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Abstract 
Prostate specific antigen (PSA) is a protein of free and complex 

forms found in the bloodstream of patients suffering from prostatic 
diseases. The free/total PSA ratio is often used in the detection of 
prostate cancer. We define a logistic function that assigns the proba­
blity of having cancer given a specific value of the fit PSA ratio and 
the age of the patient. Since the levels of PSA in a serum sample 
are affected by storage conditions over time, we construct a model to 
show the effect of improper storage of serum samples on the fit PSA 
readings. We then use the logistic function and the model of sample 
decay over time to determine the probability of a false positive given 
the storage conditions. In addition we provide an analysis of cut-off 
values, and a function that predicts the time necessary for the diag­
nosis of a patient to change from negative to positive given his age, 
fit PSA Ratio, and a cut-off value. 
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1 Introduction 

Prostate cancer is the second most common death from cancer in men and 
the most common death for men over seventy-five years old. This disease is 
very rare in men under the age of 50. In 1995, 244,000 new cases of prostate 
cancer were reported[4]. The likelihood that an individual will eventually be 
diagnosed with cancer depends on variables such as race (African-American 
men have the highest rate of prostate cancer in the world), diet (high fat 
diets), family's medical history and the exposure to cadmium in the work 
place, amongst other possibilities[8]. 

The prostate is a small gland located below the bladder and surrounds 
the urethra (canal that carries urine from the bladder). The prostate is a 
male sex gland that produces fluid for semen, which leaves the body through 
the penis during the male orgasm (Le., ejaculation). As a patient becomes 
older, the prostate gland becomes very susceptible to diseases that can be 
dangerous to a patient's life, for example, prostate cancer. 

The growth and function of the prostate gland depends on the male hor­
mone testosterone, produced mainly in the testicles. Testosterone stimulates 
the development of prostate cancer in the same way kerosene fuels a fire[7]. 
Hence, as the body produces testosterone, prostate cancer will continue to 
spread. This disease involves an uncontrolled cell division in the peripheral 
area of the prostate gland. Once a patient is diagnosed with this form of 
cancer the tumor is categorized into stages A through D depending on its 
development. Stage A tumors are early tumors and usually not detected. In 
Stage B, the tumor is still in the prostate and may be large enough to be 
detected. In Stage C, the cancer is more advanced. It indicates that the 
tumor has spread outside the prostate to surrounding areas, but it has not 
spread to other organs. In Stage D, tumors have spread to the lymph nodes 
and other nearby organs. Thmors recognized at this stage are in most cases 
lethal to the patient[7] 

Prostate cancer can be detected by a prostate-specific antigen (PSA) test. 
PSA is a glycoprotein 34,000 Daltons in size that is secreted into the seminal 
fluid by the epithelial (surface) cells of the prostate gland. The glandular 
ducts prevent PSA from entering the circulatory system in large concentra­
tions. Initially, PSA is released in its free state but will slowly form stable 
complexes with al-antichymotrypsin (ACT) and a2-macroglobulin (a2M). 
In serum samples, the most common forms of PSA are in free and PSA-ACT 
complex forms [6]. 
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A clinical dilemma of prostate cancer diagnosis requires differentation of 
prostate glandular clinical symptoms caused by enlargement from Bengin 
Prostate Hyperplasia (BPH) or various other forms of prostate inflammation 
and prostatic diseases. This differentiation can be achieved by looking at the 
ratio of free to total PSA (fit PSA), where total PSA refers to the protein 
in all its possible forms (free and complex). Although this ratio is used as 
the most reliable detector of prostate cancer, there is still a probability that 
a patient is diagnosed false positive (diagnosed with cancer but in reality 
doesn't suffer from it). Patients can fall into three categories: those that 
clearly do not suffer from cancer, those that definitely suffer from cancer, 
and those that belong in a "gray area" , where a solid diagnosis could not be 
stated. Clearly, the idea of current research is to narrow down this gray area 
and make the diagnosis as accurate as possible. 

