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Abstract 

Rubella is a contagious disease that affects individuals around the world. This mild 
disease becomes critical when a susceptible pregnant woman is infected. The fetus has 
a high risk of developing congenital rubella syndrome that leads to malformations and 
stillbirths. Interaction between countries with different vaccination policies can lead to 
an increase of rubella cases in either country. In this study we use. mathematical models 
of differential equations to analyze how the interaction between Mexico and the United 
States affects the dynamics of Rubella. We show that the Uriited States and Mexico 
must develop a dual policy to succeed in eradicating the rubella virus. 

1 Introduction 

Rubella, also known as German measles, is a viral disease caused bya togavirus of the genus 
Rubivirus. It was first identified by George Maton in 1814 and named by Henry Veale in 
1866. This highly contagious disease is transmitted when a person inhales air particles, which 
have been eJi;haled by infected individuals. The general symptoms of this mild illness include 
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a rash and adenopathy. In some adult cases, rubella may cause serious symptoms such as 
low-grade fever, headaches, and swollen glands. Newborns, as well as adults, suffer from 
serious symptoms. Norman Gregg was the first to observe that rubella infection can cause 
miscarriages, stillbirths, and malformation of the fetus. If a pregnant woman is infected by 
the rubella virus during her first trimester of pregnancy, the fetus will be more likely to 
develop Congenital Rubella Syndrome, CRS (Hethcote 1989, 215). Furthermore, CRS can 
cause infants to be born with cataracts, heart disease, mental retardation, blindness and 
deafness (Coronado 1997, 1). The virus' effect on the fetus is a serious public health issue, 
since" [more] than 20,000 babies were born with birth defects during an outbreak of rubella 
in 1964-1965. The same outbreak also resulted in at least 10,000 miscarriages and stillbirths" 
(March of Dimes, 1997). Such outbreaks led scientists and researchers to examine the spread 
of rubella and to develop a vaccine, introduced to the public in 1969, against the disease. 
Immunization is achieved through an MMR (Measles, Mumps, Rubella) vaccination. Once an 
individual contracts the disease, he or she develops antibodies and becomes immune to the 
virus. 

Different countries, such as Mexico and the United States, have their own vaccination 
policies to control the spread of rubella. In the United States, state laws require that a 
child receive an MMR vaccination before enrolling in kindergarten, while Mexico prefers to 
keep their policy of no-vaccination. Mexico's Public Health Center has reported that even 
though doctors recommend child vaccination, the vaccine increases the age of first infection. 
Therefore, the vaccine would benefit the children, but the incidences of rubella would then 
be translated to adults (Hethcote 1997, 215). Consequently, there is a higher probability of 
pregnant women becoming infected, which leads to an increase in cases of CRS. Marco V. 
Jose and Mexico's Public Health Center analyzed Mexico's theoretical estimates of rubella 
cases and found that it was best to keep the policy of no-vaccination. On the other hand, 
the United States has studied the dynamics of rubella and has concluded that its policy of 
vaccination is effective. Statistics in the United States show that the number of reported 
rubella cases has declined by more than 99% since the vaccination policy was enforced. Yet, 
recently, there has been a moderate increase of rubella and a dramatic increase of CRS cases 
(Medaccess, 1997). The majority of these cases occur among people in the work place and 
children born to Hispanic mothers (Coronado 1997, 1). These different views of Mexico and 
the United States regarding vaccination can lead to a change in the dynamics of rubella in 
both countries. 

In this study, we model how the interaction between bordering countries with different 
vaccination policies, such as Mexico and the United States, affects the dynamics of rubella. 
This is critical because each country neglects the possibility of " [reintroducing the infection] 
from neighboring countries" (Center for Disease Control, 1997). Such an oversight can lead to 
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unrealistic expectations of eradication. 

1.1 Introduction to the model 

In our study, we model the interaction between Mexico and United States by combining two 
S -> I -> R models in which each population is divided into epidemiological subgroups of 
susceptibles (S), infected (1) and recovered (R) individl1als as the Figure 1 shows. 

Our model considers a close population of Mexicans and Americans, such that M + G is 
our total population, where M is our Mexican population, and G is our American population. 
We assume that the effective contact rate of the Mexican population amongst themselves 
and the American population amongst themselves is the same, {J. Citizens in one country 
are just as likely to interact with each other as those in another country. Considering that 
the populations are not isolated, we let {J' be the interact.ion rate between Mexicans and 
Americans. We suppose that {J > {J' where the probability of contact. bet.ween individuals of 
the same country is greater than the probability of contact between individuals of a different 
country. We take the duration of rubella, " to be an average of ten days in both countries 
since the difference between the rat.es in each country is very small. 1/ P.m is t.he average life 
span of a Mexican and 1/ jJ.g is the average life span of an American. In addition, we let P and 
q equal the percentage of the population that is vaccinated in Mexico and the United States, 
respectively. For the case where there is no vaccination, P and q are equal zero. Note t.hat we 
assume that the. disease is spread only by infected individuals. 

