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Abstract 

In a stochastic spatial source-sink process,we model the spread of a single species 
through a patchy landscape (i.e. one that arises as a result of increasing urban sprawl). 
This landscape contains discrete patches, known as sink and source patches, that are 
associated with low and high habitat quality respectively. 

First, we generate different spatial relations of sink and source patches and place an 
initial population randomly throughout the grid of patches. We then simulate several 
discrete generations in which the species is exposed to different probabilities of repro­
duction and death, and we observe the mean time to extinction of the species with 
different combinations of patch distributions. Finally, we . show that the size of source 
patch groupings has an effect on the mean time to extinction. 

1 Introduction 

This paper addresses several issues regarding source-sink metapopulation models. Hanski and 
... Gilpin (1997) define a source-sink metapopulation as, "a metapopulation in which there are 
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patches in which the population growth rate at low density and in the absence of immigration 
is negative (sinks) and patches in which the growth rate at low density is positive (sources)" 
(11). In our study we consider a particular source-sink metapopulation model based on specific 
grid configurations. First, we select a given landscape of discrete patches. These patches are 
categorized as having high or low habitat quality. The model then shows how a particular 
species will behave in this landscape throughout a given number of generations. In this land­
scape, we establish propagation and extinction rules that control the species dynamics. The 
next step is to estimate some relevant parameters (probabilities of extinction and propaga­
tion) necessary to calculate mean time to extinction. From this, we are able to calculate the 
optimal patch arrangement at a specific ratio of source and sink patches. 

First, in the beginning of Section 2, we present a series of helpful definitions, followed 
by the deterministic S-I-S model, which considers two types of susceptibles (source and sink 
patches). Our model is based on the one developed by Marquet & Velasco-Hernandez (1996) 
with two major differences: we do not include degradation, and we do assume a constant 
number of patches. Section 2 continues by introducing the stochastic S-I-S model. This 
model describes a birth-death process and the Chapman-Kolmogorov equations. In section 3 
we present a pseudocode for our computer simulation. Then; we present statistical analyses 
on our data in Section 4. Finally, in section 5, we draw appropriate conclusions based onthe 
statistical and stochastical results. 

2 Sink - Source Metapopulation Model 

In 1969 Richard Levins first introduced the term "metapopulation" in his article "Some De­
mographic and Genetic Consequences of Environmental Heterogeneity for Biological Control." 
The word suggests a population of populations, in which the colonization and extinction of 
local populations are analogous to births and deaths of individuals in a local population. 
The original metapopulation concept includes several assumptions, each of which simplifies 
the modeling process. First, Levins' concept assumes that the space is discrete. Second, it 
assumes that it is possible to distinguish between habitat patches. Finally, Levins' concept 
assumes that patches can accommodate panmictic (locally breeding) populations. These as­
sumptions allow us to distinguish patch type easily and to assign specific qualities to the 
patches. In turn, this allows us to study the dynamics of the population in each landscape 
type that we wish to study. 

In order to understand Levins' model, some definitions are useful. A "source patch" refers 
to a defined area where the population growth rate at low density and in the absence of 
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immigration is positive. That is, a species can propagate better than it can in a sink patch, 
an area where propagation is lower and extinction probabilities are high. On the other hand, 
a "sink patch" is a place where propagules are produced less often than in a source patch. 
It is formally defined as an area where the population growth rate at low density and in the 
absence of immigration is negative. A sink patch is usually separated from other patches by 
unsuitable habitat. The spatial arrangement of these patches, wherein the species are free to 
migrate, is referred to as the "metapopulation structure." (It is implied that at any given 
time, each of these patches, whether source or sink, may be occupied or empty.) 

Combining the above terms, we have a natural definition for a source-sink metapopulation. 
The term "Levins' metapopulation" refers to such a metapopulation structure in which local 
dynamics occur at a much faster rate than metapopulation dynamics. It is also used in a 
broader sense to denote systems in which all local populations, even if they may differ in size, 
have a significant risk of extinction. 