The fit PSA ratio test consists of measuring PSA concentration in a pa­
tient's serum. The process for serum extraction involves two steps. The 
blood is drawn from the patient and allowed to clot. Then the clot is cen­
trifuged to separate the serum. After this, the serum is stored until the time 
for analysis. The problem arises when the samples are not handled at opti­
mal temperature conditions. If samples are not handled properly then the 
ratio of fit PSA can be altered significantly because molecular interactions 
of PSA with other proteins (such as ACT) are affected. This change of the 
original fit ratio, iflarge enough, can in fact change the doctor's diagnosis of 
a patient. The result of this is that patients are sometimes subjected to treat­
ment such as surgery, when it is not necessary. Some of the secondary effects 
of surgery are impotence and incontinence. Also, there are patients that will 
be diagnosed as healthy when in reality they have the cancer. Clearly this 
second case is far more critical since it can be lethal to the person. 

There are two main objectives in this paper. First we define a logistic 
function that assigns the probability of having cancer given the fit PSA ratio 
and the age of the patient. For this we use data from 4870 patients diagnosed 
either as "no evidence of malignancy" (NEM) or "prostate cancer" (Cap).l 
All the patients from the sample were in the age range of 45 to 90 years old 
and had a total PSA concentration from 2-20J-lg/ml. 

Second, we investigate the effect of improper handling of the serum sam­
ples on the original PSA levels. We model the change of the fit ratio as a 

Iprovided by Dr. Robert Veltri and Dr. Craig Miller from UroSciences Group, UroCor, 
Inc., Oklahoma City, Oklahoma. 
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function of time, assuming that the conditions are not ideal. We combine 
this model with the logistic regression to provide a probability function that 
includes storage times and conditions. Thus, if we know at what conditions 
the sample was stored and the time it was stored, then we can determine 
the original fit ratio and therefore determine the actual probability that the 
patient does, in fact, suffer from cancer. In addition we provide an analysis 
of cut-off values and a function that predicts the time needed to change a 
diagnosis from negative to positive. 

2 Methodology 

2.1 Data Description 

Data from 4870 patients was analyzed using Binary Logistic Regression2 . 

This data set was obtained from patients who: 

• were between the ages of 45-90 years (mean age of 66 and a standard 
deviation of 8) 

• were diagnosed with prostate cancer (CaP) or with no evidence of ma­
lignancy (NEM) 

• had no previous history of Prostate Cancer 

• total PSA concentration levels were between 2 and 20 J-lg/ml 

The data set contains the age, free PSA and total PSA concentrations, fit 
PSA ratio, and the real diagnosis of the patient after biopsy for each patient. 
All the serum samples were frozen at -800 e; therefore we assume that the 
fit PSA ratio values given are the true values. 

Data on decay rates was obtained from Woodrum [6], and Piironen [3]. 
These articles gave approximate values for the decay rates of free PSA during 
clotting and approximations for the rate of change of free PSA during storage 
at 4°C and 25°C. We use Woodrum's estimates for free PSA decay rate during 
clotting time, and during serum storage at 25°C; and we used Piironen's 
estimate for free PSA decay during serum storage at 4°C. 

2 A sample of this data set is found in appendix A 
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2.2 Fitting a Logistic Model 

The data was analyzed using Binary Logistic Regression performed with the 
statistical software package MiniTab™. As the binary response variable we 
used 1 for NEM and 0 for CaP. The variables for the model were fit PSA 
Ratio and age. Combining age and fit PSA Ratio gave the highest odds 
ratio (716:1) for fit PSA, as compared to the odds ratio (216:1) when only 
fit PSA ratio was used as the variable for the model. The MiniTab™ output 
estimated the values to be used in the logistic probability function3 . The p­
values for the significance of the coefficients were always less than 0.001. 

Probsbiliy of Having 
Prostate Cancer 

1.0 

O.B 

0.6 

0.4 

02 

0.' 0.< 0.' 0.$ 

Figure 1: Probability of Prostate Cancer as a function of fit PSA Ratio. The ages are 
held constant for each curve in the graph. Ages are in increments of 5 yrs. 

The resultant probability function has the form, 

1 
Pcancer((f ItPSA) , AGE) = 1 + ea+f3U/tPSA)+-yAGE 

where the Logistic fitted coefficients are, 

a 3.2210 

f3 6.5743 

'Y - -0.055426 
------------------------

3For samples of these outputs look at appendix B 
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Therefore, by plugging in the age of the patient, and his fit ratio at the 
time of the analysis into equation (1) we get the probability that a patient 
has prostate cancer. To see estimates of these probabilities in graph form see 
figure 1. 