From the SIR model we can construct the following system of equations for our two 
populations: 

dSm 
(1 - P)P·mM - ({JIm + {J'Ig) M

S
: G -ILmSm, (1) -

dt 
dIm 

({JIm + {J'Ig) M
S
: G - (jJ.m + ,)Im, (2) --

dt 
dRm 

PjJ.mM + ,1m - jJ.mRm, (3) 
dt 
dSg 

(1- q)jJ.gG - ({JIg + {J'Im) M ~ G - jJ.gSg, (4) 
dt 
dIg S 
dt ({JIg + {J'Im) M:a -'- (jJ.g + ,)Ig, (5) 

dRg 
PjJ.gG+ ,Ig - jJ.gRg, (6) 

dt 
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where M = 3 m + Im + Rm and G = 8g + Ig + Rg. 

Considering Theime's theorem and a constant population for Mexico and the Unuted 
States, this model can be reduced to the system of four equations 

dim I M -Im - Rm 
(7) 

dt ((Jim + (J Ig) M + G - (florn + ,)Im, 

dRm 
PPmM + ,Im - PmRm, (8) --

dt 
dig ( ') G - Ig - Rg ( ) (9) 
dt (Jig + (J Im M + G - Pg +, Ig, 

dRg 
Pfl.gG + ,Ig - pgRg. (10) 

dt 

In the following part of our report, we will use these modified equations to calculate our 
equilibrium points, to study general and individual cases of our Ro, and to run simulations 
from a program created in Matlab. Finally, we draw conclusions based on the results obtained 
from our model, and we suggest improvements for future models. 

2 Methodology 

To evaluate our system of equations, we analyze the basic reproductive number, Ro, which 
is dependent on our parameters. Ro represents the average number of secondary infections 
caused by introducing a single infected individual into a host population of N susceptibles 
(Edelstein-Keshet. 1988, 247). The Ro of our differential equations will determine whether 
the disease will be eradicated. As the values of our parameters increase or decrease, our Ro 
increases or decreases as well. We specifically want to observe when the vaccination rates 
decrease Ro to be less than 1. If Ro < 1, the disease-free equilibrium will be stable. This 
implies that with time the disease will die out. If Ro > 1, the disease-free equilibrium is 
unstable and the disease will persist. 

To calculate the basic reproductive number (Ro), we consider the disease-free equilibrium. 
To find all the equilibrium points, we set the differential equations equal to zero and solve for 
the different variables. A detailed explanation of these two processes is found in the appendix. 
We will calculate the Ro's for each of the two populations, as well as the general Ro for the 
whole system. We represent the general Ro in terms of the Rlrand .Rg so that we can to see 
the relationship between the two populations and to further explore the effects of interaction 
between the two populations. 
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Our Ril and R[!' for Americans and Mexicans, respectively, are: 

and 
Rm _ ;3(1 - p)M 

o - b+/l-m)(M+G)' 

Both Ro's represent the number of susceptibles who will be infected by an infectious individual. 
When at least one of the particular populations' Ro's are less than 1, the general Ro is 
max(R[!" RIl), (Castillo-Chavez, 1996.) 

Our basic reproductive number is 

Ro = (Ril + R[!') + V(Rg + R[!')2 + 4(1 - z)RgR8' 
2 

where z = ;3'/;3 and 0 < z ~ 1. 

We break down the analysis of the system of equations into four cases: 

Case 1: Rg < 1 and R[!' < 1. Since the Ro equals max(RQ' , Rg), it can be concluded that 
Ro < 1; therefore, with time, the disease will be eradicated in both countries. This is a trivial 
solution, and hence, we will not analyze or discuss this case any further. 

Case 2: R[!' < 1 and Rg > 1. Since R[!' < 1, the disease will be eradicated in Mexico, 
but in the U.S. the disease will persist. Taking into consideration that Ro is max(R[!', Rg), we 
need to calculate Rg; thus we only need to look at the system for the American population. 
Note that we do not ignore the Mexican population because there is still interaction between 
the two populations for which our system of equations accounts. To find the Rg, we consider 
the disease free-equilibrium; thus 19 = O. We solve d~g = 0 for Rm and find that the disease 
free-equilibrium is (0, qG). If Ril < 1, then the disease free equilibrium is stable; thus with 
time, the disease will die out. If Rg > 1, the equilibrium 

( /l.m ( M _ M + G) ,1m ( M _ _ M +;;--G)) 
~+~;3 ~+~;3 

is stable; thus the disease will never be eradicated in the U. S. 