All of these concepts are incorporated into our model, which is a spatially explicit metapop­
ulation model. Our model considers a particular species in a defined landscape. To define 
this landscape, we use a grid that is divided into smaller, equal parts called "patches." We 
categorize these patches according to habitat quality. Habitat quality refers to reproduction 
and survival probabilities; thus, high quality favors propagation, while a low quality can drive 
a population to extinction. We refer to high quality patches as "source patches" and low qual­
ity patches as "sink patches." Since our main objective is to find the mean time to extinction 
in different landscapes, we create six different grid types. Each grid has the same percent of 
sink and source patches, but the distribution of these patches changes for each landscape. We 
randomly assign n organisms of a particular species to n patches on the grid. When there is 
an organism assigned to a patch, the patch is "occupied" and immediately reaches its carry­
ing capacity. After each generation, the organisms in all of the occupied patches have three 
options: they can die; they can live without producing any offspring; or they can produce 
offspring that propagate to one of four adjacent patches. Thus, for each of the six grids or 
landscapes, we can watch how the population changes throughout time. 

2.1 Susceptible-Infected-Susceptible (S-I-S) Model 

It is interesting to note that the deterministic model of this particular case is the S-I-S model 
for the spread of disease, in which there are two types of "susceptibles" - unoccupied source 
and sink patches- and in which the "infection" that spreads is the species itself. This model 
(deterministic) is a helpful tool for the complete understanding of the source - sink metapop­
ulation dynamics. 
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These are the equations that model this dynamic: 

dPI 

dt 
dPl1 

PI 
EI Pl1 - b P (aP2I + Pl1 ) 

dt 
dP2 

Pr 
-EIP11 + b P (aP2I + P11 ) 

dt 
dP2I 

P2 
E2 P2I - b P (a P2I + Pl1 ) 

dt 
P2 

-E2P2I + b P ((JP2I + P11 ) 

where 

Pr = Number of unoccupied source patches. 

P2 = Number of unoccupied sink patches. 

Pl1 = Number of occupied source patches. 

P2I = Number of occupied sink patches. 

E = Extinction rate = patch production rate. 

(1) 

(2) 

(3) 

(4) 

(J = Depression in the propagule production rate imposed on the organism by sink patches. 

b = Number of offspring per unit time. 

This model takes into consideration the number of occupied source and sink patches from 
direct contact or colonization of a particular species at time t. The rate at which source patches 
become unoccupied or susceptible is denoted by 4ft. The occupied or infected rate of a source 
patch is denoted as d~:l. Likewise, the rates at which sink patches become unoccupied and 
occupied are denoted by d%t,2 and d~~l respectively. In these equations, s represents a factor 
in the environment that inhibits the reproduction of a species in a sink patch. From this we 
know that the probability for extinction in a sink patch is always higher than the probability 
of extinction in a source patch. Written mathematically, if a source patch has a probability 
of extinction, cp, then a sink patch is a defined area that has a probability of extinction cp + 8, 
8> O. 

We are assuming P = PI + Pl1 + P2 + P2I to be a constant. That is, the total number of 
patches, whether they are occupied or not, remains the same. 
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Then we have: 

dP 
dt 

So ::: = 0, which implies P = constant. 

(5) 

(6) 

This model is based on the one developed by Marquet & Velasco-Hernandez (1996). Our 
model does not consider degradation; source patches will never degrade into sink patches. 
Both source and sink patches remain as such through time. 

2.2 Stochastic Model 

In the stochastic model, we generalize Levins' classical model by introducing spatial consid­
erations . The S-I-S model follows Levins' assumptions that space is discrete; it is possible 
to distinguish between habitat patches; and patches can accommodate panmictic (locally 
breeding) populations. Our spatial model treats space as well-defined, discrete sink or source 
patches; the probabilities associated with extinction and propagation allows us to differentiate 
between sink and source patches; and finally we assume that the species under study can re­
produce within the patch. The main purpose of our project is to study the stochastic version 
of the S-I-S model presented above. We first show what the birth - death process looks like. 
To do so, we define the following variables: 

1-"1 = Rate at which source patches are becoming unoccupied. 

Jl2 = Rate at which sink patches are becoming unoccupied. 

Al = Rate at which source patches are becoming occupied. 

A2 = Rate at which sink patches are becoming occupied. 

v = Empty Source Patches. 

W = Empty Sink Patches. 

x = Occupied Source Patches. 

