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Abstract 

Failure to properly complete antibiotic treatment can result in the even­
tual development of bacterial strains resistant to antibiotic therapy. If present 
trends in antibiotic misuse continue, infections that are easily treated today 
may not be so in the future. We consider a stochastic model and examine the 
conditions of misuse under which resistant strains will thrive. Virulence differ­
ences in the competing strains are taken into consideration as a possibility for 
superinfection. The probability of extinction is calculated for each strain. We 
predict the long-term effects of antibiotic misuse and consider the specific case 
of Streptococcus pneumoniae, the bacteria that causes pneumonia. 
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1 Introduction 

The rise of bacterial strains resistant to antibiotic therapy is a new problem with 
old roots. Since the 1940's, widespread availability of antibiotics has been a part 
of American life. "Miracle drugs" like penicillin transformed the medical world by 
turning once lethal illnesses into easily treatable infections [17]. However, until very 
recently, the clinicians that routinely prescribed these medications and the public 
that willingly consumed them were blissfully unaware that as the human race waged 
war on bacteria, bacteria were fighting back. Now, nearly half a century after the 
dawn of antibiotic salvation, humanity takes notice as our treatments begin to falter. 

The lifespan of a human being exceeds that of a bacteria by orders of magnitude. 
As a result, a case of pneumonia that lasts two weeks in a human might represent 
thousands of generations of bacterial progeny. With each generation, some species 
evolution inevitably occurs. Treating the bacteria with antibiotics causes them to 
undergo selective evolution [5]. Those cells less vulnerable to the methods by which 
the drug attacks will outlive those that are not. As the weaker bacteria die and the 
bacterial community diminishes in size, the pain of the infection may subside, and 
the infected individual may choose to stop treatment. If this occurs before all the 
bacteria are eliminated, the remaining bacterial cells and their more resistant traits 
will be able to freely proliferate, thus increasing the reservoir of resistant genes in the 
population of the pathogen. 

If we view this example of evolutionary pressure in the context of all cases of 
pneumonia treated with antibiotic therapy in the last sixty years, the magnitude 
of the problem of selective evolution becomes clear. We are perhaps justified in 
suspecting that misuse of antibiotics is a non-trivial factor in the development of 
resistant strains. 

Since the advent of antimicrobial therapy, enthusiastic pharmaceutical companies 
have devoted many resources to the discovery, production, and improvement of antibi­
otics. However, as bacterial strains continue to evolve more sophisticated methods of 
resistance, the challenge of defeating them increases [10]. It has been estimated that 
30% of bacterial strains are resistant to antibiotics [17]. Today, the World Health 
Organization reports that new drugs are no longer being produced fast enough to 
replace those that have lost effectiveness [18]. This is sobering news in light of the 
many factors currently contributing to the rise of new antibiotic resistant bacteria. 
The countless number of people who neglect to complete their entire course of antibi­
otic treatment, are not the only ones at fault. Physicians also share the blame. The 
Center for Disease Control estimates that twenty percent of all antibiotic prescrip­
tions written each year are for viral infections which do not respond to antibiotics 
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[13]. Alarmingly, in one survey 80% of physicians questioned confessed to having pre­
scribed antibiotics as a result of patient pressure and against their better judgment 
[17]. Approximately 50 million unnecessary prescriptions are prescribed annually. In­
dustry also contributes to this epidemic of misuse. Only half of the antibiotics used 
each year are prescribed to humans. Many of the same medications prescribed for 
human treatment are distributed to animals. The animals are exposed to low dosages 
for long periods of time. The drugs are used for treating or preventing infection and 
to promote growth. These low dosages encourage growth of resistant bacteria. An­
tibiotics are used to control or prevent infections in agriculture. Growth of resistant 
strains is possible in the areas where the aerosol antibiotics become dilute, thus re­
moving only the sensitive, non-resistant bacteria. The resistant strain can then be 
introduced to the intestinal tract of humans after consumption of the produce [17]. 
While it is interesting to consider the degree to which each of these factors contributes 
to the increasing trend in antibiotic resistance, we choose to focus only on the role of 
patient negligence. 

It is our goal to examine analytically the effects of failure to complete medication, 
herein referred to as antibiotic misuse, on the development of antibiotic resistant 
strains. To do this we specifically consider the evolution of penicillin resistance in 
Streptococcus pneumoniae because it is a phenomenon already well observed in the 
medical community. At present, estimates of S. pneumoniae strains that have de­
veloped penicillin resistance range from three to thirty-five percent [14]. However, 
penicillin is simply one of many antibiotics found to be insufficient in treatment. 
Strains of S. pneumoniae have become resistant to numerous antibiotics including 
penicillin, erythromycin, macrolides, tetracycline, TMP /SMX, and Chloramphenicol 
[3]. This pathogen causes the pneumococcal diseases otitis media (ear infection), si­
nusitis, arthritis, periontitis, sepsis/bacteremia, meningitis, pneumonia, neurological 
sequelae and/or learning disabilities after meningitis, and deafness after recurring 
otitis media [13], [14]. These infections cause approximately 100,000-135,000 hospi­
talizations and 40,000 deaths annually in the United States [13]. Pneumonia caused 
by Streptococcus pneumoniae has become the fifth leading cause of overall deaths and 
is the highest cause of deaths due to infection [16]. Once an antibiotic resistant strain 
emerges, it may easily spread far and wide. Investigators have noted the migration 
of resistant strains for example, from Spain to the U.K, the U.S, South Africa, and 
several other countries [14]. The movement of the resistant strains creates the poten­
tial for a world-wide epidemic of untreatable pneumonia. Hence, the spread of these 
untreatable strains is not trivial. 

To determine the role of antibiotic misuse in preventing or inducing a potentially 
uncontrollable S. pneumoniae epidemic, we develop a generalized stochastic S-I-S 
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model is developed in which individuals who fail to complete antibiotic treatment 
may develop an infection of resistant bacteria. By varying the probability that an 
individual fails to complete treatment we expect to account for the contribution of 
antibiotic misuse to the development of a resistant strain. We investigate the pos­
sibility that a resistant strain eventually replaces the treatable strain as a result of 
misuse by calculating the probability of extinction of each strain. 

