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Abstract: 
We study a one patch model using Ricker's equation, xn+l = xner-xn, r ~ 0. We reproduce some 

results that Hastings ( 1993) obtained by coupling two discrete time logistic equations. Multiple 
attractors could occur with dispersion where there is only one attractor without dispersion. The 
boundary of the basins of attraction of the attractors can be fractal in nature. This makes 
prediction of the asymptotic behavior of most initial conditions difficult to analyze. Furthermore, 
we study the same model using Ricker's equation. We show that the qualitative nature of the 
results for a system of difference equations with dispersion depends on the form of the local 
dynamics. 
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Abstract 

We study a one patch model using Ricker's equation, Xn+I = 
Xner-xn, r ;::: 0. We reproduce some results that Hastings (1993) 
obtained by coupling two discrete time logistic equations. Multiple 
attractors could occur with dispersion where there is only one at­
tractor without dispersion. The boundary of the basins of atraction 
of the attractors can be fractal in nature. This makes prediction of 
the asymptotic behavior of most initial conditions difficult to analyze. 
FUrthermore, we study the same model using Ricker's equation. We 
show that the qualitative nature of the results for a system of dif­
ference equations with dispersion depends on the form of the local 
dynamics. 

1 Introduction 
Ricker's equation, Xn+I = Xner-xn, r ;::: 0, is used to study the popula­
tion dynamics of single-species populations that cannot grow without 
bounds. It means, the environment where this species live can sustain 
only a maximal population level Xn = 1. The term ~(xn) = er-xn re­
flects density dependence in the reproductive rater. Also, if r E (0, 2) 
then the basin of attraction of the positive fixed point is (0, oo), i.e in 
Ricker's model local stability implies global stability, Paul Cull (1981). 
We also give the bifurcation diagram for this equation and conclude 
that Ricker's equation is chaotic. 

We will reproduce some results obtained by Hastings(1993), in 
his studies of a two-patch discrete-time single species model where 
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local dynamics are coupled by dispersion and where there is density 
dependence dynamics. In each patch i, let Xi(t) be the population size 
after the local dynamics, but before the dispersal phase. The equation 
for the local dynamics used by Hastings is the logistic equation: 

(1) 

The two patches are coupled by a simple exchange of a fixed fraction 
of the population each year. Let D be the fraction of the population 
that is exchanged. Therefore, the following equations describe the 
dispersal phase: 

x1(t + 1) = i1(t) + D[x2(t)- i1(t)) 

x2(t + 1) = i2(t) + D[x1(t)- i2(t)). 

Plugging in Xi = rxi(1- Xi) into the above equations, we have 

(2) 

(3) 

XI(t + 1) = r1x1(t)(1- X1(t)) + D[r2x2(t)(1- X2(t))- r1x1(t)(1- X1(t))) (4) 
x2(t + 1) = r2x2(t)(1- x2(t)) + D[r1x1(t)(1- x1(t))- r2x2(t)(1- x2(t))] (5) 

where the parameter D is restricted to 0 ::; D ::; 1/2. When there 
is no dispersion, D = 0, we have an uncoupled system, and the be­
havior of the system could be chaotic (since the logistic equation and 
the Ricker's equation are chaotic for some choice of the parameters). 
When there is a complete dispersion i.e, D = ! , there is a balance in 
the population that disperses to the other patch and to the population 
that remains in the patch. In order to understand the dynamics, nu-

merical approaches like bifurcation diagrams and simulations are used 
to see the basin's of attraction. We will analyze, the case of identical 
local dynamics for the two patches, where r 1 = r2, and then we re­
peat the work of Hastings with the following system where the local 
dynamics is governed by the Ricker's equation. 

X!(t + 1) = Xl(t)erl-:q(t) + D[x2(t)er2-x2(t)- xl(t)erl-xl(t)) (6) 

X2(t + 1) = X2(t)er2-x2(t) + D[xl(t)erl-xl(t) - X2(t)er2-x2(t)J (7) 

If there is no dispersion, then local dynamics is given by xi(t + 1) = 
xi(t)er-x.(t). We will prove that the line { (x1, x2) : x1 = x2} is invari­
ant in the system with dispersion if r1 = r2. In fact, the dynamical 
behavior of the system with dispersion on this line is equivalent to the 
behavior of the single patch Ricker's equation. 
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2 Ricker's equation 
Some species of fish, like salmon, habitually cannibalize their eggs and 
young. Ricker (1954-1958) observed this phenomena and in order to 
understand the population dynamics of this phenomena, he assumed 
a per capita death rate proportional to the initial size of the young 
population and got the model, 
Xn+l = Xner-:z:n, r ~ 0, now known as Ricker's equation. 