Y = Occupied Sink Patches. 
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The first step in a stochastic birth-death process is to calculate the rates of 'birth' and 
'death.' In our case birth is the rate of occupation or colonization. Because we have two 
types of patches, we have two birth rates and two death rates. The birth and death rates for 
a source and sink patch can be written as the following: 

Rates 
Source Occupation Rate Source Emptying Rate Sink Occupation Rate Sink Emptying Rate 

X-tX+1 X-tX-1 Y-tY+1 Y-tY-1 
)'1 XV ILIX ),2YW IL2Y 

To find the probabilities associated with the above rates, we divide the specified rate by 
the sum of the rates, SR = X(),l V + ILl). 

Pro babili ties 
X-tX+1 X-tX-1 Y-tY+1 Y-tY-1 

JXV 
~,,'R 2YW 

~~R SF/. 7fR 

Also, we are considering discrete time: Therefore, time is not exponentially distributed, 
but we can still make time considerations if we update every unit of time as follows: 

T = Time( discrete) 

For discrete time we have: 

Updates 
X-tX+1 X-tX-1 Y-tY+1 Y-tY-1 
V-tV-1 V-tV+1 W-tW~l W -t W +,1 

6 



," , . 

In order to give our model a complete theoretical background, we have to' study the Chap-
man - Kolmogorov equations. For a particular patch at a unit of time, any of the following 
five events can happen: a source patch can be occupied (a); a sink patch can be occupied (b); 
nothing can happen (c); a source patch can be unoccupied (d); and finally, a sink patch can 
be unoccupied (e). In general, equation (refchk) represents the probabilities of five possible 
events. 

Chapman - Kolmogorov equation: 
P{nl(T + h) = X, n2(T) = Y} 

and 

P{ nl(T + h) = X + 1, n2(T + h) = Y} . P{Type 1 colonized in time (t, t + h)} 

+ P{nl(T + h) = X, n2(T + h) = Y + I} . P{Type 2 colonized in time (t, t + h)} 

+ P{nl(T + h) = X, n2(T + h) = Y} . P{No colonization occurs in time (t, t + h)} 

+ P{nl(T + h) = X-I, n2(T + h) = y}. P{Type 1 uncolonized in time (t, t + h)} 

+ P{nl(T + h) = X, n2(T + h) = Y - I}· P{Type 1 un colonized in time (t, t + h)} 

P{ nl(T + h) = X + 1, n2(T + h) = Y} . (.AIXVh) 

+ P{nl(T + h) = X, n2(T+ h) = Y + I} . (f-llXh) 

+ P{nl(T + h) = X, n2(T +h) = Y} . (1-' (.A1XVh 'jL1Xh)) 

+ P{nl(T + h) = X-I, ndT + h) = y}. (.A2YW) 

+ P{nl(T + h) = X, n2(T + h) = Y - I} . (f-l2Y) (7) 

Nl = Number of patches of type 1. (Source). 

N2 = Number of patches of type 2. (Sink). 

N = Total number of patches. 

nl (t) = Number of occupied patches of type 1. 

n2(t) = Number of occupied patches of type 2. 

X = Population in a source patch. 

Y = Population in a sink patch. 

h = An integer value that updates time. 
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3 Computer Simulation· 

We transfer the stochastic model to a computer simulation that takes spatial considerations 
into account. We generate different spatial relations of sink and source patches and place an 
initial population in random patches in the grid of source-sink patches. We then simulate 
several discrete generations in which the species is exposed to different probabilities of repro­
duction and death, and we observe the mean time to extinction of the species with different 
combinations of land configuration. 

3.1 Assumptions 

We assume (to simplify the model) that once populated, the patch reaches its carrying capac­
ity, and that once a pair of the species is settled into a grid patch, it will remain there until 
death. Our model allows the newborn species, however, to move about the grid in a limited 
fashion in each generation. The newborns, assumed to move in reproducing pairs, can settle 
into a location one grid patch away from their birthplace and can move there only if this patch 
is currently unpopulated. The newborns will randomly choose from the available neighboring 
patches; in other words, they will have no knowledge of the quality of the land upon which 
they will settle. If there are no available patches, we assume that the newborns fail to move 
to a neighboring patch and die. We also assume that source patches do not degrade into sink 
patches and that sink patches do not improve to become source patches. 