In Section 2 we propose a model for this phenomenon. In Section 3 we use 
continuous-time Markov chain analysis to calculate the probability of extinction for 
each of the two strains. In Section 4 we examine the effects of some parameters on 
the probability of extinction for each strain. In Section 5, we simulate the develop­
ment of a resistant strain and its interactions with the non-resistant strain for varying 
parameter values. In section 6, we discuss the biological implications of our findings 
and suggest future avenues of investigation. 

2 The Model 

We consider a modified, two-strain, S-I-S stochastic model with superinfection to 
examine the development of a resistant bacterial strain (see Figure 1). The population 
of uninfected, susceptible individuals is represented by state S. States 11 and 12 
represent individuals infected with non-resistant and resistant bacteria, respectively. 
States Tl and T2 consist of infected populations undergoing antibiotic treatment. We 
use N = S + 11 + Tl + 12 + T2 to represent the total population. Individuals in Ii 
states are assumed to be infectious. Those in Ti states are not. 

Individuals infected with non-resistant bacteria will remain in an infectious state, 
11, until symptoms appear and antibiotic therapy begins, at which point they move 
to state T1. The possibility of superinfection is also considered: individuals infected 
with non-resistant bacteria may move to state 12 via contact with that population. 

When in state Tl individuals who complete treatment will return to the susceptible 
state, S. Those who do not will progress to one of three alternatives. They may (i) 
return to state S when the immune system eliminates remaining bacteria, (ii) return 
to state 11 due to a resurgence of original bacteria, or (iii) advance to state h if 
residual bacteria have evolved antibiotic resistance due to the selective pressure of 
antibiotic therapy. 

Individuals who enter state 12 , either by failing to complete treatment in Tl or by 
direct contact with others in 12 , will remain in that state until symptoms appear and 
treatment begins, at which point they move to state T2• In T2, individuals are treated 
with the same antibiotic administered to those in state Tl but due to the nature of 
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12 infectives, this treatment will be highly ineffective in eliminating the resistant 
bacteria, and even individuals who complete treatment in state T2 will return to the 
susceptible state at a very low rate. Those who fail to complete treatment will remain 
in state T2• 

We recognize that our model is very simple and does not include all the factors that 
contribute to the development of resistant strains. For instance, we do not include 
the possibility that individuals in T2 might be treated with an alternate prescription 
to which the bacteria is not resistant. Consequently we neglect the possibilities that 
multiple resistant strains might develop simultaneously or that individuals might not 
have to spend such an extended period of time in the treatment state for strain 2. In 
addition, factors such as bacterial mutation and adaptation independent of antibiotic 
misuse are not specifically considered. Nonetheless, we feel that this simple model 
reflects some of the more important aspects of antibiotic misuse and will allow us to 
study the dynamics of disease. 

Parameters 
f3i 

a 

tt 
Vi 

(Pi 

'Ya 
'Yb 

1'2 
Pi 

ql 

q2 

Table 1: Parameter List 

Description 
per capita contact rate of individuals in Ii 
per capita birth rate 
natural mortality rate 
disease induced mortality rate for strain i (dependent on virulence of 
strain i) 
rate at which infected individuals seek treatment, here considered to be 
the same as the rate at which first symptoms appear 
recovery rate of individuals infected with strain 1 who complete treatment 
recovery rate of individuals infected with strain 1 who do not complete 
treatment 
recovery rate of individuals infected with strain 2 who complete treatment 
probability that an individual infected with strain i completes antibiotic 
treatment 
probability that an individual infected with strain 1 will remain infected 
if treatment is not completed 
probability that an individual infected with strain 1 will become infected 
with strain 2 as a result of failure to complete treatment 
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Figure 1: A model for the development of antibiotic resistant bacteria as a result 
of antibiotic misuse. Since this is a stochastic model, all rates are assumed to be 
parameters of exponential distributions. 

3 Methodology 

The goal of our research is to examine conditions under which the two strains coexist 
and under which the resistant strain replaces the non-resistant strain. To do this we 
first calculate the probability of extinction of each strain in terms of the parameters 
that will influence its extinction. This is done by finding the inverse of each strain's 
basic reproductive number, Ro [4]. The basic reproductive number represents the 
expected number of secondary infections caused by a single infectious individual in a 
population of susceptible, a useful tool in predicting the future of epidemic diseases. 
In general, if Ro > 1, the disease goes extinct with probability k whereas it dies out 
with probability 1 when Ro :::; l. 

As a result of the two-way interaction between states 11 and Tl in our model, con­
ventional methods for calculating Ro become complicated and alter its interpretation 
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as a probability of extinction. Hence, we use the method of continuous-time Markov 
chain analysis outlined by Hernandez [4]. This method involves creating an absorbing 
state model (Figure 2) and using a matrix of transition probabilities to calculate Ro 
for each strain (Figures 1 and 2). We use Rgl and Rb21 to represent the number of 
secondary infections caused by an individual when infected with strain 1 and strain 2 
respectively. 

3.1 Absorbing State Model 

To begin the absorbing state model, we separate the states 5, 11 , Tl, 12, and T2 

into three categories: active infectious states, passive infectious states, and absorbing 
states. An infected individual in an active infectious state infects others. In a passive 
infectious state the individual is infected but not infectious, yet still communicates 
with an active infectious state. Absorbing states mark the end of the infectious 
period; once entered, these states are never left [11]. We direct all possible ways of 
ending an infectious cycle into one absorbing state, .6.. In our model, 11 and 12 are 
actively infectious populations. Since we assume that the individuals in the 'Ii, states 
are infected but not infectious, T1 is passively infectious since it communicates with 
12, but T2 does not communicate with an active infectious state. So, T2 along with 
5 and the deaths from each state make up the absorbing state. Hence the active 
infectious states are 11 and 12, the passive infectious state is Tl, and .6. consists of 5, 
T2 , and deaths. Figure 2 illustrates a modified transition model which we use to find 
the expected time an individual spends in each state before going to absorbtion. 

