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Abstract 

In this paper, we study a Susceptible-Infected-Susceptible (8-1-
8) discrete-time model with two competing strains and distinct de­
mographic dynamics. We use two different recruitment functions to 
model the population demography. Discrete models are capable of 
generating complex dynamics. Analytic and numerical methods are 
used in this study to separate the impact of demography on the epi­
demic process. The key issues addressed in this work are those of co­
existence and/or competitve exclusion of competing strains in a popu­
lation with complex dynamics. The principle of competitive exclusion 
is the most prevalent under the assumptions of this model. 

249 



1 Introduction 

In some biological systems, population growth is a discrete process 
and generations do not overlap. Discrete-time models are appropriate 
in describing the spread of infectious diseases in such discretely repro­
ducing populations. Using a general discrete-time S - I - S model 
with two strains, we model the dynamics of two competing strains 
in a population with discrete generations. The analysis, common in 
complex nonlinear discrete models, is carried out via a combination of 
simulations and analysis. 
Our model arises as a particular discretization in time of the corre­
sponding S - I - S continuous time stochastic model for two competing 
strains. The discretization assumes the following order of the events 
: infection -t death -t recovery. In continuous time Markov chain 
model, the events do not follow a particular order. The corresponding 
continuous time Markov chain models are difficult if not impossible to 
analyze. Exact discretization gives rise to complex nonlinear discrete 
dynamical systems that are difficult to handle. If one orders the nature 
of the events (infections-death-recovery) then the population dynam­
ics can be decoupled from the epidemic process, hence providing a 
system that is likely to yield mathematical analysis. The behaviour 
exhibited by stochastic population models and their deterministic ana­
logues is not frequently the same, for more detail see Allen and Burgin 
[1J. They did a comparison between discrete-time stochastic models, 
Markov chains and deterministic models with only one strain. They 
found that discrete-time deterministic epidemic models generalize the 
form of the force of infection. 
In this paper we consider two recruitment functions, constant recruit­
ment and logistic recruitment. We analize the dynamics of the sus­
ceptible and infected populations. To be more precise we consider 
the long-term behaviour of each population and investigate how the 
demography affects them. 
Our interest is the study of the dynamics of the two competing strains. 
We study coexistence and competitive exclusion. The principle of 
competitive exclusion states that no two species can forever occupy 
the same ecological niche. We conclude that for most parameter val­
ues, competitive exclusion occurs. Coexistence is not possible except 
under very special circunstances. 
Castillo-Chavez, et. al. have studied competitive exclusion in a simi­
lar continuos- time model [8J. To be more specific, they studied com-

250 

-----------------------------_. ----



petitive exclusion in gonorrhea model, where a heterosexually active 
populations is exposed to two competing strains. They obtained that 
coexistence of these two strains is not possible except under very spe­
cial circumstances. Our results, using a discrete-time model, are sim­
ilar to those obtained by them. 
As in their paper [8] , we also study the case when we have population 
size asymptotically constant. Moreover, in this paper we study a more 
general case, demography with complex dynamics. 

2 The Model 

2.1 Definitions 

Main Definitions 

Sn population of susceptible individuals in generation n 
I~ population of infected individuals with strain one in generation n 

I~ population of infected individuals with strain two in generation n 
Tn total population in generation n 
f recruitment function 

Parameters 

j.L natural death rate 
"Ii recovery rate for strain i 
ai infection rate for strain i 

2.2 Assumptions 

1. The disease is not fatal. 

2. All recruitments are susceptible and the recruitment function 
depends only on Tn 

3. There are no co-infections. 

4. Death, infections and recoveries are modeled as Poisson processes 
with rates j.L, ai, "Ii ( i = 1,2) 

5. Time step is measured in generations. 
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Figure 1: Flow chart to system (1). 

6. The populations change only because of: births(given by the 
recruitment function), deaths, recovery, infection of a susceptible 
individual for each strain. 

