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Abstract 

In this paper we study the dynamics of the spruce budworm sys­
tem under either bird predation pressure, insecticide budworm dis­
ease mortality, or both assuming that the biomass remains constant. 
A model with two equations describing the dynamics between birds 
and budworms is proposed. It is shown that under certain condi­
tions this two dimensional system has limit cycles, that is, it predicts 
the existence of periodic budworm population outbreaks. Numerical 
simulations illustrate the action of insecticides on the budworm popu­
lation size. The possibility of controlling the budworm population via 
insecticides is explored. 
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1 Introduction 

The spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tor­
tricidae), is native to eastern Canada and does not occur elsewhere. There 
has been knowledge of its behavior since 1770. 

We will first give the life cycle of a spruce budworm since we need to know 
at what stage(s) they will be affected by predators and/or insecticides. The 
spruce budworm may have either a one-year or two-year life cycle. This cycle 
is divided into three stages: six instars, pupae, and adults. Moths emerge 
from mid-July to early August. Females lay eggs over several days. The eggs 
hatch in approximately 10 days. Soon after hatching, the first instar larva 
disperse within tree or stand, or even beyond by wind. Surviving larva spin 
hibernacula within which molt to the second instar. Feeding occurs until next 
spring. Second-instar larva overwinter in hibernacula until early May. Soon 
after emergence, they disperse again and settle at feeding sites on host trees. 
During the third to sixth instars, from about early June to early July, larva 
feed on the current-year shoots and the sixth-instar larva typically webs two 
or more shoots together to form a feeding tunnel and feeds on the needles. 
Fifth-and sixth instar larva can complete their development on old foliage, 
but this causes a marked reduction in the size of the pupa and the fecundity 
of the adult. The pupal stage, which varies in length from 8 to 12 days, 
occurs about mid-July. Pupation may take place in the feeding site of the 
sixth-instar larva or the larva may move toward the centre of the branch to 
spin a pupation site. Adult longevity in cages is approximately two weeks and 
adults may be found in the field from mid-July to early August, depending 
on the development rate of the immature stages of the population. 

The budworm population is affected by parasites, spiders, and bird pre­
dation, the last one being the most critical one. Bird predation is greater 
during the sixth instar larval and during the pupal stage. The spruce bud­
worm generally remains at population densities so low that it could be called 
a rare species; but periodically, when forest conditions and weather are fa­
vorable, it is released from this low endemic level and erupts to cause severe 
defoliations and tree mortality over large areas. Periodic outbreaks of the 
spruce budworm appear to be part of the natural cycle of events associated 
with maturing of extensive areas of balsam fir and with climatic variation. 
The history of outbreaks in the Province of New Brunswick have been traced 
for the last two centuries, the average period between outbreaks being ap­
proximately 35 years. 
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Aerial insecticide spraying has been used to control budworm outbreaks 
since the fifties. Budworm outbreaks happens during the sixth instar larva, 
the insecticides are applied during this stage, which takes place during mid­
July until early-August. These insecticides are applied using aircrafts, there­
fore this affects the way that the budworms get in contact with these insec­
ticides. 

This paper aims to study the dynamics of the spruce budworm system 
under bird predation and under insecticide. Our paper has two purposes: 
the first is to demonstrate the existence of periodic budworm population 
outbreaks as a result of bird predation and the second is to predict the 
behavior of budworm functional response under the action of insecticide that 
causes increased budworm mortality. 

2 Predator-Prey Model 

2.1 The model 

The dynamics of the budworm population without the action of predation 
will be described by the logistic equation 

~~ =rW(l- ;) (1) 

where W represents the budworm density, r represents the maximum growth 
rate, and K represents the carrying capacity of the forest. We describe the 
effect of bird-predation by subtracting from the right-hand side of equation 
(1) the term 

aB(A2~W2) 
which represents a Type-III S-shaped functional response. Here the para­
meter a is the maximum predation rate of an individual bird (on average), 
B represents the bird density and A is the budworm population when the 
predation rate is at half of its maximum. Thus we have the following equation 
for the dynamic of the budworm density under bird-predation 

dw (W) (W2) dt = rw 1 - K - aB A2 + w2 . (2a) 
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Equation (2a) has been studied by Ludwig, Jones and Holling [5], under the 
assumption of a constant bird density B. 