2.3 Model for fit PSA Decay 

In this section we define the function that predicts the fit PSA ratio at a given 
time. We propose an exponential model for the decay of the fit PSA ratio 
since the previously mentioned literature gives rates of change of free PSA in 
percentages. However, since there are two different storage conditions, there 
are two rates of decay, 

Al - Rate of free/total PSA decay during queuing time before 

centrifugation, depends on temperature T 

A2 - Rate of free/total PSA decay during serum storage at a 

given temperature T 

Therefore, we consider a piecewise function for how fit PSA decays. Figure 
2 gives a general idea of this function. 

Thus, 

T-:5.C 

T'2:.C 
(2) 

represents the fit PSA ratio at a given time4 T; where T is the time after 
the blood draw, and C is the queuing time before centrifugation. We assume 
that the amount of total PSA (complexed and uncomplexed) is constant. 

In a realistic setting Tf, the time between blood draw and the time of 
analysis, will be greater than c because the analysis is done to the serum, 
which is obtained after the blood is centrifuged. Since Tf '2:. c, then we use 

xc( Tf) = x c (O)e-(A1C+A2{TJ-C)) (3) 

to solve for xc(O), which is the true fit PSA ratio at the time of blood draw 
from the patient. This yields, 

(4) 

4time is measured in hours 
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Time (hrs) 

Figure 2: This figure illustrates how fit PSA changes before time of centrifugation c, 
and during the storage time (Tf - c) before the sample is analyzed. 

2.4 Time Adjusted Logistic Model 

In this section we adjust the logistic model so that it considers the decay of 
fit PSA Ratio. In order to find the probability that a patient has prostate 
cancer, given his age, xc( Tf ), Tf, and storage temperature, we need to combine 
equations (1) and (4). We replace (J ItPSA) in equation (1) with xc(O) from 
equation (4). This yields, 

1 
1 + ea +,6xc(O)+-yAGE 

1 
(5) 

Now, we substitute the fitted values a, /3, '"Y and the decay rates from 
Woodrum [6] and Piioronen [3], 

Al - 0.01 at 25°C 

A2 - 0.0017 at 4°C 

A2 0.0005 at 25°C 
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into equation (5) to attain the cancer probability function, 

1 
Pcancer(Xc('Tf),AGE,c,'Tf) = 001.>.( ) . 1 + e3.221O+6.5743(xc(Tj)e· c+ 2 rrc )-O.055426AGE 

(6) 

where .A2 depends on the temperature at which the serum samples were 
stored. Thus, knowing xc( 'Tf ), ('Tf), C and AGE we can calculate the proba­
bility of getting prostate cancer. 

To illustrate how this probability function is used we give the following 
example: 

Suppose that a practitioner takes a sample from a 61 year old patient at 
8:00 am Monday morning, and at 4:00 pm the sample is centrifuged. Suppose 
that two days later at 5:00 pm the sample was analyzed, and the resulting 
fit ratio is 0.3. Then, 

Therefore, 

c - 8hrs. 

- 57hrs. 

0.3 
'Tf 

xs(57) 

XS(O) = xs(57)e-SA1-A2(57-S) 

Since we have a recorded fit ratio of 0.3 at'Tf , we can calculate the initial 
ratio depending on the conditions the sample was exposed to. Taking the 
rates of decay (.AI and .A2) determined earlier in the paper then the original 
ratio should be, 

xs(O) = 0.2702 at storage temperature 25°C 

We can then plug this expression for xc(O) into the time adjusted probability 
function to see that, 

1 
Pcancer(XS(O) , 61) = 1 + ea +,6(xs(O))+y(61) (7) 

is the probability of having cancer at age 61 with a final fit PSA ratio of 0.3. 
Therefore, 

Pcancer(XS(O) , 61) = 0.165 for 25°C 
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3 Analysis 

3.1 Cut-Off Values 

Using the first logistic regression model we calculated the probability that 
each patient in the data set had cancer. Then, we compared these prob­
abilities to the real diagnosis, and calculated false positive (FP) and false 
negative (FN) rates given a cut-off value5 . 
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Figure 3: Probability cut-off values and their corresponding probability of a false diagno­
sis. The graph shows the probability of diagnosing an FP or a FN when a certain cut-off 
value is chosen. The cut-off values on the graph were chosen arbitrarily as an example. 

