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Abstract 

Head lice, Pediculus humanus capitis, a common parasite found world-wide, affect 
children most often. School staffs frequently lack the necessary knowledge and expertise 
to control lice epidemics. The observed properties of the distribution of lice in humans 
result from a "macroparasitic" model. In this article, we provide a simple model to bet
ter understand the mechanisms behind the distribution of head lice among humans. We 
also provide an epidemiological model that models the transmission dynamics of lice in 
humans. The basic reproductive number is computed and involves two terms: the trans
mission of lice to of susceptible individuals by those with few and many lice, respectively. 
We establish conditions for the eradication and persistence of lice in humans. 

Introduction 

Pediculus humanus capitis, more commonly referred to as head lice, are cosmopolitan. Al
though they can infest anybody, it appears that some human groups are more susceptible to 
infestation than others. For example, children are infested more than adults and females more 
than males; individuals with clean heads are more likely to be infested than those with dirty 
heads or heads with dandruff; and large faniilies are more likely to stiffer from lice than small 
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ones, perhaps due to the crowding associated with large families rather than to socio-economic 
status (Chunge 1991, 96). 

Lice are ectoparasitic insects because they live-that is, they breed and feed-on their host. 
Rather than being infected by lice, hosts are infested with lice. Lice are wingless, and thus, 
are unable to fly. Lice also lack the ability to jump. Their means of movement is through 
crawling. Human lice belong to the order Anoplura, which consists of about 560 blood-sucking 
species that live solely on mammals (Chunge 1991, 197). Although there are three types of 
lice -head lice (Pediculus humanus capitis), body lice (Pediculus humanus humanus), and crab 
lice (Phthirus pubis)- in this report we concentrate on head lice, which we will simply refer to 
as "lice." 

The life history of a louse is divided into three stages: first, the egg-stage, during which a 
louse goes through an incubation period; the larval stages; and finally, the mature adult stage. 
Eggs hatch after an average incubation period of 7 days at 32-35 degrees Celsius (Kluge 1980, 
9). Larvae reach maturity in an average of 8-9 days (Kluge 1980, 10). The life span of adult 
lice is approximately 30 days (Kluge 1980, 11). 

Lice are transmitted primarily through direct physical contact with an infested individual. 
Although they are not primarily responsible for the spread of any disease, they are a cause 
for considerable social concern (Chunge 1991, 196). Children are affected most often, perhaps 
due to the high rate of physical interaction that occurs in schools. Students are especially 
susceptible to infestation. The following chart presents data on lice infestation in elementary 
schools in Poland during 1990-91. The data illustrate the potential severity of lice infestation 
(Wegner 1994, 221). 

Type of 
school 

Ordinary 
Special 
Village 
Nursery 

Lice infestation in children 
Total number Number of Percent of 
of children infested infested 

23260 
644 
2580 
1316 

children children 
706 3.0 
44 6.8 
120 4.2 
11 0.8 

Table 1: Lice infestation in children from elementary schools in Poland. Modified from 
Wegner, Racewicz, and Stanczak 1994. 

Lice are readily transmitted if infested individuals are left untreated, and therefore, an 
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epidemic can easily erupt. Even though many people are insensitive to the bite" of a louse 
and, in fact, may neither feel it nor show any reaction to it, infestation remains" a community 
concern. Infested individuals are often unaware of their condition, especially during the first 
few weeks of infestation, when lice are fewer in number. For individuals infested with few lice, 
the symptoms are usually mild. However, overexposure to lice saliva as a result of hundreds of 
bites may result in itchy, allergic reactions. Sometimes, severe scratching leads to secondary 
bacterial or fungal infection. Thus, in more sensitive individuals or in cases of advanced 
infestation, louse bites result in itching which may result in swelling and loss of sleep. A 
child's education may be negatively affected as a consequence (Buxton 1990, 54). 

