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Abstract 

AZT, an anti-retroviral drug, kills a large proportion of HIV in a patient's body. 

Those killed tend to be "highly fit"; that is, they are well adapted to the envinonment of 

the body and those that survive are poorly fit. As time passes by, the small proportion of 

strains that survive the medication have a chance of mutating into strains of higher 

fitness. From this phenomenon, we find a unique angle to analyze these dynamics. 

Instead of the perspective of the population of HIV strains. Combining genetic 

algorithms and difference equations, we attempt to assess the genetic damage of one drug 

on the future generations of survivors. We use the model of difference equations to 

compare the viral load of the current generation to its predecessors. The genetic 

algorithms allow us to analyze strains of DNA in terms of binary sequences instead of 

nuc1eotides. In the simulations we can analyze the long term behavior of the population 

against a drug. The goal is to describe a therapy that prevents the population of HIV from 

exploding. 
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Introduction 

HIV (Human Immunodeficiency Virus) is one of the most extensively researched 

retrovirus in the scientific community. However, finding a drug or a combination of drugs 

(a.k.a. cocktails) to kill this entity has been hitherto unsuccessful (Mann et al). The main 

reason that HIV is difficult to eradicate is because it adapts itself to the environment of 

the body by rapidly mutating into strains of 'higher fitness'. Their ability to survive in the 

environment is a function of their DNA composition; those that have certain mutations 

are able to adapt to a changing environment, and are considered more fit. Strains of 

higher fitness can replicate quickly and survive best in the body. When faced with 

resistance, such as a drug, HIV can 'outwit' the opposition. For instance, by changing the 

sequence of a receptor gene, which is a gene that makes the virus more virulent, it 

increases its resistance to drugs. Researchers have found that a population of HIV under 

continuous treatment of a drug like Azidothyamine (AZT, nucleotide analogue) become 

resistant over time (Kirschner). In this way, long term treatments are very problematic to 

implement. Therefore, the goal of the research community is to find a medicine that hits 

the population of HIV soon after infection with such force that it is unable to recover. 

With this, HIV will not have time to develop resistance and survive, and long-term 

treatment will be unnecessary (Bartlett et al). 

To begin, we examine the effects of a drug after it has been introduced into a 

sample of HIV. There will be a small proportion of the strains that will survive (Djurisic). 

A good medication targets strains of high fitness. If the medication kills the target strains, 

the survivors should tend to have a low average fitness inside the body. (In the 

environment, higher fitness corresponds to higher frequency and the opposite holds true 

as well). Reproduction will be difficult for these survivors. HIV mutates rapidly, though, 

and subsequent generations will have a higher fitness than the preceding ones. Mter a few 
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generations some strains can evolve to a fitness in which the population will grow 

explosively and become a threat again. Given the relatively high reproduction and 

mutation rates of the virus, population and fitness may increase rapidly; in this way, 

simply looking at the volume eliminated by a drug ignores a large part of the picture. We 

redefine the idea of damage to a population of individuals in terms of genetic damage. 

This can be measured by including a gauge of the average fitness of the surviving 

population. With an appropriate treatment, the population's overall fitness and volume 

would be so low that it would not recover. Analyzing the dynamics of the viral population 

after a drug has been introduced is critical because it will help to decide how strong a 

drug dosage should be and what timing is required in order to prevent the population 

from recovering and exploding. 

We decided to address this issue with the help of mathematical models and 

genetic algorithms (GA's). Our objective is to come up with different and innovative 

methods to analyze data after drug administration from the perspective of viral DNA 

sequences rather than a popUlation of cells. Instead of using DNA sequences of 

nucleotides, such as GATTACA, we use binary codes of D's and l's in order to implement 

the information we have into a computer program. We use this technique to perform an 

experiment in which we apply a drug to a number of sequences, or strains, of desired 

length. From this simulation we attempt answer the following question: 

If a medication kills a certain number of strains in the sample population, how can 

we measure the damage done to the population? We index how successful a medication 

is by observing which strains die and in what proportions, and then we implement both 

deterministic analysis and stochastic processes to determine the future of the surviving 

virus. 

This kind of approach will be useful in determining a timeline and potency 

guidelines for the application of medicine such that HN will not have the opportunity to 

mutate out of reach of a medication. In real experiments, researchers are interested in 
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knowing how long they have to wait before applying a second drug. The reason this is 

important is because HN tends to mutate to a highly fit entity, and once this has 

happened treatment will fail. By doing this analysis we will get a better idea when to 

apply the next dosage and to eliminate the virus once and for all. 