2.1 Equilibria 

We calculate the fixed points by solving 

x = xer-:z:. 

x(er-:z: -1) = 0. 

(8) 

(9) 

Thus, x = 0 and x =rare the equilibrium points of the above model. 

2.2 Stability 
We use the derivative of the reproduction function 

f'(x) = er-:z:- xer-:z: (10) 

to determine the stability of the fixed points. We have 

/'(0)= er ~ 1. (11) 

Thus x = 0 is an unstable fixed point for all values of r > 0. For the 
second fixed point, we have 

!'(r) = 1-r. (12) 

Thus, the positive fixed point x = r is locally stable ¢:? -1 < 1-r < 1, 
i.e ¢:? 0 < r < 2. 

2.3 Further Result 
The reproduction function reaches it's maximum when x = 1, i.e 

f'(x) = er-:z:- xer-:z: = 0 {::} x = 1 (13) 
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2.4 Density Dependence 

To verify that the Ricker's model reflects a density dependence in the 
reproductive rate, we analyze the growth function, 

(14) 

The reproduction function Ll(x) is strictly decreasing fuction wich 
takes the value 1 when x = r. Ll'(x) = -er-z is negative Vx E R 
so that the graph of Ll(x) is concave up every where. If Xn < r then 
er-zn > 1 and Xn+l is greater than Xn by the factor er-z... If Xn > r 
then er-zn < 1 and Xn+l is less than Xn by the factor er-zn. Besides, 
x = r is a fixed point of the Ricker's model and it is stable if r E (0, 2). 
Thus, the population continues to grow and reproduce only if Xn < r. 

2.5 Global Stability 

Theorem 2.5.1. In the Ricker's equation let r E (0, 2). Then the 
basin of attraction of the positive fixed point, r, is (0, oo). 

Proof. We will consider two cases: 

1. x=r~l. 
2. x = r > 1. 

Recall that x = 1 is the value where the reproduction function reaches 
it's maximum. Case 1. We have 

If Xn+l = Xn+2, we have 

(15) 

(16) 

(17) 

r - = er-z (18) 
X 

where we have omitted the sub-index n. Let g(x) = i and h(x) = 
er-z. Clearly x = r satisfies the previous equation, f ( x) and g( x) are 
coo in (O,oo). By the Taylor series expansion, around x = r we have 

1 (r-x)2 (r-x)n 
- 1+-(r-x)+ 2 + ... + + ... 

r r rn 
g(x) (19) 

(r-x) 2 (r-x)n 
- 1 + (r- x) + 21 + ... + 1 + ... 

. n. 
h(x) (20) 
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Now, if x E (0, r) then we have the next inequality n! > rn Thus, 

and 

1 1 
-<­n! rn 

(21) 

(22) 

We got an inequality for the general terms of the Taylor series expan­
sions, so that 

r 
(23) g(x) =- > er-x = h(x) 

X 

0 < r -xer-x (24) 

eo < er-xer-z (25) 

xer-x < xer-x er-xer-x (26) 

Therefore, 
Xn+2 > Xn+l (27) 

And as there are no fixed points between x = 0 and x = r ~ 1 where 
the reproduction function reaches it's maximum, in this case Xn --+ r 
as n--+ oo. If the positive fixed point r is such that r < 1, there is an 
interval (r, 1) such that given any initial condition here, the sequence 
Xn is strictly decrasing (see section 3), Therefore in Case 1. Any initial 
condition Xn E (0, 1] is such that Xn--+ r as n--+ oo 

Case 2. The following lemma will we helpfull in this case. 

Lemma 2.5.1. Ifr E (0,2) then J(x) = xexp(r- x) has no period-2 
points. 

Proof. Since period-2 points satisfy 

f 2(x) = f(J(x)) = x (28) 

In our case we have that period-2 points satisfy 

x = xexp(2r- x- x exp(r- x)) (29) 

x = 0 is a fixed point of f so that we can assume x i= 0 and get 
the next equation for the 2-period points 

2r 
- = 1+exp(r-x) 
X 
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Let us call the left hand side of the previous equation g1 ( x) and the 
rigth hand side h1(x). It is easy to see that x = r satisfy g1(x) = h 1(x) 
so that we just have to prove that x = r is the only point where g1(x) 
and h1(x) intersect each other. We can see that g1(x)---+ 0 as x---+ oo 
and that h 1 ( x) ---+ 1 as x ---+ oo besides both functions are strictly 
decreasing so that for x 2: 2r, g(x) and h(x) do not have points in 
common and so there are no period-2 points in this interval. Now, 
clearly x = r satisfy the previous equation so that if we take the 
Taylor Series around r of each function we have 

g(x) 2 + ~(r- x) + r~ (r- x)2 + ... + r: (r- x)n (31) 

h(x) 
(r-x? (r-x)n 

2+(r-x)+ 2! + ... + n! (32) 

and the next inequality follows for the general terms 

2 ( )n (r- x)n - r - x > ...o...._---,--'--
rn n! 