Case 3: Ril < 1 and R[!' > 1. Here, the disease is eradicated in the U. S. and persists in 
Mexico; therefore, we calculate R[!'. Thus, we only need to look at the system for the Mexican 
population. Note that we do not ignore the American population; our system of equations 
accounts for the interaction between the two populations. Again we consider the disease-free 
equilibrium for this system 1m = 0 and Rm = pM. If R[!' < 1, (O,pM) willbe stable; therefore 

5 



the disease will be eradicated. If RO' > 1, the equilibrium point 

( ( G M + G) (G M + G)) 
/Lg !l.g + 19 - fJ' ,1g flg + 19 - fJ' 

is stable; hence the disease will never be eradicated. 

Case 4: Rg > 1 and RO" > 1. The disease coexists in both countries. When t.he Ro is greater 
than one, then the endemic equilibrium is stable, and the disease will never be eradicated in 
either of the countries. To calculate the Ro, we consider the disease-free equilibrium for the 
whole system: 1m = 0, Rm = pM, 19 = 0, and Rg = gG. If Ro < 1, the disease-free equilibrium 
is stable and with time, the disease will be eradicated in both countries. If Ro > 1, the disease
free equilibrium is unstable, which implies that the disease will exist in both countries. Finding 
the endemic equilibrium is complicated and the results are difficult to translate into biological 
meaning. Thus, we did not explicitly find the point; instead we prove that the point exists 
(see the appendix). Furthermore, since the endemic point was not explicitly found, we cannot 
determine its stability, but some numerical analysis implies that the equilibria is stable. It is 
here that we want to observe how Ro changes with different values of p and g, the vaccination 
percentages. If Ro < 1, the disease free equilibrium is stable. This tells us that the disease 
will be eradicated in both countries. (It is important to note that in the analysis, it was found 
that this case was divided into two cases. This finding will be discussed in the next section.) 

The analysis of our four cases is necessary to understand the dynamics of the populations' 
interactions and the percentage of vaccination. The second and third cases assume that each 
country, when attempting to eradicate rubella, does not consider the neighboring immuniza
tion and infection rate of the neighboring countries, but each does account for the interaction 
rate. 

3 Analysis 

Our system of equations incorporates a number of parameters that will each affect the basic 
reproductive number. Often, if the number of parameters is large, it is very difficult or nearly 
impossible to analyze the system. In order to analyze the system, four cases were considered 
based on Ro. Thus, it is logical to have a numerical analysis based on Ro. This simplifies our 
analysis and allows us to draw some conclusions. Recall that if at least one of RO' or Rg are 
less thanone,then Ro = max(RO', Rg). Finally, if RO' and Rg are both greater than one, then 

Ro = ~ ((Ro + Rg) + V(R'O + RgF + 4(1- z)R'ORg) . 
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Moreover, our Ro can be rewritten in terms of RO' and Rg and z, wherez is the contact ratio 
(fJ' / fJ and fJ' < fJ, so z < L These simplifications allow us to plot Ro as a function of RO' 
and Rg, therefore our only parameter becomes z, Figure 2 shows the general plot of Ro as a 
function of RO' and Rg, Five sections appear: 

L Section I includes all values of RO' and Rg less than one, If Ro is found in section I, the 
disease will be eradicated in both countries, 

2, Section II includes the cases where Rg > 1 and RO' < L In this case the disease would 
die out in Mexico, but it would persist in the United States, Although the disease is 
eradicated in Mexico, the Mexican government still has to take an active role in the fight 
against Rubella because the contact rate of Mexicans with Americans has an effect on 
Rg, 

3, Section III is similar to the second; here Rg < 1 and RO" > L This section predicts 
that rubella will persist in Mexico and die out in the US, Again, the United States 
responsibility in the fight against Rubella is not eliminated, 

4, Section IV, Rg > 1 and RO' > 1; thus the disease will coexist in both countries, 

5, Section V, Rg > 1 and RO" > 1, but the disease will persist in only one country, For 
instance, the disease will die out in Mexico but persist in the UB, and visa-versa, 

As the ratio z increases the x-asymptote of the Ro function is further away from the origin 
and, more importantly, from the line x = L This means that as the ratio increases, the area 
in Section V increases, 