In this report, we focus on the question of when a population should be treated for lice 
in order to optimize the effects of treatment. We use an epidemiological model in which 
the population is subdivided into three different groups: susceptible; infested with some lice; 
and infested with a large number of lice. A model of lice population growth in their natural 
habitat was presented in 1991 by B.V. Boev, V.K. Barabash, and r.V. Tarasevich. A model 
that relates the number of lice to individuals and attempts to explain the advantages of early 
prevention, however, has not yet been proposed. We propose such a model in this article. 

Our study includes two main trajectories of investigation. first, we introduce an epidemi
ological model that examines lice-host dynamics as an "infectious" disease. We assume that 
lice are transmitted through contacts between lice-infested individuals and those without lice. 
Second, we look at a rough characterization of the temporal distribution of lice in a population. 
We develop a model that keeps track of the number of individuals stratified by the number of 
adult lice, and we observe changes in the mean-lice load and the variance of the population of 
lice in humans. The rest of this paper is organized as follows: Section 2 introduces a model 
for the transmission dynamics of lice in humans. An analysis of the model's stability follows. 
Also a special case study dealing with an infested Nigerian population is studied. Section 
3 introduces a macroparasitic model in order to study the mechanism behind the observed 
distribution of lice in humans. Section 4 summarizes some results of the macroparasitic model 
discussed in the previous section. Section 5 lists our conclusions and suggests directions for 
future work. 
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2 An epidemiological model for the transmission dy
namics of lice 

Our epidemiological model consists of three differential equations. We let S, PI, and P2 
represent the population size of susceptible individuals; infested with few adult lice; and 
individuals infested with a large number of adult lice, respectively. The transmission dynamics 
of lice in humans can be modeled by the following nonlinear system of ordinary differential 
equations: 

dS 

dt 
dPI 

dt 
dP2 

dt 

PI P2 
fl,N - fhS N - /32 S N - j.J,s + 'YIPI + 'Y2 P2 

PI P2 
/3IS N + /32 S N - (j.J, + 'YIlH - wPI 

= wPI - (fl· + 'Y2)P2 

where N, the total population is given by 

(1) 

(2) 

(3) 

(4) 

Susceptible individuals can become infested in two ways: via contacts with individuals with 
few lice (PI) or via contacts with individuals with "many lice" (P2). The probability of 
becoming infested by an individual from PI is less than the probability of becoming infested 
by an individual from P2 • Once individuals become infested, they enter Plothe population of 
few lice. The diagram of Figure 1 illustrates the flow of individuals in the model. 

The model makes use of the following parameters: 

If, = per capita rate at which individuals leave the system, 

'Yi = per capita treatment rate of Pi individuals, 

w = rate of progression from a state with few lice to a state with many lice, that is, from PI 
to P2 , 

c = the average number of contacts per unit of time, 

qi = the probability that a contact with an individual from Pi leads to infestation, 

/3i = qiC = the number of successful contacts per unit of time. 
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To simplify the model, we made several assumptions. We took (3i = qiC; that is, we assume 
that each individual, in the population has the same number of contacts but a different 
probability of becoming infested. We assume that fh > (31; that is, the number of successful 
contacts (those that lead to infestation) are greater when an individual comes into contact 
with a person from P2 rather than PI as we assume that q2 > ql' Also, we assume that 
N remains constant. Therefore, we let fiN denote the recruitment rate, while fi's, J.tPl, and 
fi.P2 represent the number of susceptible individuals, individuals infested with few lice, and 
individuals infested with many lice leaving the system per unit time. Since 

then N is constant. 