Where, 

FP probability = T N
F
: F P 

and 

FN probability = T pF+NF N 
--~~~~~~------------

5See Appendix C for a copy of the MatLab program used for this analysis 
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Figure 3 shows the results of this numeric comparison that may be useful 
to decide on an optimal cut-off value. Observe that intrinsically, we are 
giving the same weight to a FP and to a FN. In real life a FN is more 
harmful than a FP since the former implies that a person with cancer will 
not undergo treatment, whereas the latter implies that a person without 
cancer will undergo treatment. Clearly, the first case (FN) may result in 
death of a patient whereas FP implies unnecessary treatment. As a realistic 
example, if a cutoff value of 0.4 is chosen, then from figure 3 the probability 
of a false positive is the same as the probability of a false negative. Clearly, 
as we choose a smaller cut-off value, then the probability of FN goes to 
zero, since we would catch all the cancer cases. However, at the same time, 
the proportion of FP goes to one, since we would send to treatment all the 
patients that are cancer free. 

Because it is useful to give more weight to a FN than to a FP, we define 
a K-value as the number of times a FN diagnosis is more important than an 
FP. 

(l) 
U) 

ro 
!!: 

8 

~ 6 
·in 
o 
0.. 
(l) 
U) 

~ 4 
(l) 

:::J 

g; 
~ 2 

Effect of Cut off value on K 

OL-__ ~ ____ ~ __ ~~== ______ ~ __ ~ __ ~ 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Cut off value 

Figure 4: The K-value represents the ratio of FN/FP probabilities. 

For a fixed K-value there is a cut-off value in which the probability of 
FP is K times larger than the probability of FN. In figure 4 we see how K 
decreases as the cut-off value increases. The goal of the cut-off analysis is 
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to minimize the probabilites of FP and FN diagnosis. K helps to find an 
appropriate probability cut-off value given the importance of making a FP 
wrong diagnosis relative to a FN diagnosis. 

Once a probability cutoff value, a, has been chosen and since the function 
that determines the probability of having cancer given the fit PSA ratio is 
decreasing (see figure 1), then we can define a fit PSA ratio cut-off value a* 
for a fixed age. Figure 5 is a graphic representation of this statement. 

Probability of Cancer 

a 

t 
I 

* a fIt PSA Ratio 

Figure 5: For a given probability cut-off value, a, we can find the corresponding fit PSA 
Ratio cut-off value a* for a fixed age. 

To solve for the fit PSA ratio cut off, we solve for a*, 

P(a*, AGE) 
1 

1 + ea +,6a*+"YAGE 

a* 

a 

- a 

In(~) - a - 'YAGE 

f3 

Since P cancer is decreasing as Xc (0) increases then, 

(8) 

if 0 :::; xc(O) .::; a* then Pcancer(xc(O)) > P(a*) = a (positive diagnosis) 
and, 

if a* < xc(O) :::; 1 then Pcancer(xc(O)) < P(a*) = a (negative diagnosis) 
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3.2 Effect of Storage 

Since Al and A2 are small, then for small enough 'Tf, xc(O) ~ xc('Tf). Thus we 
might be tempted to replace xc(O) with xc( 'Tf) in the probability function. 
However, the problem is that this might change the diagnosis. In this section 
we study at what time after the blood draw is a change in diagnosis possible. 
In order to do this, we develop a function that predicts the time necessary 
for a fit PSA ratio reading to decay to a level where the patient will be 
diagnosed with cancer, when his original fit PSA ratio xc(O) would diagnose 
no cancer. 

Now, if xc(O) > a* then Pcancer(x(O)) < a. Thus the patient will have 
a negative diagnosis. However, since xc( 'T) decreases, there exists 'Tf large 
enough such that xc( 'Tf) ~ a*, which means that if we replace xc(O) with 
xc( 'Tf) then the diagnosis will change from negative to positive. 

We find a maximum time 'T m such that if the time 'Tf at which the sample 
was analyzed is greater than 'Tm, then the fit PSA ratio reading xc('Tf) will 
change enough to alter the diagnosis. (i.e., if 'Tf < 'Tm then the diagnosis 
will remain negative, otherwise the the results will give an incorrect positive 
diagnosis) . 