3.2 Transition Matrix 

We now construct a matri?C P of one-step transition probabilities where each element 
Pij represents the probability that an individual moves directly from state i to state 
j. Finding limn -+oo pn yields a matrix with identical rows. The elements in each 
column are the same, indicating that as time goes to infinity the number of visits an 
individual makes to each state becomes independent of their state of origin. So we 
only concern ourselves with a single row of the matrix which we call the vector II. 
From this we compute the expected time spent in state j and multiply it by (3j which 
illustrates the general process for calculating Ro when dealing with one infected state. 

In our model, we specifically look at two strains of bacteria causing disease and 
deal with two infected states. We need to calculate Rg1 for strain 1 and Rg1 for 
strain 2, which complicates the calculation of a general Ro. To do this, we must use 
two transition matrices, Ph and Ph, and manipulate them using the continuous-time 
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Figure 2: Absorbing state model 

Markov chain process outlined in [4] (see appendix for further computation). This 
gives us the vector II relating to Rbll and IT relating to Rb2l . Next, we calculate Oij, 

the transition rate from state i to state j, for each state in our model. Note that we 
only consider i =1= j since i = j =} Oij = O. Using these rates we input the transition 

probabilities, Pij = ~:i~ij' for each state into a 4 x 4 matrix [4] (see Equations (1) 

and (2)). Notice that Ohh = 0 because we neglect the superinfection in our model 
at the beginning of the epidemic. Assuming initial conditions of the infectious states 
are small, we see that for large N, I~2 is approximately zero. Hence, we feel justified 
in ignoring superinfection and leave that case for future research. In addition, we 
assume that "'fa = "'fb which simplifies the calculation of Rbll , but does not affect 
Rb2l . In section (5), we consider a more realistic simulation where "'fb ~ "'fa. PIll the 
transition matrix for Rgl is 
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II TI 12 

II 0 81J Tl 0 
8hT1+8h A 

TI 8T11l 0 8T112 

8T1h +8T112+8T1A 8T1h +8T1 12 +8T1 A 

12 0 0 0 

~ 1 0 0 

Likewise, P12 , the transition matrix for Rh2], is 

II TI 12 

II 0 
81JT1 0 

811T1 +811 A 

TI 8Tl1l 0 8T11 j! 

8T1h +8T112+8T1A 8T111 +8T112 +8T1 A 

12 0 0 0 

~ 0 0 1 

where the transition rates for these matrices are 

t5hT1 = CPI 
t5h A = J-l + VI 

t512T2 = CP2 
t5h A = J-l + V2 
t5T1h = qI (1 - Plhb 
t5Tl12 = q2(1 - Plhb 
t5T1 A = Pl"/a + (1 - qI - q2)(1 - Plhb + J-l + CVI 

3.3 Calculation of Rgl and R62l 

~ 

8/1 A 

811T1 +8h A 

8T1A 

8T111 +8T1 12 + 8T1A (1) 
1 

0 

~ 

8/1 A 

8hT1+8h A 

8T1A 

8T111 +8T1 12 +8T1 A (2) 
1 

0 

To calculate RhI
] which is the number of secondary infectious caused by a single 

infectious individual in II, we first assume that every infection starts in II. Then in 
the last row of the transition matrix Ph, state ~ communicates with state II with 
probability 1. Let E[Zji)] be the expected time spent in state j before going to state 
~ when starting in state i. In our model, the average number of infections caused 
by an individual starting in II includes the expected time spent in either or both 
infectious states before complete recovery or death. Since we deal with the possibility 
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of becoming infected with strain 2 when an individual fails to complete treatment, 
R~l] may consist of secondary infected individuals from both II and 12 • Thus, 

(3) 

Using the transition matrix Ph and the Markov chain process [4], we find the sta­
tionary distribution 

in order to calculate E[Zjh)j. In analyzing the vector II, the first element, 7rIll rep­
resents the proportion of visits made to state II. The fifth element, 7rb,., displays the 
proportion of visits made to the absorbing state. Dividing 7rh by 7rb,. reveals the total 
number of visits to II between two visits to Do. A similar calculation is made for 
7r

I 2 • Multiplying these values by the average amount of time spent in the respective 
7rL;,. 

infectious state during each visit gives us E[Zjh)], the expected time spent in state j 
before absorption when the first infected individual starts in state II. By definition [4], 

where 8j is the rate at which an individual leaves state j. In other words, 1. is the 
J 

average time spent in state j. So ,f- = <p +1+ and,f- = <p +1+ . Substituting these 
VII I JL VI VI2 2 JL V2 

values into (1), 

R~l] = /31 ~ + /32~ 
7rb,.8h 7rb,.8h 

(4) 

R[l] _ /31(11 + J..l + C1V1)(¢2 + J..l + V2) + /32q2¢n1(1 - PI) 
=> 0 - (¢1 + J..l + V1)('Y1 + J..l + C1V1 - q1¢n1(1 - P1))(¢2 + J..l + V2)· 

(5) 

Now, the calculation of R~2] involves the assumption that every infection starts in 
12. In the transition matrix Ph, Do interacts with 12 with probability 1. Thus, the 
average number of secondary infections caused by an individual starting in 12 is 
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(6) 

(7) 

This definition comes from the impossibility of becoming infected with strain 1 when 
every infection starts as strain 2, hence E[ZX2

)] = O. Using the transition matrix Ph 
and the Markov chain analysis [4] to find the stationary distribution 

we calculate E[Zg2)] and substitute it into (5). Therefore, 

(8) 

(9) 

3.4 Probability of Extinction 

Once we have the values of R~11 and R~21, the probability of extinction for each 
strain becomes an easy computation. Let p~h) be the probability of extinction of 
strain 1 and p~h) be that of strain 2. Then the probability that both strains go to 
extinction, Pe *, is p~h) p~h). We use the definition of probability of extinction for 
strain i given in [4], Peril = -;k. However, this assumes only one infected class for one 

Ro 
strain of bacteria. We extend the definition to our model, including two infectious 
states for two bacterial strains and finding the probability of extinction for each strain. 
Therefore, 

::;. p(h) = ((PI + p, + VI) (')'1 + P, + CIVI - Ql<Pnl(l - Pl))(<p2 + P, + V2) (11) 
e (31(1'1 + P, + CIVl)(<P2 + P, + V2) + (32 Q2 <PI 1'1 (1 - PI) 
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(12) 

(13) 

Thus, 

P
e
* = (c/h + P, + Vl)(1'1 + P, + CIVI - Ql<Pnl(l- Pl))(<p2 + p, + V2)2 (14) 

f31f32(')'1 + p, + CIVl)(<P2 + P, + V2) + (f32)2 Q2<Pnl(1 - PI) 

Note that Rgl takes on a different meaning from a one-strain model because we 
cannot determine which of the two strains infects a typical individual. We do not 
have a definition for a general Ro. Hence, Pe * is only an approximation. 