It has been seen that AZT patients who receive another drug, ddI, after two years 

of being treated with AZT, become resistant to both; however, they now are more 

resistant to ddI and less resistant to AZT. Researchers have been observing different 

control groups to address this issue and they have found that if they stop applying drugs 

for two months, HN does not reduce its fitness in response to the AZT or to the ddl. 

Methodology 

We examine the concept of genetic damage with both deterministic and stochastic 

tools. The tools we develop could be applied to any virus with behavior similar to HN. 

Once we develop these tools, they can be applied to a population of viruses. Data can be 

inputted, and both models will demonstrate the behavior of the virus after a single 

treatment of a given medication. 

The Stochastic Approach 

We begin the stochastic approach by considering a popUlation of strains of a 

generic virus. This population is taken to be a sample population, representative of the 

real population of viruses. We assume that we can sequence each of these strains. 

Instead of representing the sequences of DNA as strings of nucleotides, we think of it as 

strings of O's and 1 'So It should be noted that one could keep the string's original 

information, developing a simple two digit representation for each base pair, to accurately 

represent the sequence (i.e. 00 for A, 01 for C, 10 for G and 11 for T). We simplify our 

model and consider that sequences are composed by two bases 0 and 1 exclusively. 

With this sample population, we begin to construct our tools. First, we define the 

distance between two sequences as the number of places they have a different base, and 
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with this definition we developed an index to measure the "spread" of the population (See 

Appendix B,A). The measure of spread that we developed is: 

To calculate the above formula, one must identify the 'center strain' in the sample, 

the string whose sum of distances to the other strings is the smallest of all strings 

(See Appendix B,A). This is also the most frequent strain. We can then examine the 

population frequency versus the distance each strain is from the center. We hypothesized 

that the population should distribute itself from the center strain according to a binomial 

distribution (7) pi (l-p )n-i with i as the number of mutations and n the length of the 

sequence. The following is a picture of the expected distribution, the normal, with zero 

as the center strain. 

To verify, we then take our random population generated by the computer and run 

it through a genetic algorithm (See Appendix A). The genetic algorithm is designed to 

take the population of strains given a specific fitness function and a specific mutation 

rate, and evaluate the fitness of the strains. As we run simulations with the genetic 

algorithm, we can see the evolution of the population from a random scattering of strains 

to a distribution with the strains closest to the center occurring most frequently in the 
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population.. The fitness function selects for the more fit strains, and consequently, they 

become the more frequent, thus closer to the center. The graph varies according to how 

many simulations are run and which fitness functions and mutation probabilities are 

inputted. In general, however, we find the hypothesis generally correct, as we have a 

decreasing function mimicking the normal distribution. 

The general shape of this curve is very useful; if we normalize this curve, dividing 

by f(O) and renaming it g(x), what was previously a frequency curve can now be thought 

of as a fitness curve. G(x), the fitness, represents the proportion of the population that 

would survive at a given genetic distance from the center. Figure 2 is the frequency 

curve, while Figure 3 is its normalized counterpart, the fitness curve. 

The drug has a specific genetic interval, represented above by the shaded region. 

That is, it can kill a window of strains of a certain distance to the center. For our 

purposes, we will only consider a drug which kills from the center strain as its minimum 

(See Figure 4). We can measure the endpoints of this window with an index (See 

Appendix B,B). 

b = max{d(di,a*): ~ is a dead strain} 

(For our purposes, in our index, 'a' would always be zero, the center strain.) 

The length of the interval is relevant to the proportion of the population killed. 

Here, we lay the foundation for our concept of genetic damage. 
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Now our task is to measure this genetic damage to the population. The goal is to 

kill not only a large proportion of strains, but also to kill the most fit strains, those close 

to the center. Our index must consider both of these factors. To begin, we must construct 
00 

a measure of the average distance of the surviving population. This is given by LX f (x) 
x=b 

where f(x) is the fitness function (See Appendix B,C). This is the weighted average of 

each distance, allowing us to consider both the proportion of a given strain and its 

distance from the center. Now that we have the average distance from the center of a 

surviving population, we can consider the drug's efficacy in terms of the volume it kills. 