Figure 3 shows the function of for various values of z, 

Figure 4 displays the change of asymptotes as a function of z, The function plots the 
distance of the x-asymptote from the origin, This gives an idea of how the section V is 
growing, The larger the value of z, the larger the area in Section V, the harder it is to draw 
a conclusion, This part of the analysis implies that while all the parameters affect the value 
of Ro, it is extremely important to look at the ratio of effective contact rates squared, 

We are also interested in observing how vaccination can be used to reduce Ro, such that 
Ro is included in Section I of Figure L Thus we will see what percentage of Americans and 
Mexicans needs to be vaccinated to eradicate the disease, 

Figure 5 plots Ro as a function of p and q when fJ = 0,4 and z = 0,5, If this plot is rotated 
as in Figure 6, itis easy to see that the vaccination rate for the U, S, has to be greater than 87 
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% to eradicate the disease. If the plot is rotated as in Figure 7, it is clear that the vaccination 
rate for Mexico has to be at least 64 % to eradicate the disease. 

Figure 8 charts the vaccination rates needed in the U.S. and Mexico to eradicate the disease 
for various contact rates ((3). Ro is based on z, but the various simulations conducted for each 
(3 indicate that z has very little effect on Ro when considering the different vaccination rates. 
There was only a difference of 1 or 2 between the different values of z. (See Table 1). 

I (3\z II 0 1 I 0.2 I 0.3 I 0.4 I 0.5 I 0.6 I O. 7 I 0.8 I 0.9 I 
0.1 0/44 0/45 0/46 0/46 0/46 0/46 0/46 0/46 0/46 
0.2 26/73 26/74 26/74 26/74 27/74 27/24 27/74 27/74 27/74 
0.3 50/83 50/83 50/83 50/83 50/83 50/83 50/83 50/83 51/83 
0.4 64/87 64/87 64/87 64/87 64/87 64/87 64/87 65/87 65/87 
0.5 70/88 70/88 70/88 70/88 71/89 71/89 71/89 72/89 72/89 
0.6 77/91 77/91 77/91 77/91 77/91 77/91 77/91 77/91 77/91 
0.7 78/92 78/92 78/92 78/92 79/92 79/92 79/92 79/92 79/92 
0.8 83/93 83/93 83/93 83/94 83/94 83/94 83/94 83/94 83/94 
0.9 86/95 86/95 86/95 86/95 86/95 86/95 86/95 86/95 86/95 

Table 1: Percentage of Americans vaccinated/ Percentage of Mexicans vaccinated (p/q) (z = 
Contact Ratio (b'/b)2). 

Thus if (3 = 0.4 and z is any value, then the percentage of Mexicans that need to be 
vaccinated is at least 65% and the percentage of Americans vaccinated has to be greater than 
87%. In this analysis the effective contact rate (3, plays a major role in determining the value 
of Ro. From Figure 8 we can easily conclude that the best way to eradicate the disease is 
to vaccinate a larger percentage of Americans than Mexicans. The percentage of vaccination 
needed to eradicate the disease is extremely realistic because for most values of (3 the U. S. 
already vaccinates a larger percentage than what the model predicts. 

The last set of values that we want to analyze is when the percentage of Mexicans vacci
nated equals the percentage of Americans vaccinated, such that Ro < 1. Figure 9 differs from 
Figure 8 because it incorporates the idea of having one general vaccination policy with equal 
vaccination rates instead of a system with two different vaccination rates. Figure 9 gives var
ious values of vaccination for different values of (3. If we want to vaccinate the same amount 
in the U. S. as in Mexico the rate has to be greater than 80 %. Again, the vaccination rate 
needed to eradicate the disease (reduce Ro to less than one) is highly dependent on the contact 
rate (3. As the effective contact rate increases you have to vaccinate a larger percentage of 
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the population. Furthermore, vaccination rates are insensitive to changes in z (see Table 2). 

I (3\z II 0.11 0.5 I 0.9 I 
0.1 0.45 0.55 0.58 
0.2 0.71 0.79 0.80 
0.3 0.82 0.85 0.86 
0.4 0.86 0.88 0.90 
0.5 0.88 0.90 0.90 
0.6 0.92 0.92 0.92 
0.7 0.92 0.92 0.93 
0.8 0.94 0.94 0.95 
0.9 0.95 0.96 0.96 

Table 2: % Mexicans Vaccinated = % Americans Vaccinated (p = q). 

From Figures 8 and 9, we conclude that the most efficient way to eradicate rubella is to 
have different vaccination rates in Mexico and the U. S. This would require that they work 
together; as long as there is interaction between two populations, the two countries have a 
responsibility to aid each other in the fight against Rubella. It is to their benefit that the 
neighboring country vaccinates enough of their population. 