Recall that 

(9) 

and notice that 'Tm occurs when xc('Tm) = a* given xc(O) > a*. 

Since xc('T) is a piecewise function, then depending on xc(O), either 0 ~ 
'Tm ~ C, or C < 'Tm, which tells us what part of the function xc('T) to use 
to solve for 'Tm. The borderline case occurs when xc(O) = a*e-)\lC. Then 
xc(c) = a* ::::} 'Tm = c. 

This implies that if, 

whereas if, 
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Figure 6: (A)The graph shows the time it would take a true fit PSA ratio, from a 66 
year old patient, stored at 4° C to decay to the fit PSA cutoff value. (B) A close up of the 
area enclosed around the cut-off values. 

Then by using equation (9) and the previous inequalities we have 

( 

In:z:;~O) a* < xc(O) ::S a*e),lC 
~, 

Tm(Xc(O)) = 

In :z:ca(*O) +(),l ->'2)C , 
- - ),2 ,a*eA1C < xc(O) ::S l. 

(10) 

To illustrate the use of this function, we take a probability cut-off value= 
0.35, and AGE= 66, and c = 6. Then, from equation (8) we know that the 
fit PSA cut-off, a* = 0.16. Substituting 

Al 0.01 

A2 - 0.0017 

into equation (10) we are able to graph Tm as a function of xc(O) to get a 
graphic representation of the time needed for any xc(O) (true fit PSA ratio) 
of a 66 year old patient to decay to the fit PSA cut-off value a*. 

Notice that this function increases rapidly. Therefore, if xc(O) is much 
larger than the fit PSA cut-off value, then the time taken for the fit PSA 
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ratio to decay will be very large. For example, if the true fit PSA ratio of 
the patient is 0.75 then we see from figure 6 that the time needed for the fit 
PSA ratio to decay to a* is approximately 900 hours (or 38 days) after the 
blood was drawn from the patient. 

However, if xc(O) is close to the fit PSA cut-off value, then the time 
for the fit PSA ratio to decay to a* is relatively small. For example, take 
xc(O) = 0.2, then the time needed the fit PSA ratio to decay to a* = 0.16 is 
approximately 96 hours (or 4 days). Thus, if the sample was analyzed four 
days after the blood draw, and xc( Tf) was substituted into the probabability 
function, instead of xc(O), the diagnosis will be positive which will be an 
incorrect diagnosis in this case. 

4 Conclusion 

In previous literature, cancer diagnosis depended merely on the fit PSA 
ratio of a patient. However, in this paper we concentrated on adding age of 
the patient as an extra parameter. This turns out to be a crucial factor in 
determining the probability of the patient of having cancer since two patients 
with the same fit PSA ratio can have different probabilities of having cancer 
because of their ages. 

Based on these findings, we suggest that practitioners take into account 
the age of the patient when diagnosing, because the patients will become 
more susceptible to this type of cancer with time. 

Using our time adjusted function with certain parameters we can con­
clude that the fit PSA ratio is not affected with time as significantly as we 
expected. Analysis of critical storage times showed that the diagnosis of a 
patient can be changed if: 1) the sample is left out room at temperature for 
unrealistically extensive periods of time (eg. 24 days) or 2) if a given fit 
ratio is in the neighbourhood of the cut-off value, then there is a possibility 
of change in the diagnosis within realistic periods of time (1 or 2 days of stor­
age only). In such a case we would recommend a second and more careful 
analysis on the individual's serum sample. 

The rates Al and A2 are critical in determining the time adjusted proba­
bility of cancer in a patient. The literature where these values were obtained, 
had a small sample size and unusual results6 . This suggests that the rates 
calculated in these articles may be inaccurate, which will directly affect the 

6 At 4°C the decay rate was greater than at 25°C 
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accuracy of our model. We encourage future studies to use a more significant 
sample size to find the rates of fit ratio that correspond to different storage 
conditions. 

Subsequent papers studying related areas should concentrate on deter­
mining other parameters affecting the fit ratio. Testosterone levels and pH 
are some other causes for fit ratio change and could be explored in the future. 