7. Individuals recover but do not develop permanent or temporary 
immunity, they are immediately susceptible. 

2.3 Constructing the model 

The model has the the following format: 
New individuals after one generation= New borns + survivors. 
Then, we have: 
New susceptibles = recruitment + susceptible individuals from previ­
ous generations + recoveries ( of both strains) 
New infectious strain i = new type i infectious + infected individuals 
by strain i from previous generation. 
We will model this in the following way: 
Sn+1 = f(Tn) + Sn P(survival) P(not being infected) + 
I~P(survival)P(recovery from strain l)+I~ (survival)P(recovery from 
strain 2) 
I~+1 = Sn P(survival) P(infection with i) +I~ P(survival) P(no recov­
ery) where P( ) means, "the probability of' 
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2.4 Equations 

By assumption (4) we have that the probability of k successful en­
counters is a Poisson distribution, which in general, has the form : 
p( k) = e-:r where f3 is the parameter of the Poisson distribution. 
In our context, only one success is necessary. Therefore, when there 
are no successful encounters, the expression: p(O) = e-i3 represents 
the probability that a given event does not occur. For example, the 
probability that a susceptible individual does not become infective is 
: P(not being infected by i) = e-O!i1~ and, 
P(not recovering from i) = e-'Yi1~. Hence, P(not being infected)= 
P(not being infected by l)P(not being infected by 2) = e-0!11~e-0!21; 
Now, the probability that a susceptible does become infective is given 
by: 1 - e-O!i1~.Then, P(infected by i) = 

P(infected) P(infected by i I infected) =(1 - e-(0!11~+0!21;)) 1~~A 12. O!l n 0!2 n 

Therefore, the dynamic is governed by : 

Sn+l = f(Tn) + Sne-J.!e-(0!11~+0!21;) 
+I~e-J.!(l- e-'Yl) + i;'e-J.! (1 - e-'Y2) 

Hence, 

(la) 

(lb) 

(lc) 

(2) 

This equation is called, the Demographic equation. This equation 
tells us how the total population is changing. We will study this 
equation via two types of recruitment functions. 

In (2) we have, 

(3) 

Notice that an increase in the density of one strain leads to a 
decrease in the next generation. Hence, there is compeition between 
the two strains. 

3 Dynamical Analysis 

In this section we provide the stability analysis of the stationary states. 
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3.1 Disease-Free Equilibrium 

If we have I~+1 = 1;+1 = 0 then, model (1) reduces to: 
Tn+1 = f(Tn) + Tne-J.l 

To understand the overall dynamics, we study the Limiting equa­
tion of system (1). First we obtain: Too = lim Tn. Then we use in 

n->oo 

(3) the substitution Sn = Too - In 1 - I; to get the following equations: 

System (4) describes the dynamic of two populations infected with the 
two strains. We study this system in order to infer how the popula­
tions are interacting when the total population is in equilibrium at Too. 

Stability via linearization 

Lemma. 3.1. In system (4), if Rl = l~-;~:~i) < 1 and 

R2 = l~-:~:+~~) < 1,then the equilibrium point (0,0) is asymptotically 
stable 

Proof. We compute the Jacobian J of (4) evaluated at (0,0) : 

J(O,O) = e--:;~) 

Th ' 1 R e-JLTgoQ] d R e-JL TgoQ2 If b th f e elgenva ues are 1 = l-e-(JL+''Y1) an 2 = l-e-(JL+1'2)' 0 0 

them are less than 1 in absolute value , we know that it is a sufficient 
condition to ensure that the steady state is stable. 0 

We emphasise the fact that it is necessary for the Limiting equa­
tion of system (1), for Too to exist. We will study the conditions for 
Too to be positive in subsections 3.1.1 and 3.1.2. 

Biological Interpretation of Ri, 
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The biological meaning of the result is that we have the conditions for 
the existence and stability of the disease free-equilibrium, (Soo , 0, 0) in 
(1) which in terms of (4) is (0,0). 
Ro determines whether an epidemic spreads or dies out. Typical Ro 
is defined as the average number of secondary infections caused by a 
single infective in a pool of all susceptibles. Usually it has the follow­
ing form: 

,Ro = (infection rate)(population size)(average duration of infection) 
In our case, the conditions that we need in Lemma 3.1 have the fol­
lowing biological meaning: 

Ri, = Cti(e-J.tToo)(l_e L+7i») 

= (infection rate per infective per generation of strain i) (Population in 
equilibrium(Le. population size when there is no infection, discounted 
by deaths)) (average number of generations that an individual is in­
fectious before dying or recovering). 
Then, Ri, = average number of effective contacts multiplied by the 
number of available susceptibles = average number of effective con­
tacts. 
Notice that, Ri, is an infection rate per infective, i.e. number of people 
that an infected person infects. Ri, = 1~-:~iL"+~~) < 1 for each i = 1,2 
determines extintion of the two strains of the disease. 