2.1 Reduction of the model 

Since the population size is constant, we can divide (1), (2) and (3) by N. That, is % = 

~ + !it + lj:f where we let x = ~, y, = !it, Y2 = lj:f, where x is the proportion of susceptibles 
per unit time; Yl is the proportion of people with few lice; and Y2 is the proportion of people 
with many lice. Substituting x, Yl, and Y2 into (la), (2a), and (3a), we obtain the following 
equivalent system: 

dx 

dt 
dYl 
dt 

dY2 
dt 

(5) 

(6) 

(7) 

Since x = 1 - Yl - Y2, the system consisting of is reduced to the following two-dimensional 
systems: 

(8) 

(9) 

The original system of differential equations reduces to the above simple systems dealing with 
the proportion of the number of individuals infested with few and many lice. 
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2.2 Equilibrium points 

Endemic equilibrium points are often important if one wishes to find the basic reproductive 
number~. Ro gives the number of individuals that a single infested person from YI or Y2 
infests when introduced into a susceptible population. It is crucial that we find Ro, since 
it is an indication of how quickly the infestation of lice will spread at the beginning of the 
epidemic. To find~, we first find the infestation-free equilibrium point where only susceptible 
individuals exist in the population. 

Setting ~ = 0 (i = 1,2) gives 

(10) 

and 
(11) 

Solving for Yi from (10), we have that 

(12) 

If we let A = (1':'Y2) then Y2 = Ayt, Now we substitute Y2 = AYi into (10) to obtain 

(13) 

Now we solve for Yi and use the fact that Y2 = AYi to obtain the endemic equilibrium point: 

For the equilibrium points to be positive (and thus biologically feasible) we need 

which implies that 
·jl+')'I+W 1 
fiI + ,62A < . 
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This condition gives, 
Ro = /31 + /32A . 

/1+1'1 +W' 
(16) 

which can be rewritten as 

(17) 

Now, if Ro < 1, then (0,0) is the unique equilibrium point. If, on the contrary Ro > 1, a 
unique endemic equilibrium point exists, an equilibrium point that may be expressed as 

yr 1 ~ A ( 1 - ~J ' 
y~ - 1: A (1 -~J. 

2.3 Stability of equilibrium points 

(18) 

(19) 

To find the stability of the equilibrium points, we find the Jacobian matrix of the system 
(8-9) at its equilibrium points (0,0) and (y~, y~). The general Jacobian matrix is given by 

J = (-/31Yl + /31 (1- Yl - Y2
w
) - /32Y2 - (p. + 1'1 + WI) -/31Yl - /32Y2 + /32(1 - Yl - Y2)) 

-(/1 + 1'2) . 

The Jacobian matrix at (0,0) is 

(20) 

The equilibrium point (0,0) is stable if the trace is negative and the determinant is positive. 
Thus, we see that 

iff 
/31 . < 1 

2/1 + W + '1'1 + 1'2 . , 

and 
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iff 

The stability of the infestation-free equilibrium state depends on Ro being less than 1. To 
investigate the stability of the endemic equilibrium point (yj, y2) we focus on the general case: 
that is, the case when (32 > (31 = (3 or equivalently (32 = q(3 where q > 1. We let f(q) = 11~~' 

The Jacobian matrix in this case is expressed then as 

( -(3 (1 - Ro
1
(q)) f(q) + ~ - Ro1q) (1 + A)f(q) -(3 (1 - iltq) + -Joq) . 

The trace of J is given by 

tr(J) ( 1) (3 (3 W -(3 1 - - f(q) + - - -(1 + A)f(q) - -
Ro(q) Ro(q) Ro(q) A 

(3 (3 W 
-(3(Ro - l)f(q) - -(A)f(q) + -(1 - f(q)) - - < O. 

Ro Ro· A 

This implies that Ro > 1. So, f(q) > 1 which implies that q > 1. 

Now, 

det( J) (-~(RO - l)f(q) + ~(1- f(q)) - ~(A)f(q)) (_ W) 
Ro Ro Ro A 

- W (-~(Ro - l)f(q) + q~) 
Ro Ro 

- W (~f(q) - ~(1- f(q)) + ~(A)f(q)) + W (~(Ro - l)f(q) - q~) 
ARo Ro Ro Ro Ro 
(Ro - l)f(q)(l + A) > 0 

which implies that the endemic equilibria are stable, which implies that Ro > 1. When the 
condition Ro > 1 is fulfilled, the endemic equilibrium point, (yj, yz) is stable. 