Finally, it is important to understand that this paper essentially pro­
poses a methodology to determine the actual fit ratio of a patient and from 
it determine the real probability of the patient of suffering from cancer. We 
suggest that better parameter estimates should be included using the ana­
lytical process we followed. 
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Appendix A: Data Set 

ID Ae:e FPSA PSAT FrTo"t Diae; .... sis Bi;:';;;r:v 
I UC-17 45 0.22 9.0 0.024 NEM 1 
I UC-74 45 0.18 4.4 0.041 NEM 1 

UC-114 45 0.41 9.0 0.046 NEM 1 
I UC-985 45 0.52 5.0 0.104 NEM 1 
~ UC-1219 45 0.44 3.8 0.116 NEM 1 
! UC-1327 45 0.45 3.7 0.122 NEM 1 
1 UC-1859 45 0.48 3.0 0.16 NEM 1 
1 UC-2737 45 0.66 2.3 0.287 NEM 1 

UC-3061 45 0.17 4.0 0.043 Cancer 0 
UC-3125 45 0.45 9.3 0.048 Cancer 0 
UC-3230 45 0.30 5.2 0.058 Cancer 0 

UC-29 46 0.10 3.6 0.028 NEM 1 
UC-36 46 0.27 9.3 0.029 NEM 1 

UC-4558 67 0.44 2.5 0.176 Cancer 0 
UC-4564 67 1.10 6.2 0.177 Cancer 0 
UC-4575 67 1.00 5.6 0.179 Cancer 0 
UC-4595 67 1.20 6.5 0.185 Cancer 0 
UC-4654 67 2.80 14.0 0.2 Cancer 0 
UC-4719 67 1.00 4.4 0.227 Cancer 0 
UC-4748 67 2.20 9.1 0.242 Cancer 0 
UC-4767 67 1.10 4.3 0.256 Cancer 0 
UC-4782 67 3.20 12.0 0.267 Cancer 0 
UC-4825 67 1.70 5.1 0.333 Cancer 0 

l UC-3 68 0.00 7.0 0 NEM 1 
UC-41 68 0.54 17.0 0.032 NEM 1 

1 UC-51 68 0.26 7.2 0.036 NEM 1 
1 UC-91 68 0.26 6.0 0.043 NEM 1 
i UC-92 68 0.26 6.0 0.043 NEM 1 

UC-115 68 0.16 3.5 0.046 NEM 1 
UC-117 68 0.52 11.0 0.047 NEM 1 
UC-167 68 0.25 4.7 0.053 NEM 1 
UC-193 68 0.83 15.0 0.055 NEM 1 
UC-206 68 0.25 4.4 0.057 NEM 1 
UC-2546 83 1.90 7.9 0.241 NEM 1 
UC-2895 83 2.40 5.8 0.414 NEM 1 

1 UC-3018 83 0.57 16.0 0.036 Cancer 0 
! UC-3038 83 0.74 19.0 0.039 Cancer 0 
~ UC-3040 83 0.21 5.3 0.04 Cancer 0 
I UC-3269 83 0.61 10.0 0.061 Cancer 0 
I UC-3618 83 1.20 15.0 0.08 Cancer 0 

UC-3656 83 0.62 7.6 0.082 Cancer 0 
UC-3754 83 0.50 5.6 0.089 Cancer 0 
UC-38S4 83 0.60 6.4 0.094 Cancer 0 
UC-3919 83 0.98 10.0 0.098 Cancer 0 
UC-4129 83 0.44 3.9 0.113 Cancer 0 
UC-4182 83 2.00 17.0 0.118 Cancer 0 
UC-4193 83 0.83 6.9 0.12 Cancer 0 

I UC-4422 83 2.10 14.0 0.15 Cancer 0 
I UC-4502 83 0.84 5.1 0.165 Cancer 0 

UC-4545 83 0.78 4.5 0.173 Cancer 0 , 
UC-4744 83 2.10 8.8 0.239 Cancer 0 

I UC-4763 83 1.70 6.7 0.254 Cancer 0 
I UC-4849 83 3.00 7.5 0.4 Cancer 0 

UC-10 84 0.14 6.7 0.021 NEM 1 
I UC-40 84 0.11 3.6 0.031 NEM 1 
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Appendix B: MiniTab™ Output for Logistic 
Regression 