In this paper we assume that some birds may leave the system if the 
budworm population goes down. Let fJ, represent the rate at which birds 
leave the system either by migration or death and let c be the predation 
efficiency, that is the number of new birds for each budworm killed. Thus 
the equation for bird density is given by 

dB ( w
2 

) 
dt = -fJ,B + caB A2 + w2 . (2b) 

Following [5] we rescale the variables involved. The substitutions w = 

wA, t = c: and B = cAB, lead to the rescaled system 

where 

dB 
dT = g(B,w) = 

dw 
dT = f(B,w) = 

r r=­
ca' 

- K 
K= A' 
- fJ, 
fJ, =-. 

ca 

(3a) 

(3b) 

Note that w is the proportion of budworms with respect to A, 13 is the ratio 
between bird density and the product of predation efficiency times A, and T 

is the time rescaled by the time that birds take to eat budworms. 
In the remainder of the paper we rename the variables w, 13 and T and 

the parameters r, [( and p, as w, B, t, r, K and fJ" respectively, to simplify 
the notation of our rescaled system. 
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2.2 Equilibrium points 

System (3) has the following equilibria 

E1 (0,0) 
E2 - (O,K) 

E, - (./1' ~ 1'2 (1- K(';: -I',J,- ';/-1'2) 
E4 = ( r (1 _ J-l ) J-l ) J J-l - J-l2 K ( J J-l - J-l2) 'J J-l - J-l2 

We note that E1 and E2 always exist. Since Es has negative (or complex) 
coordinates, it does not have any biological significance, so it is not considered 
here. As for E4 , this point has biological significance only in the case where 
J-l < 1:;2, because in the contrary negative or non-real populations are 
managed. We denote the coordinates of E4 as (B*, w*) where 

and 

2.3 Stability Analysis 

To analyze the stability of each equilibrium point we linearize system (3) by 
calculating the Jacobian matrix 

( 

w2 
1+w2 - J-l 

w 2 

-1+w2 

2Bw ) (1+w2)2 

2w 2Bw 
r ( 1 - K) - (1+w2)2 

(4) 

Since this is a two dimensional system its stability can be determined by 
looking at the trace T and determinant .6. of matrix (4) evaluated at each 
equilibrium point. Each point is stable provided that .6. > 0 and T < o. 
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2.3.1 Stability of the equilibrium point E1 

Evaluating the Jacobian matrix given in (4) at the equilibrium point E1 = 

(0,0) gives 

(5) 

Since the determinant of (5) is negative, E1 is a saddle point. 

2.3.2 Stability of the equilibrium point E2 

Evaluating the Jacobian matrix given in (4) at the equilibrium point E2 = 

(0, K) gives 

(1:;2 - ft 0) K2 . 
-1+K2 -r 

(6) 

The matrix given in (6) has trace T = 1:;2 - ft - r and determinant Ll = 
-1!i2 + rft· Then the stability condition is ft > 1:;2' Note that if E2 is 
stable, then the equilibrium point E4 does not exist. 

2.3.3 Stability of the equilibrium point E4 

This stability is studied only when the conditions for the existence of E4 
hold. Substituting E4 = (B*,w*) in (4) we get 

( 

0 _ 2r(K(JL-1J:~) ) 

-ft r(2ft - 1- 2/1,2 ) • 
Ky'JL-JL2 

(7) 

The matrix in (7) has trace T = r (2ft - 1 - ~) and determinant 
K JL-JL2 

Ll = - 2rJL(K(JL-~+/F2). Since ft < 1:;2 (i.e. K > ~), we have 

Ll > O. Clearly T < 0 in the case ft < ~. Then E4 is stable if 
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Now, in the case /1 > ~, we also need the condition 

for stability of E4. 

2.4 Periodicity of Solutions 

Theorem 2.1. Any solution to System (3) is bounded. 

Proof. This proof is done in several steps. 
Step 1. The solution never leaves the first quadrant because ~~ = 0 when 
B 0 and ~~ = 0 when w = o. Thus the first quadrant is invariant under 
the flow. 

Step 2. If w ~ K, then for every B 

and since ;; ~ 1, 

Therefore w' = f(B, w) ~ o. 

Bw2 

---:- < 0 1 +w2 - , 

2 
Step 3. If w ~ w*, then /1 ~ 1~w2. Consequently 

w2 

-/1+ 1+w2 ~O. 

Therefore B' = g(B, w) = B( -/1 + 1~:2) ~ o. 
Step 4. We write step 4 in the form of a lemma. 

Lemma. Suppose that (B(t), w(t)) is a solution of System (3). Further as­
sume that for some to and some E > 0 B(to) = B, w(to) = iiJ with B ~ ~~ +! 
and iiJ > w*. Then there exists t* > to such that w(t*) = w*. 
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Proof of the Lemma. Since B' = g( B, w*) = 0 and h( w) = 1~:2 is increas­
ing, then for w > w* we have that B' > O. Thus we can see that 

w' < w' + B' 

Then for our case w'(t 2: to) < -E and the graph of w(t) is always below the 
line 

w=-ct+(w+w*) (8) 

which contains the points (to, w), (tl = ~,w*) and has slope -E (as shown 
in Figure 1). 