4 Analyzing the probability of extinction 

In order to determine the significance of the probability of extinction values obtained 
in Section 3, we create a number of three dimensional plots. Since we are interested 
in examining the effects of antibiotic misuse on the rise of resistance, we focus on 
the parameters that describe misuse, PI, Ql, and Q2 in our analysis. Because the 
probability of extinction of strain 2 is not influenced by these values, we examine it 
in terms of f32 and <P2. 

4.1 Selecting Parameter Values 

Before the three dimensional plots can be made it is necessary to select fixed numerical 
values for those parameters which will not be varied. A review of numerous studies 
has enabled us to select the following values (the sources are given below). However, 
when considering these numbers it is important to note that we expect them to be no 
more than rough approximations. In many cases, they were borrowed from studies 
which did not focus primarily on obtaining them. Thus, the methods by which they 
were originally calculated may lack rigor. Nonetheless, they will suffice to demonstrate 
the general behavior of our system. Note, all parameter values have units (years )-1 
unless otherwise noted. 

p, - 0.0133. The life expectancy of an average person in the United States is 75 years 
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[15], so, ~ = 75 '* fJ, = 7~ = 0.0133. 

a - 0.0117. The population of the U.S. is increasing by 1.17% annually [19]. So, 
(a - fJ,) = 0.0117 '* a = .0133 + fJ, = 0.0133 + 0.0117 = 0.025. 

Cl - 0.1. Antibiotic treatment of bacterial pneumonia has reduced disease induced 
morbidity by 90%, [20]. SO, CIVI = VI - .9Vl '* CIVI = (1 - .9)Vl '* Cl = 0.1. 

"fa - 36.5. A typical antibiotic treatment of bacterial pneumonia lasts 10 days, 
[16]. If the expected duration of treatment is ..L = 10 days= 0.0274 years then, 

"fa 

"fa = O.O~74 = 36.5. 

"fb - 52. VanFleet [12], estimates that individuals who do not complete antibiotic 
therapy for bacterial pneumonia typically stop treatment after seven days, when 
symptioms have fully abated. The expected duration of treatmeant for these in­
dividuals is thus, 1...= 7 days = 0.0192 years, so "fb = 52. 

"fb 

ql - 0.07. The probability that an individual with bacterial pneumonia will expe­
rience a reccurance of the disease is 7% [7]. 

We were unable to find consistent and accurate values for the remaining parame­
ters in the biological literature. When possible we estimate them using available 
biological data. In other cases we base our approximations on the relationships these 
parameters should have with respect to other known parameters. Through a series of 
simulations and adjustments we obtain the following values for which strain 1 will be 
able to sustain itself consistently in the presence of strain 2 for up to seven years (the 
longest period of time we consider). We feel this condition is requisite for accepting 
these values because a model in which strain 1 cannot exist in the presence of strain 2 
for an extended period of time under normal conditions will not accurately reflect the 
true behavior of the system. We find: 

/31 - 146. This value indicates that a person in the non-resistant infectious state 
(h) causes 0.4 infections per day, or approximately 2 infections every five days. 

/32 - 82. This implies that a person in the resistant infectious state (12) will in-
fect 0.23 persons per day, just over one person every five days. This value is bio­
logically correct in that it reflects the less invasive, more virulent character of /32, 
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VI - 0.15. Roughly thirty percent of untreated pneumonia cases result in death, 
[6]. However, through numerical simulation we found that the most realistic out­
comes were obtained only when disease induced mortality was around 0.15. 

V2 - 0.2. We expect strain 2 to cause death more frequently than strain 1 due to 
the fact that strain 1 is more invasive, however less virulent, while strain 2 is less 
invasive and more virulent. 

C2 - 0.9. Treating penicillin resistant strains of S. pneumoniae with penicillin will 
not significantly reduce the impact of the infection on the carrier. We expect that 
treatment will not significantly reduce disease induced mortality and so estimate 
this value. 

CPi - 73. Symptoms of bacterial pneumonia may appear between 12 hours and 2 
weeks after infection [9]. We found that 5 days provided realistic results. We 
expect individuals will seek treatment when symptoms surface, so tl' the ex­
pected time until individuals move from II to TI , is 5 days = 0.0137 years. If 
tl = 0.0137, then CPI = 73. 

CP2 - 73. Resistance to penicillin will not change the rate at which bacteria multi­
ply. We thus assume that symptoms will appear at the same rate in those infected 
with resistant and non-resistant strains. 

"'(2 - 20. Treatment of the resistant strain will be relatively ineffective and should 
take a longer period of time than treating the non-resistant strain. Through trial 
and error we found that a value of 20 gives realistic results. This value represents 
an 18 day treatment period. 

PI - !. Physicans [9] estimates that! to ~ patients with bacterial pneumonia comp­
lete their treatment. We found that a value of ! provided more realistic results 
for patients with strain 1. 

P2 - ~. If ~ of patients with strain 2 complete treatment realistic results are ob­
tained. 

q2 - 0.01. We estimated that the probability that an individual infected with strain 1 
will develop strain 2 as a result of incomplete treatment is very low. 
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4.2 Numerical Analysis of the Probability of Extinction 

First, we analyze the probability that strain 1 will go extinct in terms of qI, the 
probability that an individual who does not complete treatment goes back to strain 1, 
and q2, the probability that an individual who does not complete treatment goes back 
to strain 2. We find that when ql and q2 are both zero the probability of extinction 
is largest, ~. When q2 is one, then the probability of extinction of strain 1 is lower, 
therefore strain 1 benefits from secondary infections in 12 , Thus, it is best for strain 1 
if they go back to II, it is next best if they go to 12 , and it is not so good if they 
go back to S. We think the reason for this strange behavior where strain 1 benefits 
from causing secondary infections in strain 2 has to do with the difficulty of defining a 
single strain Ro in a two strain stochastic model. Strain 1 prefers to have individuals 
from Tl go back to II because they can infect other people. If this behavior is repeated 
then the probability of extinction of strain 1 is almost zero because we have a cycle 
between II and T1. 