2.4 Special case for individuals in Nigeria 

We calculated an approximate value for Ro using figures obtained by Buxton (1938) for males 
examined at Sokoto, Northern Nigeria in 1938. 
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Distribution of Lice by Age· .. .. 
Age Total heads No. lice 1 to 10 lice I· 

6 - 10 53 42 5 
11 - 15 140 124 14 
16 - 20 87 77 7 
21 - 30 68 65 3 
Total 348 308 29 

Table 2: Distribution of lice by age (Buxton 1940) 

We will use the formula Ro = 1 + § by Dietz (1974) to find Ro using the data from Table 

2.4. From the data we calculate that L = t, the time that people are exposed toinfestion, is 
24 years. Q, the average age of first infestation is 14.5 years. Thus, when we solve for Ro, we 
have Ro = 2.655, which means one person with lice will infest 2.655 susceptibles. 

The proportion of people with few and many lice from Table 2.4 at equilibrium can be 
expressed by equations (18) and (19), such that, 

* Y2 

1 
1-

Ro 

1 (1 1) _ 29 
I+A - Ro -348 

A (1 1) _ 319 
I+A -Ro -348 

1 
1 - 2.655 = .623 

By substitution we can calculate A to be6.5, and we also know that A = +w . Now we let 
I' ,2 

fJ1 = fJ and fJ2 = qfJ, where q > 1 and fJ2 > fJ1, and we substitute the variables into equation 
(13). Therefore, 

fJ qAfJ Ro = + --"---
P;+W+/'l P;+W+/'l 

In this case R6 is the contribution to Ro of individuals infested with few lice and Ro is the 
contribution to Ro of individuals infested with many lice. That is, 

R6 = fJ w = qAfJ = qARb. 
/1. + W + /'1 0 P; + W + /'1 

By substitution we have 
Ro = R6 + Ro = R6{1 + qA) .. (21) 
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We are looking for a condition that will eliminate the epidemic. So we suppose that Rb < 1, 
which is when the individuals with few lice do not contribute to .the epidemic. To find the 
condition we do the following: 

Rb+Rg'<l {o} Rb(1+qA)<l 
1 

{o} 1 +qA < f 
Ro 

{o} Rb<l 
{o} 1 A 1" + w + '/'1 

+ q < qAfJ 

{o} '/'1 > fJ(1+ qA) - (/1. + w) = fJqA + fJ - (/1. + w) (22) 

Hence, equation (22) is the condition that needs to be met to eliminate the epidemic. The 
condition is shown in Figure 2. 

Now we suppose Rb > 1; that is, individuals with few lice contribute to the epidemic, then 

Ro < 1 iff Rb(1 + qA) < 1, 

which is non-existent. Therefore, the results suggest that one controls the individuals with 
few lice and if necessary the individuals with many people to have an epidemic free state. 

3 Distribution of lice 

In summary, the epidemiological model serves to measure the intensity of lice infestation; that 
is, it measures the distribution of lice per human host. The form of this distribution is of great 
importance to the population dynamics of lice, as well as the distribution between humans. 
Using the distributions of lice within human communities observed by Buxton in1940, we can 
empirically describe the patterns with a negative binomial distribution (NBD). 

Observe that it is valid to assume that the distribution of the data shown in Table 3 and 
Figure 3 can be described as a negative binomial distribution. Notice that if the mean and 
the variance were to be calculated, the mean would be greater than the variance, which is 
characteristic of the NBD. In addition, in calculating the skewness we find that it is positive. 
Our goal is to use the methods of infinite moments to estimate the values of the parameters 
k and fJ. We can later use this information to make predictions about the lice distribution 
in a closed population. Also, we want to fit the data using the method of goodness of fit to 
approximate the behavior of the distribution. 
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Distribution of lice in a tropical jail 
Number of lice Number of individuals 

1 to 2 49 
3 to 10 32 
11 to 25 22 

26 to 100 13 
101 and up 9 

Table 3: Distribution of lice in 125 infested individuals in a tropical jail (Buxton 1940). 