4 Improvements 

After having completed our study of rubella, we propose several additional methods of analysis 
that would refine further studies of the subject. We would suggest that further analyses take 
age structure into consideration. For instance, if we were to include age structure in our model 
our functions would not only be dependent on time, but also on age. This would allow us 
to analyze more closely the number of infected individuals at a specific age. This is critical 
for a disease such as rubella, where we find that as one gets older the symptoms become 
severe, especially for pregnant women. When infected, the fetus is at a high risk of developing 
Congenital Rubella Syndrome, CRS. 

The analysis of the interaction between two countries allows us to consider space. The 
spatial structure would allow us to find the different number of infected individuals in different 
areas· of· space, or in our case, a country. This allows us to take into· account demographic 
conditions. In our model we take into account the effective contact rate between Mexicans 
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and Americans, fJ'; yet this rate is different in other areas of the United States and Mexico 
which are far from border states. The further a state is from the border, the less likely it 
is for the individuals living there to come in contact with an infected individual from the 
neighboring country. 

Our model can be modified to include more parameters that can account for a more 
complex model. For example, we can assume that each of the effective contact rates, fJ' and 
fJ, are different in each country. Hence, we would end up with four different effective contact 
rates instead of two. Another possibility would be to take into account random proportional 
mixing of contacts which would again add more effective contact rates. Furthermore, the 
average duration of the disease, " can be made different for each country, which would make 
our model more specific. For example, poverty in border towns might affect the duration of 
the disease, due to accessibility, quantity, and quality of health facilities; therefore, a specific 
" would be appropriate. The assumptions made in our model were carefully chosen to give a 
realistic description of the dynamics of the disease. 

5 Conclusion 

The study of disease using mathematical models allows us to analyze research questions from 
a different perspective. In our model, the use of differential equations was critical for studying 
the rubella virus. We found that we could make conclusions about important aspects of the 
dynamics of this by considering two different populations, such as Mexico and the United 
States, where the different vaccination policies of these countries can affect the spread of 
disease. Most importantly, we found that Mexico and the United States must work together 
to eradicate the rubella virus because of the interaction between Mexicans and Americans. 
Our model allows us to predict that in order to eradicate the disease, both countries should 
vaccinate (see Figure 8), which is not the present case. 

The versatility of our model allows us not only to analyze the dynamics of rubella infection 
between Mexico and the United States, but to examine the dynamics of the spread of any 
disease between neighboring countries. The disease studied, like rubella, must be transmitted 
by infected individuals who can be modeled using a S1 R model of susceptibles, infected and 
recovered individuals. Examples of such diseases include: the measles, chicken pox, and 
mumps. The generality of our model permits us to not only model neighboring countries, but 
any two countries. Hence, we can analyze global issues regarding many diseases. 

It is important to realize the significance of making global health policies. Often analyses 

10 



of diseases or social dynamics are performed in each country without considering the effects 
from the rest of the world. Unfortunately, when trying to decide how to eradicate rubella, 
it is unrealistic to consider only factors inside one's country because infected travelers from 
other countries can spread the disease as well. Finally, our analysis allows us to propose that 
countries should begin to think in a global perspective: global health policies would be more 
effective in eradicating many diseases. 
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Model of Childhood Disease Dynamics in Populations with Hybrid Vaccination 
Policies 

(I-p)p",M 

(I-q)JI,G 

qJI,G 

R, 

Figure 1: A diagram for the two combined SIR models. All parameters indicated with an M 
refer to the Mexican population and those with a G refer to the American population. The 
parameters used include: J.Lg = Per-capita American mortality rate; Ji.m = Per-capita Mexican 
mortality rate; fJ = Effective contact rate amongst Mexicans only; fJ = Effective contact rate 
amongst Americans only; fJ' = Effective contact rate between Mexicans and Americans; 1/, 
= Duration of rubella disease; p = Percentage of Mexicans vaccinated; q = Percentage of 
Americans vaccinated; G = American population; M = Mexican population. 
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Figure 2: Basic Reproductive Number. 
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Figure 3: Ro VS. z. 
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Figure 4: Change in x-asymptote as a function of z. 
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Figure 5: A plot of Ro as a function of p and q with (3 = 0.4 and z = 0.5 
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Figure 6: A rotation of Figure 5 shows that the vaccination rate for the U. S. has to be greater 
than 87 %. 

Figure 7: Another rotation of Figure 5 shows that the vaccination rate for the U. S. has to be 
greater than 64 %. 
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Figure 8: Basic Reproductive Number less than one; disease eradicated in both countries. 
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Figure 9: Basic Reproductive Number Less than One (Disease Eradicated); Vaccination Rate 
the Same in Both Countries. 
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