We must factor in population size without making the index depend on the specific 
00 

sample size. Hence, we use the proportion of the population left surviving. L f ( x) (See 
x=b 

Appendix B,C). Therefore, if we take the product of these two terms, we have a measure 
00 00 

of genetic damage. L f (x) * LX f (x). This is also a measure of the subsequent 
x=b x=b 

generations' probability of survival. 

With this information, we now allow the surviving strains to reproduce in the 

genetic algorithm, and we see if they can survive or if they go to extinction. The idea 

here is that if the fitness is low enough, or if the proportion of survivors is low enough, or 

some combination of both, we may be able to drive the population to extinction. In terms 

of drug efficacy, this means we want to use drugs with different maximums and different 

interval lengths. In our sitnulations, we experiment with varying efficacies of a drug. 

Some surviving populations will die off; others will survive. 

With the general approach established, one could now analyze a population of 

HIV. Inputting relevant data, we can experiment with different medication treatments 

and analyze if there is a drug which can eliminate HIV with a strong single hit. However, 

the problem arises when we want to expand our sample and consider larger populations 

of strains. To run this sort of analysis could be very time consuming, and so we turn to a 

new kind of analysis to complement what we have started to develop. 
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The Deterministic Perspective 

In the second phase of our project, we develop a deterministic approach which 

takes the surviving strains and uses them in a difference equation (See Appendix B,E). 

Specifically, we classify a distribution of the populations by their distance from the center 

strain rather than by their individual sequence. This frees us from considering each 

individual strain, and instead allows us to generalize for all strains 'j' distance from the 

center. 

Let M[ t-l ,J 1 = Number of individuals at generation t-l that are at distance j 

Let M[t-l] = Vector with populations at all positions 'j' at generation t-l 

To consider the subsequent population, we must multiply this distribution by the average 

number of offspring per strain. 

k = Constant number of individuals produced by a single virus per generation (offspring). 

However, each offspring does not necessarily survive. Survival is determined by the 

fitness of each subpopulation. Therefore, we must multiply the current product by the 

fitness at each generation. 

f(j) = Fitness of one element at distance j. 

Let D= diagonal matrix with fitness values in diagonal 

Finally, we must consider what happens as the generations reproduce. They are subject to 

mutate at a certain probability. 

Pji = Probability that one element at distance j moves to a distance i. 

We devise a matrix P which gives the probability Pji that from position j, in one 

generation, a strain can mutate to position i. The sum of the product of all of these 

elements gives us the 'incoming' strains to every position. 
n 
EkM[t-l,j]f(j)Pji 
j=O 
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Now, we must also consider the strains which mutate out of position i. We have the same 

initial distribution, k and D, but the probability is changed. Since Pii = probability that 

one element at distance i remains at the same distance in the next generation, then 

1 - Pii = probability that one element at distance i leaves that distance to move to 

another one in the next generation. Written in matrix form, this is [I-diag] such that 'diag' 

is a matrix with the Pii values for its diagonal elements. 

We take the product of these elements: 

kM[ t-l ]D(I - diagP) 

This represents the loss of population from position i. If we subtract this product from 

the incoming product, we have generation 't' in terms of M[t-l]. This gives us a 

difference equation of matrices that simplifies such that: 

M[t] = kM[t-l]D(P - (I - diag)) 

KD(P - (I - diagP)) is a Leslie Matrix, L[t]. We can simplify the difference equation 

assuming a given initial population of strains M[O] such that 

M[t]=M[O]*L[t]t 

To examine the long term behavior of such a system, one can examine the eigenvalues of 

the system to see if they are <1,=1 or> 1 to see if the population goes to extinction or if it 

survives. If we could come up with a closed form for the values entered into P, we would 

be able to now generalize for the state of the system in terms of eigenvalues of the Leslie 

Matrix. However, since there is no closed form for this matrix, we must instead plug in 

values and examine the behavior of a specific system we are analyzing. 

To analyze the behavior of this system that we have devised, we create a program 

that examines the behavior of these solutions over time. Experimenting with a P matrix 

specific to a given population of strains and data from HIV regarding the expected 

replication rate, we can plug in for different medication intervals to approximate an 

appropriate treatment strength for the HIV (See Results). 
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Genetic Algorithms Revisited 

Stochastic simulations can be very useful to support analysis done on a model 

such as the deterministic one proposed above. We return to the idea of genetic algorithms 

at the end of our work to see if we can develop a tool that corroborates our determinist 

equation. To begin, we take a population with a defined fitness distribution, f(x), which 

is simply half of the normal distribution. (See Figure I). 