3.1.1 Case 1. f(Tn) = A 

This recruitment function corresponds to a constant in flow of recruits. 
The total population dynamics is given by 

Tn+! = A + Tne-J.t 
Hence, we can easily obtain that: 

T, - _A_ 
00 - l-e-I' 

Which is positive given that f-t > 0. And by Lemma 3.1, in this 
case, 

-I'( A ) 
R * e ~ 0<1 and 

1 = l-e (1'+'1'1) 
e-I'(-A-)0<2 R * 1-e-1' 

2 = l-e-(1'+72) 

3.1.2 Case 2. f(Tn) = rTn(1- T:) 
In this case the total population dynamis is given by, 
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(5) 

This case correspond to contest competition, in which limited re­
sources are distributed distributed evenly among individuals. Logistic 
equation is often used to describe populations with rates of growth 
that are decreasing, when the population is increasing. 

Fixed points 
.Tn* = 0 
.Tn ** = kCr+e;/L-1

), but we need r + e-J.! > 1 in order for this fixed 
point to be positive, and in this case, the condition of Lemma 3.1 

-Hk(l l-e-/L) <> e r - -- a2 
R2 = r < 1 

1 - e-CJ.!+'Y2) 

We will study the Limiting equation in Section 3.4. 

3.2 Boundary Equilibrium 
Now, if we have one of the strains missing , I~ = 0, we get that the 
Limiting Equation (4) takes the form: 

In+! = (Too - In)e-J.!(l - eO!lIn) + Ine-CJ.!+'Y) (6) 

The following result is related to the existence and stability of 
(1*,0) in (4). This kind of point is called, boundary equilibria, which 
exists whenever the epidemic spreads in the population. We have only 
one of the strains and we want to know how it is changing. This is 
done, by using the fact that we have total population in equilibrium at 
Too. Clearly, this analysis is applicable if we have I~ = 0 and I~ > O. 

Lemma. 3.2. The limiting equation (3.2) has a unique positive equi­
librium 1* that is asymptotically stable if 
Ri = e-J.!((Too - 1*)ale-O!lI* - (1- e-O!lI*) + e-'Y1) < 1 and 
R2 = e-J.! O!~I* ((Too - 1*)(1 - e-O!lI*) + e-'Yl) < 1. 
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We do not include the proof because it has been studied in technical 
report [3J. 

The conditions of Lemma 3.2 in terms of the Limiting Equation 
and the Ri that we have already found can be rewritten in the following 
statment: 

Limiting equation has a unique stable positive boundary equilibrium 
(/* > 0,0), provided that R1 > R2 > 1 or R1 > 1 > R2. 

This equilibrium is the result of competition between the two 
strains. The value of the reproductive number Ri, again, determines 
the stability of this point. If R1 > R2 > 1, then (/* > 0,0) will be 
stable and (0, /** < 0) unstable. There is only one stable equilibrium, 
corresponding to the largest Ri. 

3.3 Endemic Equilibrium 
In this section, we obtain a necessary and sufficient condition for the 
existence of the endemic equilibrium in (4), that is, we are looking for 
the coexistence of the two strains. A necessary condition for this, will 
be R1 > 1 and R2 > 1 (see Lemma 3.1 ). 

Lemma. 3.3. A necessary condition for the endemic equilibrium in 
(4) to exist is R1 = R2. 

Proof. If exists (J1 *, ]2*) this endemic equilibrium , we must have 
that: 

r* 

But, if J1 * > 0, J2* > 0, we can divide by Ji* and get: 

(1 - e-(J.t+'Yi)) = Cti (Too _ /*1 _ /*2)e-J.t(1 _ e-(GII*1+G2 I *2)) 
Ct1J*1 + Ct2J*2 

Hence, 

eJ.t(l _ e-(J.t+'Yi)) = Cti (Too _]*1 _ ]*2)(1- e-CG1I*1+G2I*1)) 
Ct1I*l + Ct2J*2 

with i = 1,2. Then we can divide both equations, and we will have 

1 - e-(J.t+'Yl) Ct1 

1 - e-(J.t+'Y2) = Ct2 
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which is equivalent to: 

a2 al 

1 - e-(J.!+'Y2) = 1 - e-(J.!+'Yl) 
(8) 

Hence, we have that it is necessary that, 

D 

Thus, coexistence of both strains is biologically unlikely. For most 
parameter values there is no coexistence of the two competing strains. 