This model consists of two differential equations, where no, ni represent the population 
size of individuals with zero lice and the population of individuals with i lice, respectively. 
We establish that the total population is constant. The model is as follows: 

dnO 
dt 
dni 

dt 

-(f-l + 'Ij;)no + un! + A 

where d:;,O, ~i are the population rates without and with i lice, respectively. 

(23) 

(24) 

We have that the total population at time t is given by N(t)is a constant N. Further, the 
total population with i lice at time t is P(t). 

.! 
p. 

00 

N(t) Lni = N, 
i=O 
00 

P(t) Lini' 
i=O 

II(t)w = second moment, 

b.(t) 8 = third moment. 

The parameters are defined as follows: 

average time in which the people are in the system, 

u = mortality rate of the lice, 

'Ij;(k, f3) = rate of infestation (to be specified), 
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A = flN(t) = rate of entrancejnto the population, 

k = clumping parameter of lice. 

Observe that we have an infinite number of equations. Now, calculate the moments to fit 
our data (Table 3) to a negative binomial distribution. So, 

N'(t) = fdni 
i=O dt 

00 00 00 

- - 2]P. + 7/J + iCT)ni + L CT(i + l)ni + L 7/Jni-l + A 
i=O i=O i=O 

(25) 

P'(t) 

00 00 00 

- L(fl' + 7/J + iCT)ini + L CT(i + l)ini + L 7/Jini-l 
i=O i=!- i=l· 

7/JN - P(p. + CT) (26) 
00 00 00 

II'(t) - L(P. + 7/J + iCT)i2ni + L CT(i + 1)i2ni + L 7/Ji2ni_l 
i=O i=l i=l 

-II(t)(p. + 2CT) + P(t)(27/J + CT) + 7/JN(t) (27) 
00 00 00 

f::,,'(t) - L(P. + 7/J + iCT)i3ni + L CT(i + 1)i3ni + L 7/Ji3ni_l 
i=O i=l i=l 

7/J(3e + 3P(t) + N(t)) -p.f::,,(t) - CT(3e + M(t)) - P(t). (28) 

Note that each equation has a function, 7/J(t), associated with it. 

We now proceed to look for the equilibrium points. To do so, we set (25-28) to zero and 
find the following equilibria: 

N 
f::" 
p. 

P(t) 
7/JN 

P.+CT 

e(t) 
P(t)(27/J + CT) + 7/JN 

p. + 2CT 
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In addition, we need to divide by N in equations P, ahd e. This step gives 

P(t) 'Ij; 
--=--=m. 
N. f.!+(}" 

(29) 

Note that m denotes the mean. In addition, notice that P(t)/N is the total population 
withi lice divided by the total population. Also, we find that 

e(t) !'.fP-(2'1j; + (}") + 'Ij; m(2'1j; + (}") + 'Ij; --- - -w 
N - f.! + 2(}" - /1. + 2(}" -, 

(30) 

where w denotes the second moment over N. 

To find the variance we need to calculate: Variance = w - m 2 The challenge of our model 
is find a function 'Ij; that will serve to close our moments. 

4 Results 

After trying several functions of 'Ij;(k, (J) we were unable to estimate the values of k and (J. 
We always obtained systems of two parallel lines. Although the result for the mean, variance, 
and the third moment were consistently positive, even with the characteristics of the negative 
binomial distribution, we were unable to fit 'Ij;( k, (J) to our data. We believe that the problem 
arises from the fact that our data is measured at a specific time. However, the distribution 
changes with time. We also tried to adjust the negative binomial using the goodness of fitness 
method. The results for this method were that k = 22, (J = .9, and the sum of the squares 
= 1058.7, but these results were inconsistent with the observed data. The reason for this 
inconsistency is due to the disorderliness of the data. Also, we do not have access to the data 
so we cannot make an arrangement in the distribution. 