(33) 

if 0 < r < 2 and x E (O,r) then 2n! > rn---+ r~ > ~~ ---+ r~ (r- x)n > 
,h(r- x)n so that if we take an initial condition in this interval we 
have no period-2 points. Now we just have to check what happens for 
x E (r, 2r). The next lemma will be helpful!. 

Lemma 2.5.2. Let f :R ---+ R be a continous function and assume 
that 3 p < q E R such that f(p) = q and f 2(p) = p. Then 3 s E R 
with p < s < q such that f(s) = s. 

Proof. Construct G(x) = f(x)- x its easy to see that G(x) is a con­
tinuous function, now 

G(p) = f(p)- p = q- p > 0 
and G(q) = f(q)- q = p- q < 0. 

(34) 

By the intermediate value theorem we know that there exists s 
E R, such that G(s) = 0, then g(s) = f(s)- s = 0---+ f(s) = s. 0 

The proof of the previous Lemma let us say that we do not have 
period-2 points before x = r and between (r, 2r). Therefore, the 
Ricker's equation has no period-2 points if r E (0, 2) 0 
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Using the Sharkovski's theorem for f we do not have period-n 
points for n 2: 2, and as there are no other fixed points except x 00 = r 
and x 00 = 0. Since x00 = 0 is unstable, we can say now that every 
initial condition xo is such that Xn ___.. r as n ___.. oo which finishes the 
proof of the theorem. Theorem 2.5.1 could be proved by applying the 
results of Cull (1981). D 

2. 6 Numerics 

In this section we give the bifurcation diagram for the Ricker's model. 
To obtain it we use Mathematica 3.0. It seems that for r E (0, 2) 

Figure 1: Bifurcation diagram for the Ricker's equation 

we just have a stable fixed point. We will prove, in the next section, 
that if r is in this interval, local stability implies global stability. Also 
by looking at the bifurcation diagram, we can see that for values of 
r E (3.10, 3.20), we have a stable period-3 orbit. 
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To state Sarkovskii's theorem, we first recall the Sarkovskii's or­
dering of the positive integers: 

3~5~7~9~ .. . 

2 . 3~2 . 5~2 . 7 ~2 . 9~ .. . 

22 . 3~22 . 5~22 • 7~22 . 9 .. . 

2n · 3~2n · 5~2n · 7~2n · 9 .. . 
2n ~2n-1 ~2n-2 ~2n-3 .. . 

23~22~2~1 

Figure 2: Interval of period-3 points 

Theorem 2.6.1. Let f : I- > I be a continuous function. Iff has 
a period-k point and k~r in the Sarkovskii 's ordering, then f has a 
period r point. 

By the Sakovskii's thorem, if f has a period-3 point, then f has a 
point of every period. Using this consequence of Sarkovskii's theorem, 
also proved by Yorke in 1976, we conclude that Ricker's equation is 
chaotic. 
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3 Logistic V 8 Ricker's equations 

We analyze the case when the growth rate is equal in both patches i.e, 
ri = r2. It is possible to find an analytical expresion for the period-2 
solutions with local dynamics governed by the logistic equation. Hast­
ings(1993) analyzed the stability of these solutions. In the case of the 
Ricker's equations it is not possible to find explicit formulas for the 
periodic points. We use numerical tools like bifurcation diagrams to 
understand the dynamics. The bifurcation diagrams were obtained 
using matlab 5. If the local dynamics is governed by either the lo-

gistic or the Ricker's equation, then there are no coexisting multiple 
attractors without dispersion. However, coexisting multiple attractors 
could occur in the system with dispersion. For r = 3.8 and D = 0.15 

0.8 

3.1 3.2 3.3 3.4 3.S 3.8 3.7 3 .B 

Figure 3: Bifurcation diagram for the coupled logistic model with ri = r 2 

and XI = x 2 . The total population V8 r 

there are 3 different attractors. Initial conditions are either attracted 
to a period-2 solution or to a period-4 solution or to a chaotic attrac­
tor. When ri = r2 and XI= x2, the dynamics of the total population 
reduces to the one dimensional logistic model in each patch. In the 
next section, we will give a general proof of this fact. 
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Figure 4: Bifurcation diagram for the coupled logistic model with r 1 = r2 

and x1 =/= x 2• The difference in population sizes V8 r 

In the case r1 = r2 and x1 f. x2 we plotted the difference in popu­
lation sizes against r. These are the so called out of phase solutions. 
In this case, the population in each patch alternates between high and 
low population sizes. 