3.2 Simulation Details 

We wish to clearly distinguish the difference between source and sink patches in our model 
in accordance with the given definitions. In order to make the probability of propagation 
in the source patch substantially larger than in the sink, we somewhat arbitrarily assign the 
probability of propagation in a sink patch to be .3 lower than that in a source patch. Likewise, 
we make the probability for local extinction in the sink patch to be .2 greater than that in a 
source patch. Then, for different combinations of these birth/death probabilities, we do the 
following: 

In order to achieve a balance between reasonable resolution of landscape configurations 
(ranging from a large, single clump of source patches to completely randomly located patches) 
and computer capabilities, we choose a 50x50 grid. We also wish to model a situation of 
potential risk to the species, and therefore, we choose a "low" percentage of source patches 
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to total Jand area; in this case we choose 32%, making a convenient 800 source patches to 
be placed in the grid. We assign to the grid in random fashion a somewhat arbitrary initial 
population of 75 pairs, with the choice of number arising from an effort to choose an initial 
population that is close neither to initial extinction nor initial saturation. To avoid the problem 
of boundary values, we stipulate that the edges of our 50x50 grid wrap around to the other 
side, so that the area we analyze is not a plane but a planar representation of a torus. We 
thus present the following grid types, each with 32% source and 68% sink patches distributed 
throughout the 50x50 grid: 

Grid 1: A single clump of 800 source patches arranged in an approximately 28 x 28 grid. 
This will model the existence of a reservoir in an otherwise species:-unfriendly 
environment. (The square configuration is chosen throughout, when possible, 
for its simplicity in programming and in visualization.) 

Grid 2: A structured configuration of 2 smaller 20 x 20 clumps of source patches. This 
models smaller reservoirs interspersed throughout the land. 

Grid 3: Three 10 x 15 source patches with the remaining 350 source patches distributed 
randomly, all within half of the area of the landscape (the other half again be­
ing entirely sink patches). This was the first of two configurations that were 
added midway through research. We noted a remarkable difference in per­
formance between the completely clumped arrangements and the completely 
random arrangements of source patches in Grids 1 through 4. Here is where we 
start to bridge the gap between strictly clumped and strictly random source 
patches. Note: the change in clump proportion arose from a desire to elimi­
nate uniformity of the distance between source clumps, a difficult task with 4 
grids of substantial size in a 50 x 50 grid. An analog is the above development 
of half of a landscape with more reservoir-type considerations involved in the 
remaining half. 

Grid 4: Four lOx 10 source patches modelled with the remaining 400 patches generated 
randomly throughout the grid. This is the second of the two configurations 
that we added midway through research. In this way we continue to reduce the 
clump size and increase the randomness of both the source patch and source 
clump location. 

Grid 5: A random dispersal of source patches throughout the grid. This models the 
behavior of the species with random removal of source land (example: clear­
cutting the environment of the spotted owl). 
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Grid 6: A random dispersal of source patches throughout one half of the grid. This 
models the behavior of the species with random removal of source land occur­
ring less often, but with a large area of source land, as in the development of 
a natural environment coupled with consumption of nearby natural resources. 
Here we can also observe any effect on effectively increasing the density of the 
random patches without increasing the percentage of source land. 

We run the simulation 15 times each for 100 generations or until species extinction, 
whichever comes first. The program returns to us the final time recorded for each simu­
lation on each land type, along with the mean, standard deviation, and variance of the final 
times for each landscape type. 

To analyze our results, we observe the decreasing performance of the species with the 
increase of local extinction probabilities with plots of the mean time to extinction of the 15 
simulations for given constant propagation probabilities. We then run an analysis of variance 
to verify the existence of a difference in time to extinction for these 6 grid types, outlined 
below. 

4 Data. Analysis Background 

To find out if there is a significant difference in the time to extinction for different spatial 
considerations, we perform an analysis of variance test (ANOVA). Single factor balanced 
ANOVA deals with experiments in which there are r treatments with n observations per 
treatment. Each treatment has a probability distribution of responses. The usual ANOVA 
model makes three assumptions: that each of the r treatment probability distributions is 
normal and has the same variance; that each observation within a particular treatment is 
independent of all other observations within that treatment; and that each of the r treatment 
samples is selected independently of one another (Neter, Wasserman, and Kutner, 1990). The 
objectives of single factor ANOVA include, among other things, comparing the equality of 
treatment means, and if the means are not equal, examining how they differ. In this paper, 
we compare treatment means by calculating the F-statistic. 

