of 0.70 with and a vaccine 

inefficiency of 0.30. After the initial increase of the vaccinated population and the susceptible 

population, the infected population begins to increase. The spread of the infection slows the 

recruitment into the core group such that less people are susceptible and less people are 

vaccinated. When the vaccinated population reaches a minimwn, the infected population 

becomes largest population. 



Figure 3 
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Figure 3 shows the effect of a high vaccination rate, 0.70, with a high vaccine inefficiency, 

0.30, and a relatively low fear factor, 3. Initially, the populations of the vaccinated and the 

susceptible individuals increase. The population of infected individuals increases due to the high 

inefficiency of the vaccine. We note the recruitment rate will approach a constant value since a, 

the fear factor, is relatively small. The vaccinated population remains greater than the infected 

population and the susceptible population. 



Case 2: 

Figure 4 
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Figure 4 above displays a vaccination rate cp of 0.137, a vaccine inefficiency (J of 0.05, 

and a relatively high fear factor ex. of 6. As the recruitment rate decreases, all populations 

decrease to constant values. The infected population is the largest of the three populations, 

because the vaccination rate is relatively low. The spread of infection does not seem affected by 

the vaccination of the susceptibles in the core group. 



Figure 5 
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Figure 5 above graphically represents a fear factor of 6, a vaccination rate of 0.137, and a 

vaccine inefficiency of 0.30. In· this graph the populations of the infected, susceptible, and 

vaccinated approach constant values. The spread of infection is also limited in this graph. The 

recruitment rate decreases because the proportion of infected individuals is high. 



Figure 6 
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Figure 6 above depicts a fear factor of 4, a vaccination rate of 0.137 and an inefficiency of 

0.30. All populations approach constant values. However, the infected population is higher 

than the graph when the fear factor was 6. This behavior is attributed to the fact that the 

recruitment into the core group is less affected by the total infected popUlation (lIN) ratio when 

the fear factor is relatively small. The recruitment into the core group approaches a higher 

constant. 