Next we analyze the probability of extinction of strain 1 in terms of p and ql. The 
highest probability of extinction is 0.5 when p = 1 which means that everyone takes 
their medication. When this happens ql has no effect over the individuals. Thus, 
everyone becomes susceptible and they can not go back to strain 1 and infect other 
individuals. As p decreases, ql has more influence over the probability of extinction. 
When the values of ql = 1 and p = 0, the PeCh ) is zero. So, as the probability of 
p increases PeCh ) increases. We also analyzed the PeCh ) in terms of q2 and p. The 
values of q2 do not affect PeCh ) as much as the values of ql. For example even when 
p = 0 and q2 = 1 the PeCh ) is 0.3. This tells us that q2 is not a strong factor in the 
PeaCh). Aside from this difference, q2 causes the same kind of behavior as when we 
analyzed ql and p. 

Now we analyze the same probability only with qh = 155(2.35 days before an 
individual seeks treatment). The results are generally the same but when people look 
for treatment after 2.5 days the disease will definitely go extinct for low values of ql 
and high values of p (see Figure 3). Also, when p = 1 strain 1 will go extinct for 
any value of ql. When we analyze the PeaCh) in terms of p and (PI we see that for 
every value of (PI greater than 160(2.28 days before an individual seeks treatment) 
the disease always goes to extinction. 

Next we analyze the probability of extinction of strain 2 in terms of 1;2 and /32, 
We choose these parameters because the PeCh ) does not depend on p, ql and q2. We 
notice that having our parameters /32 = 81. 76 and 1;2 = 73 the disease has a very 
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Figure 3: Probability of extinction of strain 1 

high probability of extinction. When /32 < </;2 we find that strain 2 will always go to 
extinction. In general, it looks like Pe(I2) goes to one when /32 approximately equals 
</;2, In order for strain 2 to sustain itself /32 has to be greater than </;2 (see Figure 4). 

Now we analyze the probability of extinction of both strains, Pe*. When the 
values of ql and q2 are equal to one, Pe* is almost zero. This is because more people 
are getting infected with both strains. But we also notice that Pe* will dramatically 
increase when less people are becoming infected with strain 1. In these cases q2 does 
not have as much influence as ql on Pe*. 

When the value of ql decreases and p increases the probability of extinction of both 
strains will increase to a maximum of 0.45. Thus, Pe* is largest when more individuals 
finish their medication and less individuals who do not finish their medication become 
infected with strain 1. If the probability that an individual takes their medication 
is almost zero and a large number of individuals become infected with strain 1 as a 
result, then the Pe* will be almost zero. This behavior relates to Pea(h) where p, ql 
and q2 affect Pe* in the same way, this happens because the Pe(h) does not depend 
on either of these parameters. Thus under these conditions multiplying Pe(h) by 
Pe(h) is equivalent to multiplying it by a constant and changes only the slope of the 
graph, not its overall behavior (see Figure 5). 
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Figure 4: Probability of extinction of strain 2 

Figure 5: Probability of extinction both strains 
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5 Stochastic Simulations and Results 

We simulate the existence and evolution of bacterial strain 1 and strain 2 introduced 
to a population of susceptible individuals using Matlab. Plotting the number of 
individuals in II and TI versus time on one graph and the number of individuals in 12 
and T2 versus time on another graph allows us to compare the behavior and lifespan 
of each strain. In our stochastic simulations we use the parameter values listed in 
section (4.1) unless otherwise noted. 

By varying the probability that an individual completes antibiotic treatment, we 
take note of the relationship between the two strains over time. Since we assume 
that strain 1 is non-resistant and strain 2 is resistant to antibiotics, it appears that 
the probability that an individual infected with strain 1 finishes treatment directly 
influences the survival of strain 1 and indirectly influences the survival of strain 2. 
Through simulations, we find parameter ranges for coexistence, short-term domina­
tion of strain 2 after the extinction of strain 1, and simultaneous extinction of both 
strains. First, coexistence of the two strains occurs when PI < 0.8. This means that if 
less than 80% of people infected with strain 1 complete their medication, 12 sustains 
a small endemic population with periodic outbreaks. This situation has the potential 
to become a problem because one of the outbreaks, shown as a peak in the graph of 
12 versus time, could jump above II and cause an epidemic. Then strain 2 would get 
the chance to take over as strain 1 goes extinct (see Figure 6). Now, when PI 2: 0.8, 
the resistant strain briefly overtakes the non-resistant strain, but dies out shortly 
thereafter. So we see that both strains eventually go extinct and most likely will not 
cause a significant problem when more than 80% of the individuals in II complete 
treatment. Also, we note that as PI increases to 1 from this value, it takes less time 
on average for strain 2 to die out. At PI = 1, h dies out almost immediately which 
makes sense because if everyone in II finishes their medication, they all go back to 
being susceptible, and hence, superinfection decreases dramatically (see Figure 7). 
Conversely, when PI = 0, the two strains coexist for a short time (less than one year) 
and die out together. We observe that strain 2 needs a constant or periodic influx 
from strain 1 to survive. While everyone fails to complete treatment, without the 
presence of strain 1, strain 2 cannot sustain itself and inevitably goes extinct. Here 
we must note that the critical value of PI = 0.8 only applies to this specific set of 
parameters. Varying virulence or per capita rate of contact may shift this value. 

Next, we vary the parameters qI and q2 which represent the probabilities that an 
individual being treated for strain 1 remains infected or acquires strain 2, respectively, 
when treatment is not completed. Similar to the previous simulations varying PI, we 
find ranges for qI and q2 where the two strains coexist. While qI > 0.1 and q2 < 0.01 
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we see strong coexistence for long periods of time interjected with short, periodic 
outbreaks of strain 2. Over a seven year time scale, we find strain 2 dominating 
strain 1 for several brief periods and then receding to its low endemic population size. 
A greater ql value means more people go back to state 11 after stopping treatment. 
Thus, an increased flow to 11 easily sustains strain 2. This behavior is similar to that 
under our standard paramenter values (see Figure 6). Increasing ql, we notice that 
the time between outbreaks of strain 2 decreases (see Figure 8). On the other hand, 
increasing q2 > 0.01 can disrupt 11 and cause accelerated probabilities of extinction of 
both strains with a short peak of strain 2 before extinction. Combining high q2 and 
low PI values, we also see increases in the frequency of periodic outbreaks or peaks in 
12 , ending with simultaneous extinction of both strains (see Figure 9). Thus, a higher 
probability that an individual infected with strain 1 moves to 12 along with very few 
people finishing their medication results in more strain 2 outbreaks over time. 