Notice that we eliminate the process of evolving the populations through a given 

fitness function by assuming the hypothetical distribution. This gives us the necessary 

information to run our GA. We take the initial distribution, M[t-I,j], and the fitness, fG) 

as the probability of survival. We can then describe the probability that the population at 

positionj survives as a binomial distribution, with bin(M[t-l,j],fG)). Let this distribution 

be 'Yj'. With this, we can now take the matrix P from our deterministic equation, and 

find the probability that a given surviving strain at position T (classified by its distance 

from the center and not its specific sequence) mutates to position 'i'. This is given by the 

binomial distribution, bin (y j , P ji). Therefore, the new population at position 'i' can be 
n 

thought of as 2:bin (Yj, Pji) , with n the maximum distance from the center, also the 
j=O 

length of the strain. 

This formula does essentially the same thing as our difference equation, but we 

now have it in stochastic terms. If a drug kills off a certain interval of strains, then the 

new population is described by the above summation. As it is allowed to reproduce in 

subsequent generations, we observe that the fitness always increases. However, whether 

the population survives depends on the cumulative genetic damage done to the 

population. Our simulations allow us to experiment with a variety of parameters to see 

how we can drive the population of viruses to extinction. 
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Assumptions 

The model has some limitations; to begin, we assumed mutations to be 

independent of one another. In real life, this is not completley accurate. Also, our model 

assumed that drug with a certain efficacy D* killed off 100% of the strains at the given 

genetic distances. However, in reality, a drug might only kill off a proportion of those 

strains. An adjustment might include some sort of 'density dependent' factor which 

compensate for this. 

Results 

With limited information, we are able to analyze our deterministic model to a 

certain degree of reality. It is possible to analyze a patient's blood to approximate a real 

fitness function specific to an HIV population. In the absence of such data, we propose 

an artificial fitness function. Furthermore, rather than generating a random sequence of 

zeros and ones for an initial population, one would need to sequence a specific gene of 

HIV. However, we have devised the methodology to apply easily to such data if 

available. We will discuss briefly the results we find with our artificial fitness function to 

demonstrate how our model can be analyzed. 

The following data corresponds to three matrices we used for the deterministic 

model. PIOO and PlOOb are matrices for a population of 100 strains, each 100 base pair 

long. P200 is a matrix for a population of 200 strains, each 200 base pair long. PI00 has 

a mutation rate of .01 while PlOOb has a mutation rate of .001, and P200 has a rate of .01. 

We consider a popUlation of strains described by an artificial 'fitness function' which is 

the normal distribution with a maximum of 0.7 since even the most fit strains in a given 

population have a probability of dying (program). We designed a program so that we can 

vary the standard deviation, (J, to mimic a variety of possible fitness distributions 

(program). We also vary the replication rate, k, up to a maximum of 1000, and apply 

medication. On the average, the replication rate for HIV is around 500; we used 1000 to 
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show an extreme value. As in our simulations, the medication kills on a continuous 

interval from the center strain. Therefore, D* is the minimum genetic distance from the 

center strain that the drug has to kill in order to eradicate the virus. 

P100 (p=.Ol) P100b (p=.OOl) P200 (p=.Ol) 

a k D* a k D* a k D* 
17 250 59 17 250 58 35 250 116 
17 500 63 17 500 62 35 500 123 
17 1000 66 17 1000 65 35 1000 130 
20 250 70 20 250 68 40 250 133 
20 500 74 20 500 72 40 500 141 
20 1000 78 20 1000 76 40 1000 149 
25 250 88 25 250 85 50 250 165 
25 500 93 25 500 90 50 500 176 
25 1000 98 25 1000 94 50 1000 185 

From this information, we can draw a variety of conclusions. In the PIOO table 

above, notice the two highlighted parameters. Notice that the replication rate in the 

second set of values is four times greater than the other. However, D* only has to be 

increased by a genetic distance of 8. Since this improvement in medicine is towards the 

end of the maximum distance of 100, where the strains in this 8 unit region are less fit 

and of less frequency, it seems probable that the medication efficacy D* could be 

increased to eradicate the virus. Now, note that the probability of mutation of the base 

pairs in PIOO is ten times greater than that in PlOOb. Remarkably, the drug efficacy 

necessary to kill the virus in the PIOO case is not much greater than that in PlOOb. For 

instance, the parameters in the two tables for a=20 show that for each k, D* only has to 

be improved by 2 units. 