Binary Logistic Regression 

Link Function: Legit 

Response Information 

Variable Val.ue Count 
Status 1 2961 

0 1909 
Total 4870 

C=e£ .StDeov Z 

Predictor Coaf StDev 
Upper 
Constant 3.2210 0.2534 
FrTot 6.5743 0.4352 
1681.23 
Age -0.055426 0.003881 
0.95 

.Qo...I.'-"~':" .<;;;I.,OL.= ..::;.~,....... t.;:) - - ~ ................ ... 
Log-Likelihood = -3049.553 

P 'Rati:o 

Z P 

12.71 0.000 
15.11 0.000 

-14.28 0.000 

.I:.i=;)w--er 

Odds 
Ra.ti.o 

716.44 

0.95 

lPredictor 
95% CI 

Lower 

305.30 

0.94 

Test that all slopes are zero: G = 423.097; DF = 2; P-Value = 0.000 

Goodness-af-Fit Tests 

Method 
Pearson. 
Devian.ce 
Hosmer-Lemeshow 

Chi-Squa.re 
4002.231 
4362.422 

33.086 

DF 
3508 
3508 

8 

p 
0.000 
0.000 
0.000 

Table of Observed and Expected Frequencies: 
(See Hosmer-Lemeshow Test for the Pearson Chi-Square Statistic) 

Group 
Value 1 2 3 4 5 6 7 8 9 
Total 
1 

Obs 153 208 236 271 291 323 357 358 377 
2961 

Exp 177.3 221.9 247.2 268.5 288.9 307.5 325.7 343.7 367.5 
0 

Obs 334 279 251 216 197 164 130 129 110 
1909 

Exp 309.7 265.1 239.8 218.5 199.1 179.5 161.3 143.3 119.5 

Total. 487 487 487 487 488 487 487 487 487 
4870 

Measures of Associ.ation.: 
(Between. the Response Va.ria.ble and Predicted Proba.bilities) 
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10 

387 

413.0 

99 

73.0 
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Appendix C: MatLab™ Program 

function A = cutoff(data,mini,max,step) 
%function A =cutoff(data,mini,max,step) 
% 
%Variables 
%----------
%data: Data set used, must be a n x 2 array of values. 
% the first column of zeroes and ones, the second of calculated probabilities 
'l~in: The minimum cut-off value considered 
'l~ax: The maximum cut-off value considered 
%step The step size between cut-off values 
% 
%This function computes the False Positive Rate = FP/(number of patients 
without cancer) 
% = FP/(TN+FP) 
%and the False Negative Rate = FN/(number of Patients with cancer) 
% = FN/(FN+TP) 
·data=sortrows (data, 1) ; 
k=size(data,l); 
"totnoncancer=sum(data(: , 1)==0) ; 
totcancer=k-totnoncancer; 
datanoncancer=data(l:totnoncancer,:); 
datacancer=data(totnoncancer+1:k,:); 

x=mini:step:max; 
s=length(x) 

for i=l:s 
i 
surY_cancN = sum (datanoncancer( : ,2) >= x(i)); % these go to treatment 
without needing it 
surN_cancY = sum(datacancer(:,2) < xCi)); % these will not go to 
treatment and they need it 
FalsePos(i)=surY_cancN/totnoncancer; 
FalseNeg(i)=surN_cancY/totcancer; 
TotPropFailures (i) =(surY_cancN+surN_cancY)/k; 
end; 
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med=sum(FalsePos<FalseNeg) +20; 
fp=FalsePos(1:med); 
fn=FalseNeg(1:med); 
K=fp./fn; 
x2=x(1:med); 
point=sum(K> 10) ; 
x2=x2(point:end); 
K=K(point:end); 
figure 
plot(x2,K) 
A=[x2 K] ; 
title('Effect of Cut off value on K'); 
xlabel('Cut off value') 
ylabel('K value (False Positive/False Negative)'); 
figure 
plot(x,FalsePos,'b-',x,FalseNeg,'g--'); 
legend('FalsePos','FalseNeg'); 
title('Probability of a Wrong Diagnosis (FP or FN) Given a Cut-off 
Value') 
xlabel('Cut-off value') 
ylabel('Probability') 
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