We have several suggestions about how to resolve the problem of moments closure. For 
instance, we need data that change with time. Perhaps we can make data measurements 
each month and then calculate the mean and variance for each one. We can then construct 
a distribution that changes with time. Finally, we will then be able to construct a system of 
equations that will serve to estimate the values for k and (J. 
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5 Conclusions and directions for future work 

The results of the epidemiological model indicate that in order to prevent an epidemic of lice, 
those individuals infested with few lice must be treated at least to the point where Ro > l. 
Also, if Ro < 1, we know that with time, the number of lice-infested individuals approaches 
zero. That is, there is no epidemic. On the other hand, if Ro > 1, the lice epidemic persists. 
The model of the distribution of head lice in humans gave relevant results. The differential 
equation model with appropriate infection rates 1/; indicated that the mean is less than the 
variance. We also know that the skewness is positive. In addition, if 1/; is given by a parameter 
curve,1/;= 1/;( k, fJ), then longitudinal data is needed to estimate k and fJ. It is not enough to 
have data that represent an instant. We need to obtain more dispersed data. 

It is important to continue our work in some way because lice infestation is a problem that 
affects almost all the children in our schools. If we know more about lice distribution, we can 
make more effective controls, which will result in a minimum propagation. 
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A Appendix 

A.I Reduction of the Model 

We have that 

dx 
dt 

dYl 
dt 

dY2 
dt 

Using the fact that x = 1 +Yl +Y2 through substitution, we reduce the number of equations 
to obtain 

(31) 

(32) 
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A.2 Finding Ro. 

To find flo, we look for feasibility conditions that allow the existence of an endemic equilibrium 
point. We do this as follows: 

We first find the equilibrium points. Setting". = 0 gives 

(33) 

When ~ = 0 we have 
(34) 

Solving for Yb we have 
(fl' + 'Y2)Y2 

Yl = . 
w 

(35) 

If we let A = 1'-::''Y2' then Y2 = AYI. Now we substitute Y2 = AYI into (33) to obtain 

(36) 

Now we solve for Yl and then use the fact that Y2 = AYI to obtain the endemic equilibrium 
point: 

(37) 

(38) 

For the equilibrium points to be positive (and thus biologically feasible) we need 1 -
\t"2~;; > 0, which implies that j\;2~;; < 1. Notice that this condition is equivalent to saying 
that ~ < 1. This condition implies that Ro can be defined as 

Note that Ro can be rewritten as 

Ro = (31 + (32 A . 
jl+'Yl+ W 

Then, obviously if Ro < 1, then (0, 0) is the unique equilibrium point. If, on the contrary 
Ro> 1, the endemic equilibrium point exists. 
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A.3 Discussion of the Stability of the Equilibrium Points 

To find the stability of the equilibrium points, we need to find the Jacobian matrix of our 
system: 

where the equilibrium points are (0,0) and (yj, Y2)' The Jacobian matrix is, 

J = (-(31Yl + (31(1- Yl - Y2) - (32Y2 - (/1 + ')'1 + WI) -(31Yl - (32Y2 + (32(1- Yl - Y2)) . 
W -(/1+')'2) 

We now evaluate the equilibrium points (0,0) in the Jacobian matrix, 

In order to show that the equilibrium point (0,0) is stable we need to show that the trace 
is negative and the determinant is positive. Thus, we see that 

trJ(O,O) = (31 - (2/1. + ')'1 + W + ')'2) < 0, 

iff 
(31 < 1 

2/1. + W + ')'1 + ')'2 ' 

and 

iff 

Obviously, if Ro < 1 then 
(31 

-:c------'---=------ < l. 
2/1 + W + ')'1 + ')'2 

To investigate the stability of the endemic equilibrium point, (yj, Y2)' we study two cases: 

Case 1: (31 = (32 = (3. 
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We take !!na 1 to simplify the Jacobian matrix, J: 
Yl 

iJYl 
" = -(31Yl + (31 (1 - Yl - Y2) - (32Y2 - (It + 1'1 + w), 
UYI 

since (31 = (32 = (3 then 

The Jacobian matrix takes on the following form: 

-(3 (1 - -L) + L) Ro Ro w . 
-Ji 

. We now find the trace and the determinant: 

tr(J) . ( 1) (3 (3 w -(3 1 - - + -. - -(1+ A) - -
Ro Ro Ro A 

(3 w 
-(3 (Ro - 1) - -A - - < o. 