The following figure was obtained from the PIOO matrix, and parameters: k=500, 

a=20, and D*=73. When considering the D* values in the above tables, one must also 

consider the population distribution as genetic distance increases. This is the idea of the 

58 



genetic damage index developed earlier. In this example, the population at generation 0 

is 6.1098e+008, and after one generation, the population decreases to about 17e+4. 

Therefore, D* of only 73 killed 99.98% of the initial population after the fIrst generation, 

and yet it survives. 

Also, a medication with effIcacy better than D* will cause the virus to go to extinction. 

Usually, when the efficacy is below D*, the population of virus will explode. However, 

there are cases in which the virus population reaches a steady state. One example of this 

steady state that was observed is when (PlOOb, 0"=17, k=500, D*=61). 

The population rested at 4 after a few generations. 

The stochastic model that we devised to correspond with our deterministic model 

gives a new perspective on this kind of analysis. Inputting in for various D* values, we 

are able to observe the two basic cases; both of the following fIgures demonstrate an 

increasing fItness, but the population survives in one and dies in the other. This makes 

sense, as the fItness always increases as populations evolve and adapt. The fIrst, in fIgure 

8, demonstrates the fact that although the fItness increases, the population can still die off 

if their numbers are few enough. However, in fIgure 9, we see a similar situation to that 

described previously, with a population that eventually recovers and then begins to grow. 
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Conclusions 

The results examined above represent a few examples of how these tools can be 

used with real populations of HIV. The bulk of our efforts have been directed towards 

developing and refining these tools. In conjunction with one another, genetic algorithms 

and the deterministic model can be very valuable for analysis of the effects of different 

medications on different populations. They are both built around the fundamental 

concept of this project, the idea of genetic damage. This idea represents a novel approach 

for analyzing HIV, unlike normal cell population analysis. This will hopefully offer a 

unique set of tools to researchers searching for a cure to this deadly virus. 
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APPENDIX A 
GENETIC ALGORITHMS REVIEW* 

Many computational problems require a computer program to be adaptive- to continue to 
perform well in a changing environment. . 

Biological evolution is an appealing source of inspiration for addressing these problems. 
Evolution is, in effect, a method of searching among a huge number of possibilities for 
the best "solutions". 

In Biology, the the diversity comes from the set of possible genetic sequences, and the 
desired "solutions" are highly fit organisms- organisms well adapted to survive and 
reproduce in their environments. The fitness criteria continually change as creatures 
evolve, so evolution is searching a constantly changing set of possibilities. 

Furthermore, evolution is a massively parallel search method: rather than working on one 
species at a time, evolution tests and changes millions of species in parallel. 

Viewed from high level, the 'jrules" of evolution are remarkably simple: species evolve 
by means of random variation (via mutation, recombination and other operators), 
followed by natural selection in which the fittest tend to survive and reproduce, thus 
propagating their genetic material to future generations. 

Genetic algorithms (GAs) are search algorithms based on the mechanics of natural 
selection and natural genetics. Genetic algorithms were invented by John Holland in the 
1960's and his goal was to design algorithms to formally study the phenomenon of 
adaptation as it occurs in nature and to develop ways in which the mechanisms of natural 
adaptation might be imported into computer systems. 

GAs is a method for moving from one population of "chromosomes" (e.g. strings of 1 's 
and O's, or "bits") to a new population by using a kind of "natural selection" together with 
the genetically-inspired operators of crossover, mutation and inversion. 

Each chromosome consists of "genes" (e.g bits); each gene being an instance of a 
particular "allele" (e.g 0 or 1). The selection operator chooses those chromosome in the 
popUlation that will be allowed to reproduce and on average the fittest chromosomes 
produce more offspring than the less fit ones. 

• Mitchell, Melanie. 1996 
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For the purpose of our project, the only operators that are allowed are mutations. 
Mutations are random changes in the allele value of some locations in the chromosome. 

The most important parts of a genetic algorithm are: 

i) populations of chromosomes, 
ii) selection according to fitness, 
iii) mutations to produce new offspring. 

GAs most often require a fitness function that assigns a score (fitness) to each 
chromosome in the current population. The fitness of a chromosome solves the problem 
at hand. 