The F-statistic compares the variation between treatments to the variation within treat­
ments. The measure of disparity among the r treatment means is measured by the mean 
square for treatments, denoted by MSTr. The measure of variation within the n observations 
of the jth treatment, j = 1,2, ... , r is called the mean square error, denoted by MSE. The 
F-statistic is the ratio of the MSTr to MSE. If the F-statistic is greater than 1, there is more 
variation among the r treatments than within treatments. When the F-statistic is greater than 
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1, under certain specifications, one can conclude that the treatment means differ from one 
another. These specifications include the amount of confidence that is desired in the result 
(called the a level), the number of treatments, and the number of observations per treatment. 

The MSTr is found by calculating the treatments sum of squares (SSTr) and dividing 
by the total number of treatments minus one. The error sum of squares (SSE) is found by 
subtracting SSTr from the total sum of squares (SSTo). SSE is divided by the total number 
of observations minus the number of treatments to get the MSE. Devore and Peck (1993) 
provide computing formulas for SSTr, SSTo) and SSE, from which MSTr, MSE and thus the 
F statistic are easily calculated. 

SSTr ti + t~ + t~ + ... + t~ t2 

n m, 

L 
t 2 

SST a }12--

all mobs. 
m 

SSE SSTo-SSTr 

MStr 
SSTr 
r-1 

MSE 
MSTr 
m-r 

F 
MSTr 
MSE 

where 

ti = the sum of the n observations in treatment j, 

J = 1,2, ... ,r, 

t = the grand sum of all m observations, 

n = the sample size for each of the r treatments, 

m = n . r = the total number of observations for all treatments, 

y -:--- one of the m total observations. 

The single factor balanced ANOVA model can be expressed as: 

where 
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Yij is the value of the response to the jth treatment at the ith observation of this treatment, 

mj are parameters representing the r different treatment means, 

eij are i.i.d. N(0,82), 

'[, = 1,2, .. . ,n, 

j = 1,2, ... ,r. 

Since E {eij} = 0, it follows that E {Yij} = mj. 

That is, the expected value of each observation for a particular treatment is equal to the 
population mean for that treatment. If the calculated F-value is greater than some critical 
F-value, then the null hypothesis is rejected, and we can conclude that there is a significant 
difference between the mean values for each factor or treatment. In this paper we use analysis 
of variance to compare the times to extinction for different source spatial considerations. If 
the calculated F-value from this data exceeds a particular F critical value (or the p value is 
less than .05), we will reject our null hypothesis and conclude that the mean time to extinction 
is significantly different for the different patch configurations. 

5 Results and Discussion 

As stated previously, the percent of sink-source patches remains fixed while the spread of these 
patches changes. We found that (when there is no specified stop time) there is a significant 
difference (p = 0.000) in the mean time until extinction depending on patch size (for a more 
detailed explanation, see Appendix, Figure 1). Specifically, the more clumped the patches are, 
the less likely it is that extinction will occur. All groups in which clumps were assigned greatly 
outperformed (extinction took a long time) the strictly random patches; Grids 1, 2, 3, and 4 
were not faced with extinction before the stop time, 100 generations until the local extinction 
parameter rose .25. Grids 5 and 6 had nearly identical low times to extinction throughout 
(see Figure 2). For a source propagation probability of .775, we see some decline in time to 
extinction for extinction rates of .25 and greater, with Grids 1 and 2 (all clumps, no random 
patches) having the highest time to extinction (neither performing very distinctly from the 
other), and grids 3 (clumped and random source patches throughout half of the grid) and 
4 (clumped and random throughout the entire matrix) achieving lower, but nearly identical 
performances (for a more detailed explanation, see Appendix, Figure 2). The results from 
source propagation probability. 795 are similar; the only difference here is that the minimum 
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local extinction value to achieve mean times to extinction below the stop time is .35. Finally, 
we looked at the distribution of the time to extinction. This distribution is skewed to the 
right (for a more detailed explanation, see Appendix, Figure 3). 