Ro A 

Notice that in order for the trace to be negative, we need Ro -1 > 0 which is the equivalent 
to saying that Ro > 1. 

det(J) = ( -(3 (1 - ~) + ~ - ~(1+ A)) (- w) - w (-(3 (1 - ~) + ~) 
Ro RoRo / A Ro Ro 

(3 (3 ((3 (3) -(Ro -1) + -A+A -(Ro -1) --
Ro Ro Ro Ro 
(3 
Ro (1 + A)(Ro - 1) > o. 

Similarly, for the determinant to be positive, we need Ro - 1 > 0, which is equivalent to 
saying that Ro > l. 

For this case, Ro > 1 shows that the endemic equilibrium point is stable when (31 = (32 = (3. 
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Case 2: j32 > j31 = j3 such that j32 = qj3 where q > 1. 

We now take {!JL!.a'l to simplify the Jacobian matrix. Using the fact that j32 > j31 = j3 such 
Yl 

that j32 = qj3 where q > 1, substitution gives 

-betaY1 + j3(1 - Y1 - Y2) - qj3Y2 - (fl· + ')'1 + w) 

- -j3Y1 - Qj3Y2 + j3(1- Y1 - Y2) - (p. + ')'1 + w). 

Since we want the Jacobian matrix in terms of Ro, we simplify (9) by taking it apart. 

Simplifying -j3Y1 - qj3Y2 = -j3(Y1 - qY2). Now, substituting (Yi, Y2) from (80.) and (8b) 
gives the following expression, 

where q > 1. Now, substituting f(q) = \~q: into the expression above gives 

_j3 (1 -_1_) f(q). 
Ro(q) 

where evaluating f(l) = 1, we have Case 1, where q > 1. 

Now, simplifying j3(1 - Y1 - Y2) we have: 

j31(1 - Y1 - Y2) = j3(1- (Y1 + Y2)) = j3 (1- (1 __ 1_)) = L 
Ro(q) Ro(q) 

and 

So, putting (9a) and (9b) together gives 

OY1 
OY1 

where f(q) = 11:::' 
Ro(q) = j31 + j32 

f.l + ')'1 + w f.l + ')'1 + w 

w 

f.l + ')'2 
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since A = +W ,we have 
I' "/2 

Ro(q) = {3 (1 + qA). 
11'+11 +W 

We now have that the Jacobian matrix is of the form: 

( -{3 (1 - R,,1(q)) f(q) + ~ - ~(1+ A)f(q) -{3 (1 - iJtq) + I;;q) . 

We now find the trace and the determinant of J: 

tr(J) -{3 (1 - Ro1(q)) f(q) + R~q) - R~q) (1 + A)f(q) - ~ 
- -(3(Ro - l)f(q) - ;0 Af(q) + ;0 (1 - f(q)) - ~ < O. 

This implies that Ro > 1. So, f(q) > 1, which implies that q> 1. Now, 

det(J) .' = ( -£(RO -l)f(q) + £(1- f(q)) - £Af(q)) (_ W) 
Ro Ro Ro A 

- W (-£(Ro - l)f(q) + q£) 
Ro Ro 

W({3 (3 (3) (/3 (3) - -cf(q) - -(1- f(q)) + -Af(q) + W -(Ro - l)f(q) - q-
ARo Ro Ro Ro Ro 
(Ro - l)f(q)(l + A) > 0 

which implies that Ro > 1. 

When the condition Ro > 1 is fulfilled, the endemic equilibrium point, (y';:' y:J) is stable 
when /32 > /31 = /3. 
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Figure 1: Compartmental model. 
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Figure 2: Bifurcation diagram in the parameters q and r1. 
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Lice distribution 
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Figure 3: Lice distribution (Buxton 1940). 
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