SUMMARY 
GENETIC ALGORITHMS vs NATURAL ADAPTIVE SYSTEMS 

GENETIC ALGORITHMS 
0,1 
bit (e.g (000110110)) 
mutation: change in one entry of the strain 
chain of bits 

Lets consider the next code: 

A=OO 
T=OI 
C=lO 
G=11 

NATURAL SYSTEMS 
alleles 
gene 
mutation: change in one base of a sequence 
chromosome 

Next, if we have the sequence (ATCCGTATG) that represents a gene, then in terms of 
GA, we can convert that sequence into (000110101101000111) using the code above, and 
we would consider that a bit. 

If that gene belongs to a larger sequence, lets say (ATCATCCGTATGGCT), then this 
sequence represents a chromosome and its corresponding strain, 
(000110000110101101000111111001), a chain of bits, is also known as chromosome. 

In this case {A,T,C,G} correspond to the biological alleles and {0,1} are the possible 
alles in GAs. 

If we have the sequence (ATC) and it mutates into the sequence (TTC), then the 
corresponding strain of (ATC) also mutes: in fact (000110) mutates into (010110). 
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APPENDIXB 
DERIVATION OF THE MATHEMATICAL INDEXES AND 

MATRICES. 

A. DERIVATION OF SPREAD. 

By spread we are referrring to the largest genetic distance from the 'center strain'. The 
center strain is the strain whose average distance to all other strains is comparatevely 
smallest. 

Genetic distance is defined as the number of places in which two strains are differents. 
Mathematically this is writen as: 

let x = [Xl, X2, •.• , xn] and 
y = [Yl, Y2, ... , Yn]. 

n 
then, d(x,y) = ~:::Ixi - yil. 

i=l 

First of all, we have to fmd the center strain. 

To do that, we have to construct the next matrix: 

Suppose we have M different strains (v,w,x,y,z), construct the matrix of distances as 
follows: 

d(v,v) d(v,w) d(v,x) d(v,y) d(v,z) 
d(w,v) d(w,w) d(w,x) d(w,y) d(w,z) 

d= d(x,v) d(x,w) d(x,x) d(x,y) d(x,z) 
d(y,v) d(y,w) d(y,x) d(y,y) d(y,z) 
d(z,v) d(z,w) d(z,x) d(z,y) d(z,z) 

Since d(a,b) = d(b,a) for each a,b = v,w,x,y,z, then, d is a symetric matrix with O's in the 
diagonal. 
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Next we are going to take the sum af all the entries in one row, for all the rows, and 
define d1 as 

For example: 
Let x=[1 1 1 0] 

y=[0 1 10] 
z=[0 001] 

(
0 1 4) 

d= . 1 0 3 ; 
430 

z 
Ed(v,i) 
i=v 

z 
Ed(z,i) 
i=v 

then, we will choose as a center the sequence which has the smallest value for the sum 
previous defmed. 

In our example, the center will be y. 

Now, once we have selected a center strain, we are going to calculate what spread are the 
strains: 

In general terms, ifwe have n strains (all a2, ... ,an) the spread index is: 

where ~ is the center strain. 

In this case, let al =x 
a*=a2=y 
a3=Z 

then, d * = 5 is the spread index. 

n 
Ed(a;,a.)2 

d* _ ;=1 
- -n--=-l-
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Note that when we develop the sum given in d*, there is one term that is o. This always 
going to happen since a* is itself one of the a/s, let say aj, then d(aj,a*)2 = o. Given that, 
we can consider that we are summing only n-l terms so we are going to divide, take the 
average, by only n-l (in our example, by 2). 

B. DERIVATION OF THE ENDPOINTS INDEX. 

We know that a drug has a specific genetic interval. In other words, it can kill a window 
of strains within certain distance from the center. 

In order to know the genetic interval the drug kills, we consider all those strains that are 
dead. From those we take the minumum. of all the d(~, ~), where di is a dead strain and 
~ is the center strain. 1bis will give us the minimum distance from which we can fmd 
dead strains. In the same way we can consider the maximum of all the d(di , a*) and this 
will give us the maximum distance where we can find dead strains. Since we are 
considering that the effect of the drug is, continuous, this two indexes determine a well 
defined interval [a,b], given by: 

a = min{d(~, ~): di is a dead strain} 
b = max{d(~,~): di is a dead strain} 

This interval is the genetic interval on which the drug acts and 'a' and 'b' are its endpoints. 