Lastly, we vary the virulence of each strain, how fast the bacteria is able to kill its 
host, and note other miscellaneous results. By increasing the values of VI and V2 at the 
same rate, we observe coexistence with small, periodic outbreaks until strain 1 goes 
extinct. At that point, strain 2 peaks quickly and drastically before dying out (see 
Figure 10). Under increased virulence and as q2 increases to 1, 12 appears to decrease 
over time. Coexistence and periodic cycles still occur, but we notice a potential for 
strain 1 to die out and strain 2 to slowly take over. Now we consider the effect /32, 
the per capita contact rate, and virulence have on each strain. Increasing /32, Vb and 
V2 makes strain 2 more able to invade its host and both strains able to kill faster. 
Hence, strain 2 exists for a longer period after strain 1 goes extinct (see Figure 11). 
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Figure 6: Coexistence under standard conditions where 12 sustains a small endemic 
population, PI = 0.33. 

Figure 7: Strain 2 dies out quickly when everyone completes treatment, PI = 1. 
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Figure 8: Increasing ql causes an increase in the frequency of strain 2 periodic out­
breaks, ql = 0.45. 

Figure 9: Increased frequency of strain 2 periodic outbreaks and simultaneous extinc­
tion of both strains, q2 = 0.075 and PI = 0.001. 
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Figure 10: High virulence, VI = 0.3 and V2 = 0.35. 

Figure 11: Strain 2 briefly takes over due to an increased per capita contact rate of 
individuals in 12 and increased virulence, /32 = 110, VI = 0.25, and V2 = 0.3. 
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6 Discussion 

Throughout this paper we study the evolution of a resistant bacterial strain in the case 
that an individual does not complete the course of treatment. Specifically, we consider 
pneumonia caused by the bacteria Streptococcus pneumoniae. In our research, we 
observed that in order for strain 2, the resistant strain to remain in a population 
there must be a periodic influx of strain 1, a non-resistant strain. For this reason 
there are four main parameters of focus: /3, the contact rate; v, the virulence of 
the strains; q, the probability an individual will become or remain infected with a 
particular strain; and p, the probability an individual will complete their medication. 

It is understood that because strain 2 is the resistant strain, it is able to withstand 
antibiotics to a greater degree if not completely. Therefore, the resistant strain can 
survive, grow, and reproduce while under the influence of some antibiotic, hence 
strain 2 is more virulent. Due to the fact that strain 2 is more virulent, it is known 
that it is also less invasive than strain 1. Moreover, strain 1 is the less virulent and 
more invasive strain. The strong invasiveness provides a high transmission rate into 
a host for strain 1. Once a suitable environment is established the more virulent 
strain carries out the infection. We showed through simulations that strain 1 has a 
higher contact rate per person and a lower virulence than strain 2. This implies that 
strain 1 may survive in a population only temporarily before its ability to grow is 
inhibited by an individual's immune system or medication. strain 2 may only survive 
in a population in the presence of strain 1 due to its poor ability to invade a host. 
As a result, these two cases occur coexistence of the two strains and the survival of 
strain 2 after strain 1 goes extinct. 

These results are due to the fact that the non-resistant strains survive depending 
on the influence of the antibiotics, while the survival or dominance of the resistant 
strain is dependent on the survival of strain 1. The probability that an individual 
with strain 2 completes treatment is not significant due to the fact that realistically, 
a more effective antibiotic would be used. 

We observe that the implications of the probability of extinction values found in 
Section 3 and analyzed in Section 4 are not entirely consistent with the results of 
our simulations. We suspect that this is a consequence of the complications involved 
in determining single strain probabilities of extinction for a two strain model. In 
general, the probability of extinction can be found by taking the inverse number of 
expected infections caused by a single, typical, infectious individual in a population 
of susceptible (i.e. ~). Interpreting Ro in the context of our model is not simple. 
First we are faced with the task of defining a 'typical' infectious individual when 
the possibility exists that infection could begin with eith~r strain one or strain two. 
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Secondly, the precise definition of 'secondary infections' is unclear. In a single strain 
model there is only one type of secondary infection. Here however, the possibility 
exists that infections of type 1 and type 2 can result from an initial strain 1 infection. 
This raises the question of whether type 2 infections resulting from a type 1 infection 
should be considered secondary infections resulting from strain 1. Here we have 
chosen to do so. An implication of this, however, is that we are underestimating the 
probability of extinction of strain 1. Under our interpretation it is possible for an 
individual from strain 1 to produce no secondary strain 1 infections but still have 
RbI] greater than 1 because a sufficient number of strain 2 infections were produced. 
This would lead to predictions of a strain 1 epidemic when inn fact strain 1 was 
facing extinction. From a biological perspective, this is a wisely conservative error 
to make. It is far better to overestimate the probability of an epidemic and be 
adequately prepared than to underestimate the probability of an epidemic and suffer 
the consequences. 

Another result of our Ro interpretation is that Pe(h) does not take into account 
second order interactions between strain 1 and strain 2. Because strain 2 receives a 
periodic influx in population from members of strain 1 who do not complete treat­
ment, it is unlikely that strain 2 will ever go completely extinct unless PI = 1. This 
means that even for values of /32 and <P2 for which Rb2

] < 1 * Pe(I2) = 1, strain 2 will 
continue to exist as long as strain 1 persists. In addition, this causes the probability 
of extinction of strain 2 to be independent of PI, ql, and q2. This is unfortunate since 
the effects of these parameters on Pe(h) would be of great interest in determining the 
effects of antibiotic misuse of the development of strain 2. As it is, Pe(h) allows us 
to see only the probability that strain 2 will survive on its own merit, without the 
assistance of influxes from strain 1. Thus, the probabilities of extinction of the two 
strains and their joint probability of extinction are useful in providing insight into the 
effects of parameter values on the model, and are highly useful in indicating which 
parameter values will give desirable results in our simulations. On the other hand, 
without the simulations we would not be able to glimpse the subtle interactions be­
tween the two competing but coexisting strains and would be unaware of the periodic 
cycles which allow strain 2 to survive. 