( WtW * ) 

W 

Figure 1: A trajectory that starts at point w will always be below the line 
w = -ct + (w - w*) 

Then there exists t* < tl such that w(t*) = w*. o 
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Step 5. For every solution such that B(O) > ~~ and w(O) > w*, there exists 
some B2 such that B(t) :::; B2 for all t ~ o. By the above lemma, there is 
some t* such that w(t*) = w*. Let Bl = B(t*). We can apply the lemma once 
more to conclude that there is an orbit r(t) joining the point (Bl' K) and the 
line w = w*, say in the point (B2'W*). Since for w:::; w* B(t) is decreasing, 
and the orbit (B(t), w(t)) cannot cross the orbit r(t), then B(t) :::; B2 for all 
t ~ o. 
Step 6. The cases B(O) < ~~ or w(O) < w* lead to the previous cases. 
Therefore the theorem is proven. D 

Corollary. If f.l > ~ and K > 2~, then System (3) has periodic 
(2JL-l) JL-JL2 

solutions. 

Proof Theorem (2.1) shows that all interior solutions are bounded. The 
analysis in (2.3.3) shows that under the hypotheses of the Corollary, E4 is a 
source node. Then by the Poincan~-Bendixson Theorem (see for instance [8]) 
an interior solution is either a closed periodic orbit or approaches a closed 
periodic orbit as t ----7 00. D 

3 Biological Considerations 

In this section we study the biological interpretation of the previous results. 
To explain this, we use the notation of the original System (2). The trivial 
equilibrium point (0,0) is unstable since without birds budworms present a 
logistic growth. In fact, (0,0) is a saddle point since without budworms birds 
have an exponential decay (see Figure 2). 

The equilibrium point (0, K) is stable when f.l > ;:?:;2. This means that 
the birds are not sufficiently attracted by the budworms to stay, and so all 
birds leave and the budworm population establishes at its carrying capacity. 

The interesting dynamics start when 

(9) 
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w 

B 

Figure 2: Field lines on the axes. Note that when w = 0, the bird population 
goes to zero, while if B = 0, then the budworm population goes to its carrying 
capacity K. 

When (9) is satisfied budworms are attractive to the birds, that is, some 
birds will stay, hence there exists a nontrivial positive equilibrium (B*, w*). 
We have seen that this point is stable if 

i.e. 

J-l 1 -<-
ca 2' 

ca 
J-l <-2' 

This means that half the maximum density for predation is enough to attract 
and keep predators, and so birds stay. In this last case, we can show that 
w* < A, so we conclude that a density of budworms equal to A is more than 
enough to sustain a stable number of birds. 

In the case J-l > ~, the following condition is required for the stability of 
(B*, w*): 

(10) 

(Recall that we still need the condition J-l < A~:;2)' That is, the mortality 

rate is larger than the predation efficacy rate when w = (1 - ~) K. 
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If condition (10) is not satisfied, then the point (B*, w*) is unstable, 
and as we have established in the previous section, the system has periodic 
solutions. Hence, our model predicts the existence of periodic outbreaks, as 
they have been observed in ecosystems in North America ([6]). 

3.1 Quantitative Solutions 

Now we discuss some numerical solutions to System(2). The parameters r, K 
and A are estimated as in [5]. According to the calculations in [5], r ~ 1.52, 
K ~ 9,031,200 and A ~ 28,238. Recall a is the maximum budworm predate. 
According to [4], a bird can eat 6 gr. of food per day. The weight of a 
budworm is about 0.08 gr., so that each bird eats approximately 75 budworms 
per day. Hence, a reasonable estimate for a is a ~ 75 x 365 ~ 30000. 

Unfortunately, f.-l and c are unknown parameters. However, they can be 
chosen so that instability conditions of the point (B*, w*) are satisfied. Note 
that (B*, w*) exists and is unstable if 

The above values of r ,K ,A and a approximated above imply 

J-L 15,047.2 < - < 29,998.8. 
c 

Figures 3 and 4 were obtained for the cases f.-l = 0.4 and c = 0.00002. Since J-L 

is the difference between the birds' birth and death rates (as well as migration 
rates), J-L = 0.4 means the birds would decrease to 67% of the population 
within a year in the absence of budworms. Note that with these values, the 
budworm population has approximately three outbreaks within 100 years. 
This agrees well with existing data (see for instance, [6, 7]). 
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Figure 3: Bird-budworm densities phase-plane. Here, the initial conditions 
were Birds(t = 0) = 13, Budworms(t = 0) = 352,000. Note that the solution 
to the system stabilizes rapidly to the limit cycle. 

Birds 

3Xl0 6 tOO 

6XU' 

4Xl.O' 

txtO' 

to 40 

Figure 4: Outbreaks of budworm and bird population densities predicted 
by the model under study. Note that approximately three outbreaks appear 
every 100 years. 