3.4 Demographic equation 

As we saw in Section 3.1 our demographic equation is: 
Tn+! = f(Tn) + Tne-J.! 

In this section, we show how the dynamics of the total population 
changes when we change f(Tn), the recruitment function. 

3.4.1 Case 1. f(Tn) = A 

Here, 
Tn+! = A + Tne-J.! 

Hence, we can easily obtain that: 
T, - A 

00 - l-e-Jt 

Further results can be found in [3]. 

3.4.2 Case 2. f(Tn) = rTn(1- T:) 
In this case, 

(9) 

Equilibria and Stability 

In this section, we consider equation (9) as a one-dimensional dif­
ference equation. We now study the equilibria and their stability. 
If e-J.! + r < 1, To = 0 is stable and T* does not exist. See Section 
3.1.2. 
If 2 - e-J.! - r > 1, T* = k(r+e;Jt-l) exists and it is stable. 
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Figure 2: Bifurcation Diagram to equation (9) with J1, = 0.5 and k = 1 

We compute the period-2 points. To compute the period 2 points, 
we solve the equation Tn+2 = Tn, the period 2 points are: 

T ** - e-l'k(1+el'+el'r-vl-2el'-3e21'+2el'r-2e2I'r+e2I'r2) d 
- 2r an 

T *** - e-I' k(1+el'+el'r+v'1-2el'-3e21'+2el'r-2e2I'r+e2I'r2) 
- 2r 

The conditions for T** and T*** to be positive are : 
1 + e2p,(r2ep, - 2reP, - 3eP,) + eP,(2r - 2) > 0 and 
4eP,(1 + eP, + eP,r) > O. 

The reproduction function of (9) is : f(T) = rT(l - f) + Te-p,. 
In order to test the stability of this periodic solution, we must com­

pute (f2)' (T) and substitute T** and T*** in (j2)' (T) (where f2(T) 

means f(f(T))). In the next section, we use a bifurcation diagram to 
provide a geometric analysis. 

3.5 Numerical Analysis 
In general, numerical simulations provided us a general knowledge 
about the things that we found via analytic results. In particular 
in Section 3.4, we studied via numerical simulations, how the De­
mographic Function affects to the total population. Our analysis in 
the last section provided us ranges for the parameters for numerical 
simulations.We executed several simulations for distinct values of r, 
bifurcation parameter in equation (9). 

Figure 2 is the complemental analysis to the last section,shows that 
the positive fixed point of (9) undergoes period doubling bifurcation 
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Figure 3: Period 3 region in the Logistic Demographic Function. 

Figure 4: These are the iterates of Tn, In and Sn respectively. Rl < 1, R2 < 
1, K = 1 and r = 3.3 

as r is varied(x - axis). So, in this case Limiting equation will not 
work. 

The next graph shows the region where we have period 3. The 
presence of a period 3 orbit in a one-dimensional discrete model implies 
chaos [7]. 

The figure above shows Mutual Exclusion. 
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Figure 5: Tn, I~, I~ and Sn respectively. Rl > R2 , Rl > 1, K = 1 and r = 2.9 

As we can see the total population Tn persists chaotically(Figure 
3) but the two strains ultimately go extinct ( next two) due to the 
chaotic behavior of Tn for certain values of the parameter r. The 
infection does not persist for any of the strain. The population of 
Susceptible(fourth graph) also has the chaotic behaviour given by the 
demographic function. 
Now, we consider another example. 

This example is very interesting(Fig. 5), because it show how show 
the demographic function weakly affects the other dynamics. In this 
example, the demographic is chaotic(see Fig 2). All the dynamics 
are related. The total population is chaotic, one of the strains is 
oscillating, the other one dissapears and the susceptible population 
is also chaotic. Thus, competitive exclusion ocurrs with a chaotic 
demographic function. 

In the following figure we show how the Demographic Function 
affects the behaviour of the other populations. In this case we have 
coexistence. 

The figure in the next page, is an example of the case when we have 
multiple endemic equilibrium points. The analysis for this case has 
not being completed. Castillo-Chavez, et. al. [8] , , found that if the 
conditions of Lemma 3.3 holds, there exists a continuum of equilibria. 
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to understand the mechanisms involved in the case when we have co­
existence. 
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