7 Conclusion 

In response to the question of whether or not we have to finish all prescribed med­
ication, the answer is yes. Our research shows that as long as 80% of the population 
infected with a non-resistant strain of pneumonia and being treated with penicillin 
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complete the full course, the development of a resistant strain is hindered. We discover 
a high probability of extinction under these conditions, reducing the probability of 
an epidemic. Preventing antibiotic resistant strains from advancing is the key to the 
future. Once resistant strains emerge, they become much harder to kill. Despite the 
fact that we've achieved a great deal in this research project there is still much work 
to be done. Our model shows two strains of bacteria where individuals go through 
one kind of treatment. We simply consider one factor in the development of resistant 
strains, the misuse of antibiotics. Analysis of a larger number of strains with different 
treatments, a recovery period, and a latent state for each strain might be of future 
interest. Further work also includes looking at the strains for a longer period of time, 
depending on their latent and infectious state. It would also be interesting to investi­
gate the parameter interactions which drive the cyclic resurgence of strain 2, and to 
explore other possibilities of the parameter space in general. To further understand 
the mechanism driving the complex interactions between these two strains it would 
also be useful to begin to consider new definitions for the basic reproductive number 
of single strains in a two strain model. 
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9 Appendix 

9.1 Simulations 

The Matlab simulations used to generate the results of Section 5 were done using 
the program below. The parameter values used for each graph were as specified in 
Section 4.1 unless otherwise indicated. 
tic; 
f1=figure; 
f2=figure; 

R01 = betal* CgammaB+mu+cl*vl) * Cphi2+mu+v2)+beta2*q2*phil*gammaB* Cl -p1) 
/[Cphi1+mu+vl)*CgammaB+mu+cl*vl)-ql*phil*gammaB*Cl-pl)] * [ph i2+mu+v2]; 

R02 = beta2/Cphi2+mu+vl); 
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Dx = 0; 

for i = 1 HM 

t=O; 
S=Sx; I1=I1x;I2=I2 x;T1=T1x;T2=T2x;D=Dx; 
N=Sx+I1x+I2x+T1x+T2x; 
state=[t S I1 T1 I2 T2 D ]; 
TR=1; 
while (t < tfinal) & (I1+I2+T1+T2 > 0) 

if toe> 5 
[i t ]; 
tic; 
end; 
N=S+I1+I2+T1+T2; 
S-D = mu*S; 
S_I1 = beta1*I1*S/N; 
S_I2 = beta2*I2*S/N; 
ILT1 = phi1*I1; 
I1_I2 = beta2*I2*I1/N; 
I1-D = (mu+v1)*I1; 
T1_I1 = q1*(1-p1)*gammaB*T1; 
T1_S = p1*gammaA*T1+(1-q1-q2)*(1-p1)*gammaB*T1; 
T1_I2 = q2*(1-p1)*gammaB*T1; 
T1-D = (mu+e1*v1)*T1; 
I2_T2 = phi2*I2; 
I2-D = (mu+v2)*I2; 
T2_S = p2*gamma2*T2; 
T2-D = (mu+e2*v2)*T2; 
BR = alpha*N; 

R = [S-D S_I1 S_I2 ILT1 ILI2 I1-D TLI1 TLS TLI2 T1-D I2_T2 I2-D T2_S T2-D 
BR]; 

TR = sum(R); 
pr = R/TR; 
preum = eumsum(pr); 
preum=[O preum] ; 
r = rand; 
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slot= sum(r>prcum); 
if slot == 1 
S=S-1 ; D=D+1; 
elseif slot -- 2 
S=S-1 ; I1=I1+1; 
elseif slot -- 3 
S=S-1; I2=I2+1; 
elseif slot == 4 
I1=I1-1; T1=T1+1; 
else if slot == 5 
I1=I1-1; I2=I2+1; 
else if slot == 6 
I1=I1-1; D=D+1; 
elseif slot == 7 
T1=T1-1; I1=I1+1; 
elseif slot == 8 
T1=T1-1; S=S+1; 
else if slot == 9 
T1=T1-1; I2=I2+1; 
elseif slot == 10 
T1=T1-1; D=D+1; 
else if slot == 11 
I2=I2-1; T2=T2+1; 
elseif slot == 12 
I2=I2-1; D=D+1; 
else if slot == 13 
T2=T2-1; S=S+1; 
elseif slot == 14 
T2=T2-1; D=D+1; 
else 
S=S+1; 
end; 
t = t - log(rand)/TR; 
c_state = [min(t,tfinal) S Ii T1 I2 T2 D]; 
state = [state;c_state]; 
end; 
lastrow(i, :)=state(end,:); 
x = state ( : ,1) ; 
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yS = state(:,2); 
yll = state(:,3); 
yTl = state(:,4); 
yI2 = state(:,5); 
yT2 = state(:,6); 
yD = state(:,7); 
figure(fl); 
hold on 
plot(x,yS,'b-', x,yIl,'r-', x,yTl,'g-', x,yI2,'r:', x,yT2,'g:', x,yD,'k'); 
hold off 
figure(f2); 
hold on 
subplot (2, 1,1) 
plot(x,yIl,'r-' ,x,yTl,'g-'); 
hold off 
hold on 
title([' I_l= , num2str(I2) " T_l= , num2str(T2)]); 
xlabel ( , Time' ) 
ylabel('Number of Individuals') 
hold off 
hold on 
subplot (2, 1,2) 
plot(x,yI2,'r:',x,yT2,'g:'); 
hold off 
hold on 
title([' I_2= , num2str(I2) " T_2= , num2str(T2)]); 
xlabel ( , Time' ) 
ylabel('Number of Individuals') 
hold off 
end; 
figure (fl) 
title(['S= , num2str(S)' I_l=' num2str(Il) , I_2=' num2str(I2) " D= 
, num2str(D) ... 
" T_l= , num2str(Tl) " T_2= , num2str(T2) " R_O[l] = , num2str(R01) , 
R_O[2] = , num2str(R02)]); 
legend ( 'S', 'I_l', 'T_l', 'I_2', 'T_2', 'Dead') 
xlabel ( , Time' ) 
ylabel('Number of Individuals') 