C. DERIVATION OF THE AVERAGE DISTANCE INDEX 

We construct an index to measure the average distance of a surviving population after it 
has been hit with a drug. We take the fitness function, f(x), and find the weighted 
average of the values over the region of survivors. That is, we take: 

00 

L,xf(x) 
x=b 

This allows us to weigh the proportion of individuals in the surviving population 
at every given distance. 
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D .. DERIVATION OF THE GENETIC DAMAGE INDEX 

A measure of genetic damage must factor in two things: the average fitness of the 
survivors, and the proportion of the population that is left surviving. Now that we have a 
measure of the average distance of the survivors, we can plug that value into the fitness 
function to get the average fitness. That is, we take: 

00 

f(I: x f (x))= average fitness of survivors 
x=b 

Now, to consider the proportion of the population left surviving, we consider the 
term: 

00 

I:f(x) 
x=b 

The product of these two terms will give you a measure of the genetic damage on 
a population. 

00 00 

f(I:xf(x))*I:f(x)= Index 
x=b x=b 

E. Derivation of M[t]=M[t-l]L 

We want to know the total population of mv at time [t]: the number of individuals at 
generation [t]. 

In order to solve our problem, we use this approach: find the total number of individuals 
at generation [t] that are a distance i from the center (M[t-l, iD. 

To solve it clearly we have to express M[t, i] in an easy form: 

M[t, i] = Total number ofindividuals at generation 
t-l that can move from distance j to 
distance i in the next generation, 
where j = 0, 1, ... , n. 
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generation t-l that can leave 
distance i to move to another 

distance. 



Writing that in mathematical terms, we have: 

i = 0,1, ... ,n 
sequence). 

where n is the most one sequence can differ from another (also length of 

t = 0, ... ,lYI 
considering. 

n 

where M is the maximum number of generations we are 

M[t, i] = EkM[t-l,j]f(j)Pji - kM[t-l,i]f(i)(l - Pii) 
j=O 

Where: 

k = Constant number of individuals produced by a single virus per generation 
(offspring). 

M[ t-l,J 1 = Number of individuals at generation t-l that are a distance j. 

Pji = Probability that one element at distance j moves to a distance i. 

f(j) = Fitness of one element at distance j. 

Pii = Probability that one element at distance i remains at the same distance in the next 
generation. 

1 - Pii = Probability that one element at distance i leaves that distance to move to 
another one in the next generation. 

fibtessofjlimcs 
probability 10 move 
10 position i. 

kM[ t-l , j] f(j)Pji- Elements moving from j to i. 
offspring of the 
elements in the 
generation t-I 
at distance j. 

kM[t-l,i]f(i)(l - Pii) = Elements leaving i. 

Now, if we look at the sum we can figure out that it could be expressed as the product of 
2 vectors: Qne the M[t-l] vector and the other one the f(j)pji vector j = O, ... ,n. 

Let M[t - 1] = [M[t-l,O] M[t-l,l] .... M[t-l,n]] where M[t-l,Jl corresponds to the 
previous definition. 
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Let 

fP' = [f(O)POi f(l)pli • . . f(n)Pnd 

We can construct with each M[t] the general matrix M: 

M' = [M[O] M[l] • • • M[n]] 

We also would want to construct a matrix B with the next form: 

B= 

f(O)poo 
f(l)PlO 

f(O)POl 
f(l)Pn 

f(O)POn 
f(l)Pln 

f(n)Pno f(n)Pnl • • • f(n)Pnn 

We already have a matrix P with all the probabilities of pji : 

POO POl • POn 
PlO Pn • • • Pln 

P= 

PnO Pnl • • • Pnn 

and since we know all the fitness values ( 1 for each j = 0, ... , n), we would want to find 
a matrix D such that w:pen we multiply DP we obtain B. 

It is easy to confirm that the next matrix works as we want: 

f(O) 0 
o f(l) 

D= 

o o 
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n 
Now we can notice that L:kM[t-l,j]f(j)pji is in fact k times the matrix product of the 
. j=O 

(t-l)th row of the the matrix M times the ith column of matrix B. 

In the other hand we want to find kM[t-l,i]f(i)(l - Pii). . ...... (*) 

First of all we have to notice that we only need the Pii values so, let 

POO 0 . . . 0 
0 pu 0 

diagP = 

0 0 . Pnn 

We can construct the general matrix I-diagP where I = Identity Matrix to have: 

I-poo 0 . . . 0 
0 I-pu 0 

1- diagP = 

0 0 . . . I -Pnn 

and therefore I - Pii (from (*)) corresponds to the ith column of this matrix. 