4 Insecticide Response on Spruce Budworm 
Population Densities 

4.1 Analysis 

Now we introduce a functional response describing the action of insecticide. 
We propose the following response 

(JO(fir+1 
1 + (fir 
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The parameter (Y models the maximum budworm mortality rate due to the 
action of the insecticide. The highest mortality rate is only achieved for high 
values of w, since either insecticide is not sprayed in areas of small budworm 
density, or insecticide is not efficient when budworm density is smaller than 
some critical density, say n. Hence, budworm deaths due to insecticide are 
approximately (YW, when w > n, and proportional to c~r+1 when w < n. 
Thus our modified system of equations is: 

dB 
dt 
dw 

dt 

4.2 Determining the Parameters Values 

By varying the parameters (Y with respect to rand n we found the following 
three cases: 

CASE 1 
Here we want to exterminate all the budworms as soon as they are born, 

thus we let (Y = 1.52, and n = 1. In this case we have that our functional 
term is linear and it goes to zero. Thus the periodic orbits are broken (See 
Figure 5). 

Bi:rd.5' 

1.4 
J.t 

1.0 

Budtoo:rms 

~soooo 

~ooooo 

tsoooo 
tooooo 
1.soooo 
1.00000 

soooo 

-l'---to--40--S0--$0--1.~OO tim. 

Figure 5: Linear response of budworm-bird population densities predicted 
by the model with insecticide. 

CASE 2 
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In this case we want to fumigate a small percentage of budworms ~ 20% 
whenever the maximum budworm growth population exceeds the control of 
the predators and the maximum scale of budworms density saturation level 
(which occurs when we let a = .03, and n = 1,000,000). In this case we are 
going to have three full-periodic cycles in 100 years for both birds and worms 
(See Figure 6). Comparing this result with the model without insecticide we 
can see that the results on both cases are almost the same. 

Birds 

tOO 

4><1.0· 

Figure 6: Outbreaks of large budworm-bird population densities predicted 
by the model with insecticide. 

CASE 3 
For the last case we want to kill a large percentage of budworms ~ 90% 

when the maximum budworm growth population exceeds the control of the 
predators and the maximum scale of budworms density saturation level 
(which occurs when we let a = 1.4, and n = 1,000,000). In this case 
we are going to have three and a half periodic cycles in 100 years for both 
birds and worms (See Figure 7). 

The analysis shows that budworm survival is related to population den­
sity. In summary, we conclude that the use of insecticide has limited impact 
on the budworm population outbreaks. The use of insecticide does not break 
the periodic orbits; on the contrary, the generation survival is highest, thus 
having more outbreaks than before. 
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Figure 7: Outbreaks of large budworm-bird population densities predicted 
by the model with insecticide. 

5 Conclusions and Future Work 

Insecticide is currently applied only when we have a large budworm density. 
This could be an important factor for the insecticide's efficiency. One would 
have to analyze the result of applying insecticide before an out break occurs. 
In our simulations we notice that if we apply insecticide when we have a small 
budworm population our functional term is linear, thus the periodic orbits 
can be broken, although the ecological consequences could be disastrous!. As 
we have seen, periodic orbits which simulate the budworm outbreaks could 
not be easily broken by the use of insecticides. Insecticides are not necessarily 
an efficient method to control budworm outbreaks. 

We obtained periodic solutions when studying the budworm-bird popu­
lations as a predator-prey model, and these periodic solutions corresponded 
to outbreaks. However, our model does not include possible changes in the 
biomass. We are not certain if the inclusion of the biomass dynamics support 
the existence of limit cycles (See Ludwig2 et. aL in [5]). 

Our model, while providing reasonable qualitative pictures, does not 
match the data. The amount of birds in our results is about 30 times the 
number given in the real data. These differences must be attributed to the 
absence of space considerations in our modeL The results obtained in our 
model are as expected. We assume that the bird population depends only 
on the budworm population and sufficiently large budworm densities lead 
to large bird densities. We also assume that birds leave the system in the 

1 Recall that both species' equilibrium goes to zero when a linear insecticide response 
is considered. 

2The system presented in the cited reference does not have periodic solutions. 
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case of null (or very small) budworm densities, which is not necessarily true 
since distinct bird species do not feed solely on budworms. Furthermore, 
it is known that migration, birth and mortality rates for birds depend on 
various factors, including climatological and seasonal characteristics of the 
environment. 

We have not included the life instars of the budworms. Hence, we can 
not look at the impact of applying insecticides on different life stages of 
the budworms. However, it is known that existing insecticides do not affect 
the early life stages of the budworms (eggs or small larva). The lack of 
effectiveness of insecticides in the early stages of budworm development may 
be in fact critical for its dynamics and outbreaks. In future research, we would 
like to produce a model where distinct typical life instars are considered, in 
order to study the effects of insecticides in these stages, and consequently 
studying their impact on population outbreaks. 
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