610 



figure(f2); 
subplot (2, 1,1) 
legend('I_l','T_l') 
title([' 1_1= , num2str(Il) , T_l=' num2str(Tl)]); 
xlabel ( , Time' ) 
ylabel('Number of Individuals') 
subplot (2, 1,2) 
legend ( , L2' , 'L2') 
title([' 1_2= , num2str(I2) , T_2=' num2str(T2)]); 
xlabel ( , Time' ) 
ylabel('Number of Individuals') 
fIl=lastrow(:,2); 
fI2=lastrow(:,4); 
fTl=lastrow(:,3); 
fT2=lastrow(:,5); 

10 3 Dimensional Graphs 

10.1 ph 
e 

To create the Graph 3 of Pfl in terms of ql and PI the following Matlab program 
is used: 

function z = grafica(Lpl,Hpl,incl,Lp2,Hp2,inc2,betal,gammaA,gammaB,mu,cl,vl,phil, 
,beta2,phi2,q2); [p,ql] = meshgrid(Lpl:incl:Hpl,Lp2:inc2:Hp2); 

Z= ((phil+mu+vl).*(p.*gammaA+(l-p).*gammaB+mu+cl.*vl)-ql.*phil.*gammaB.*(l-p)).* 
(phi2+mu+v2)./ (betal.*(p.*gammaA+(1-p).*gammaB+mu+cl.*vl).*(phi2+mu+v2)+beta2.*q2 
.*phil.*gammaB.*(l-p)); 

Z= min(l,Z); 
mesh(p,ql,Z) 

xlabel ('p') 
ylabel( 'ql') 
zlabel ( , Pe[l] , ) 
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To create the Graph 4 of p;2 in terms of ¢2 and ~2 the following Matlab 
program is used: 

function z = graficaB(Lp1,Hp1,inc1,Lp2,Hp2,inc2,mu,v2); 

[beta2,phi2 rbrack = meshgrid(Lp1:inc1:Hp1,Lp2:inc2:Hp2); 

Z= (phi2+mu+v2)./ beta2; 

Z= min(1,Z); 
mesh(beta2,phi2,Z) 

xlabel ( 'beta2 ' ) 
ylabel ('phi2') 
zlabel ( , Pe[2] , ) 

10.3 Pe* 

To create the Graph 5 of P: in terms of ql and q2 the following Matlab program 
is used: 

function z =graficaC(Lp1,Hp1,inc1,Lp2,Hp2,inc2,beta1,gammaA,gammaB,mu,c1,v1, 
phi1,v2,beta2,phi2,p); 

[q1,q2 ]= meshgrid(Lp1:inc1:Hp1,Lp2:inc2:Hp2); 

Z= (((phi1+mu+v1).*(p.*gammaA+(1-p).*gammaB+mu+c1.*v1) q1.*phi1.*gammaB 
.*(1-p)).*(phi2+mu+v2)).*(phi2+mu+v2)./(beta2.*(beta1.*(p.*gammaA 
+(1-p).*gammaB+mu+c1.*v1).*(phi2+mu+v2)+beta2.*q2.*phi1.*gammaB.*(1-p))); 

Z= min (1 , Z) ; 
mesh(q1,q2,Z) 
xlabel ( 'q1 ') 
ylabel ( 'q2' ) 
zlabel ( , Pe* , ) 
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11 

11.1 

Markov Chain Analysis 

RbI] 

In Maple we calculate Rb1
] using the continuous-time Markov chain method suggested 

by Hernandez [4]. To begin we create the matrix of transition probabilities. 

• P:=matrix( 4,4,[O,phi[1]/ (phi[l]+mu+v[l ]),O,(mu+v[l]) / (phi[l ]+mu+v[l ]), 
(q[l]*(l-p[l])*gamma[l])/(p[l]*gamma[l]+(l-p[l])*gamma[l]+mu+c[l]*v[l]),O, 
(q[2]*(1-p[1])*gamma[1])/(p[1]*gamma[1]+(1-p[1])*gamma[l]+mu+c[l]*v[l]), 
(p[l] *gamma[1]+(1-q[1]-q[2])*(1-p[1])*gamma[1]+mu+c[1] * v[l])/(p[l]*gamma[l]+ 
(1 p[l])*gamma[l]+mu+c[l]*v[l]),O,O,O,l,l,O,O,O]); 

• J:=matrix( 4,4,[1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1]); 

• i:=matrix(4,4,[1,O,O,O,O,1,O,O,O,O,1,O,O,O,O,1]); 

We next calculate the matrix N = P + J - I where J is a matrix of all ones with 
zero diagonal and I is the identity matrix. Taking the inverse of this matrix will give 
M= lim pn. 

n-+oo 

• N:=evalm(P+J-i); 

• Inv:=inverse(N): 

Because we are concerned with only one row of this matrix we multiply it by the 
transpose of the vector 1 to obtain the vector pi=[piIl,piTl,piI2,piT2,piD]. Dividing 
7rh by 7rIt,. and multiplying by 1/ ((Pl + f-t + V1) and /31 will give the first term of Rb1

]. 

• L:=matrix(1,4,[1,1,1,1]); 

• M3:=simplify(multiply(L,Inv)): 

• eqla:=simplify(M3[1,1]/M3[1,4]); 

• R[l,a] :=collect(beta[l]*eqla*(l/ (phi[l ]+mu+v[l])) ,gamma[l] ,c[l]); 
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We repeat these calculations using 7r(I2) to obtain the second term of Rgl. 

• eqlaa:=simplify(M3[1,3l!M3[1,4]); 

• R[l,b] :=collect(beta[2]*eqlaa*(1/ (phi[2]+mu+v[2])) ,gamma[l] ,c[l]); 

Adding the first and second terms together we find Rgl. 

• R[l]:=R[l,a]+R[l,b]; 
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