Moreover, f(i)(1-Pii) could be seen as the ith column of the matrix 

s= 

f(O)(I - Poo) 
o 

o 

o 
f(1)(1 - Pu) 

o 

. . . o 
o 

• f(n)(1 - Pnn) 

This matrix corresponds to the matrix product of D times I - diagP. 

So, to obtain kM[t-I,i]f(i)(l- Pii) we only have to take the matrix product of the (t-I)th 
row of the matrix M and the ith column of the previous matrix. 
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Notice that such product is a scalar since the (t-l)th row of Mjs a 1 x (n+l) vector and 
the ith column of S is a (n+ 1) x 1 vector. When we multiply them we obtain a 1 x 1 
matrix that equals a scalar. 

Now, to put all that information in general terms we can calculate M[t] as: 

M[t] = KM[t~l]DP - KM[t-l]D(I - diagP) ... (**) 

. That expression results when we take all the entries in the (t-l)th row of M and we 
consider all the columns of D, P and (I - diagP). 

Expression (**) can be factorized as follows: 

M[t] = KM[t-l]D(P - (I - diagP» 
and since 

it commutes to obtain: 

K= 

k 0 • • • 0 
o k 0 

o 0 • • • k 

M[t-l]KD(p - (I - diagP». 

Remember that k is the constant number of individuals per generation. K is construct 
just to conserve the right product of matrices. 

If we notice that K is known, P is known and therefore (I - diagP) is known, we can call 
KD(P - (I - diagP» as a fixed matrix L. 

In conclusion, from the previous fact, we get that 

M[t] = M[t-l]L 

where 

L = KD(P - (I - diagP». 

L is called the Leslie Matrix. 
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Note: 

M[t-I] = 1 x (n+l) vector. 
K = (n+l) x (n+l) matrix. 
D = (n+1) x (n+1) matrix. 
(P - (I - diagP)) = (n+l) x (n+l) matrix. 

then, L = (n+l) x (n+l) matrix and therefore M[t] = (I x (n+I)) *«n+l) x (n+I)) 
matrix which is a 1 x (n+l) matrix. In conclusion, M[t] is a vector. 

For references about the linear algebra related with Leslie Matrix see Balmer. 

F. DERIVATION OF P. 

A sequence that has a distance d from the 'center strain' has d places different than the 
center strain and n-d alike, where n is the length of the sequence . Let x be the random 
variable "number of mutations in the place the sequence is different from the center 
strain", and y the random variable "number of mutations in the places the sequence is the 
same as the center strain". Then the next generation the distance to the center strain will 
be 

W= d-x+y. 

where W = 0, 1,2, ... , n. 

The probability mass function of the random variable W is: 

P(W = w)~ P( d - x + y = w) = 
= P(y - x = w - d) = 

n-d 
= E P(y = i, x = d - w + i) 

i=O 

= ~\~)pi(l-p)d-i(d~~!i)pd-W+i(l- p)n-2d+:w-i. 
~=O 

which, unfortunately, has no simpler form. 
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APPENDIXC 
GLOSSARY. 

BINOMIAL DISTRIBUTION. Probability of having i success in n choices. This 
probability is given by (~)pi(1_p)n-i where 'p' is the probability of 
having one success. 

CENTER STRAIN. In a family of strains, the strain whose average distance to all others 
strains is the minimum. 

EFFICACY. The efficacy tells us how great the genetic damage is. The greater genetic 
damage of a drug on a population of strains, the better the efficacy. 

FITNESS. How adapted one strain is to the body of the patient. For our purposes, the 
body defines fitness. 

FREQUENCY. Number of strains that have the same genetic distance in a given 
population. 

FITNESS FUNCTION. Function that express mathematically the fitness of the strains: 
#of strains with same fitness value 

#Of strains with highest fitness value • 

GENETIC DAMAGE. Damage done to the HIV virulence capacity. The more fit the 
strains killed by the drug, the greater the damage. 

GENETIC DISTANCE. Number of places in which one strain differs from another one. 

STRAINS. Sequence of O's and 1 's, representing one element of the HIV population. 

VIRULENCE. How dangerous the HIV population is. The more fit strains that are alive, 
the more dangerous. 
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