6 Conclusion 

Our model indicates that for a given percentage of source land area in a landscape, the 
projected survival of a single species has a direct correlation to the degree to which the source 
patches are "clumped together." All the grids with specified clumps of source patches (Grids 
1,2, 3, and 5 ) greatly outperformed the grid in which source patches are distributed randomly 
throughout it (Grid 6). Grids 5 and 6, essentially, return the same dramatically lower time to 
extinction than Grids 1, 2, 3, and 4. In all cases, Grids 1 and 2, each being completely clumped 
with no random spread of source patches, returned the greatest mean time to extinction (when 
extinction occurred in all cases before the cutoff time) 

These results seem to suggest certain strategies for species preservation efforts. Concerns 
for· the survival of -a single species whose good quality habitat is to be limited (for various 
reasons ) are best addressed by preserving some amount of spatial continuity (referred to 
throughout as "clumps" or "clumpiness") in the source patches in the landscape. 

We were unfortunately unable to resolve better the progression from strictly clumped to 
strictly random source patches because of time constraints. We anticipate that there is a 
gradation of declining time to extinction corresponding to declining degree of "clumpiness." 
Suggested future work might investigate this prediction and might also center around per­
forming some more simulations and with larger cutoff times in order to distinguish better any 
difference in performance for our cases of maximum survival times (i.e. clumped arrange­
ments of source patches with low local extinction probabilities). We also plan to study the 
distribution of the time to extinction more thoroughly. Finally we want to find the minimum 
patch size needed to attain a particular mean time to extinction given particular parameters 
(minimum viable metapopulation size). 
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A Appendix 

A.I One-Way Analysis of Variance 

We tested to see if the mean time to extinction is the same for each grid type at several different 
extinction probabilities ( the extinction probability is given at the top of the ANOVA table). 
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ANOVA for Exinction 
at PEx(Source) = .4, PProp(Source) = .78 

Source DF SS MS F P 
Gridtype 5 10919 2184 6.96 0.000 
Error 84 26362 314 
Total 89 37280 

Individual 95% CIs For Mean 
Based on Pooled StDev 

Level N Mean StDev 
1 15 37.93 18.77 
2 15 43.47 19.04 
3 15 43.33 31.61 
4 15 23.93 11.23 
5 15 24.47 5.53 
6 15 14.27 3.49 

I Pooled StDev = 17.72 

Figure 1: One-Way Analysis of Variance.· Low numbered grid types mean large clumps 
of source patches, whereas small grid numbers mean random or almost randomly assigned 
sink and source patches. 

For every extinction probability that we tested when the data were not affected by a specified 
stopping time value, we rejected our null hypothesis ( with a p-value equal to 0.0000) and 
concluded that the grid type has a significant effect on the mean time to extinction. From this 
we can conclude that the patch size affects the mean time to extinction. More specifically, 
by looking at this data, we find that there seems to be a defined relationship: the larger the 
source patches, the more successful the population's survival. 

A.2 Progression of the Time to Extinction as the Probability of 
Extinction Increases 

The plots below show the progression of the mean time to extinction as the probability of 
extinction increases. The graphs are alos shown in a specific order: the low numbered grids 
have larger, more clumped source patches. For example, Grid 1 has one large source patch in 
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its center, and Grid 6 has a random distribution of source patches throughout it. It should be 
noted that the percent of source patches remains constant in all grids. Also, as the probability 
of extinction increases, the higher numbered grids go to extinction at approximately the same 
rate. 
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Figure 2: Mean time to extinction. Probabilities of extinction: Of a source = .2; of a sink = .4 
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Figure 3: Mean time to extinction. Probabilities of extinction: Of a source = .25; of a sink = .45 
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PE>dird(Sa.rce) = .3, PE>dird(SiJ"k) =.5 
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Figure 4: Mean time to extinction. Probabilities of extinction: Of a source = .3; of a sink = .5 

PE>dird(Sa.rce) = .35, PE>dird(SiJ"k) = .55 
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Figure 5: Mean time to extinction. Probabilities of extinction: Of a source = .35; of a sink = .55 
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Figure 6: Mean time to extinction. Probabilities of extinction: Of a source = .4; of a sink = .6 
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Histograms of the Distribution of Time to extinction for different 
Spatial Consideration 
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Figure 7: Source Probability of Propagation = .775. Sink Probability of Propagation = .475. 
Source Probability of Local Extinction = .3. Sink Probability of Local Extinction = .5. 
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