4 Invariant Line 

Theorem 4.0.2. Ifr1 = r2 in system {2){3}, then the line {(x1,x2) : 

x1 = x2} is invariant. 

Before the proof of the theorem we define pioneer species. These 
are species that thrive at a very low densities when they are in isola­
tion, like pine trees. Asociated with every pioneer species we have a 
pioneer growth function, g : [0, oo) -+ (0, oo) such that : 

g is positive 
g is strictly decreasing 

g(O) > 1, and 
limx-+oog(x) = 0 

Notice that when r > 1 either er-x and r(1-x) are pioneer growth 
functions each of them asociated to the Ricker's equation and to the 
logistic equation respectively. 

Proof. In the general model (2)(3) suppose 

(35) 
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Figure 5: Bifurcation diagram for the coupled Ricker model with ri = r 2 and 
XI = x2. The total population V 8 r 

Where g(xi(t)) is a pionner growth fuction. Let 

F(xi,x2) = (xi,x2) = (xigi(xi) + D[x2g2(x2)- XI9I(xi)] 

,X292(X2) + D[XI9I(XI)- X292(X2)]). 

That is, 

Thus, 

So that the line XI = x2 is F-invariant. 

(36) 

0 

Notice that under the assumptions of the above theorem, (35) and 
(36) become 

So that the dynamics on the line XI = x2 is equivalent to the dynamics 
of the single patch Ricker's equation studied in the first section. 
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Figure 6: Bifurcation diagram for the coupled Ricker model with r 1 = r 2 and 
x 1 =/= x2 . The difference in population sizes V 8 r 

If D = 0, the system has only one chaotic attractor. From zero as 
we increaseD past .0148 a stable period two emerges. The presence 
of the chaotic atractor coexisting with the period two divide the set 
of initial conditions in to two sets, those that converge to the chaotic 
attractor and the ones that converge to the period two cycle. We will 
see in figures that the boundary between the two sets is a fractal. 
A period double behavior lead the system to a four period solution 

as when D = .015 and so on until D ~ .01952967, when there is a 
discrete hopf bifurcation, leading to a two "closed" curves, then if we 
continue increasing D this "closed" two curves begin to loose points 
leading to a period two at tractor like when D = .06, but if we continue 
increasing D the attractor obtained when D = .0148 becomes chaotic 
and the set of initial conditions that tends to this attractor is smaller 
every time as when D = .157. For values of D = .158 or greater, we 
just have again one chaotic attractor. It is interesting to notice that 
inside the chaotic attractor present for any choice of D, the invariant 
set x1 = xz behaves chaotically as well. 

5 Sensitive dependence 

The next graphics where we take r1 = rz = 3.8 and D = .15, re­
veals that the long-term behavior of the initial conditions could be 
essentially difficult to analyze. Hastings obtained a fractal structure 
separating qualitatively different outcomes using the logistic equation, 
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Figure 7: Chaotic attractor's shape when D = 0 

15 

18 

18 15 

Figure 8: Invariant chaotic set x1 = x2 

figure (9). For the Ricker's equation, I get a very different fractal 
structure wich reveals that the qualitatively nature of the results for 
a system of difference equations with dispersion definitely depends on 
the form of the local dynamics. 
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Figure 9: Fractal basin boundary using logistic equation 

Figure 10: Fractal basin boundary using Ricker's equation 

Changes of the fractal structure for Ricker's equation as the dis­
persion parameter is varied. 
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Figure 11: Shape of the chaotic attractor when D = .014 

Figure 12: Fractal basin boundary for D = .01952967 the white "closed" 
curves give evidence of a discrete hopf bifurcation 

6 Conclusions 

The qualitative nature of the results depend on the exact form of the 
local dynamics. Multiple stable periodic orbits could coexist with a 
chaotic attractor in a two patch system where there is only a chaotic 
attractor without dispersion. Complex basins of attraction with frac­
tal boundaries occur in systems with dispersion. Complex chaotic 
attractors occur in systems with dispersion. Dispersion could be used 
to control a chaotic one patch system. Hopf bifurcation occurs in two 
patch systems where none existed without dispersion. 
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Figure 13: The white "closed" curves begin to loose points D = .06 

Figure 14: The set of points converging to the attractor that becomes chaotic 
is smaller the greater the value of D increases, D = .06 
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