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Abstract 

Candida albicans is an opportunistic fungus which develops in im­
munodeficient patients with varying degrees of susceptibility to flu­
conazole. Approximately 99% of all strains of Candida albicans are 
susceptible, but there are problematic resistant strains that are only 
treatable with alternative, sometimes highly toxic, antifungal med­
ication. We modeled a system with two strains of Candida albicans, 
one susceptible and one resistant population, with ordinary differen­
tial equations to analyze the behavior of our two strains in an indi­
vidual while applying varying degrees of fluconazole. In addition to 
the determinstic model, we created a stochastic model and conducted 
numerous simulations. With both models we found the amounts of an­
tifungal treatment necessary to ensure a stable population where the 
two strains coexisted and the immune system could naturally keep the 
fungus' growth in check. Furthermore, we determined why resistant 
strains emerge when antifungal agents aren't administered or taken 
properly. 
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1 Introduction 

c. albicans is a commensal and opportunistic human pathogen which is the 
cause of most fungal infections in immunocompromised patients-including 
HIV patients, cancer patients, organ transplant recipients, and surgery pa­
tients [1], [12]. In fact, it is estimated to infect 90% of HIV patients [4]. 
Early symptoms of infection are white or red patches in the throat, difficulty 
swallowing, and nausea [10]. If left untreated the fungal infection can spread 
to the lungs or digestive tract and lead to extensive bodily deterioration or 
even death [13]. 

The fungus reproduces through the asexual process of budding or by pro­
ducing spores. Colonization by C. albicans is not always continuous but 
actually varies between a carriage rate of 1.0 to 80.6%. However, the repro­
ductive rate of the organism is kept in check by physical barriers such as the 
skin, competition with microflora, and host defense mechanisms. Infections 
can be either superficial, usually on mucous membranes, or hematogenously 
disseminated, which results in a systemic disease that has a high mortality 
rate [8]. 

Recently a new azole called fluconazole has been used to treat C. albi­
cans infections [3]. Fluconazole is an orally active, bis-triazole antifungal 
agent that is less toxic and has a greater in-vivo activity against C. albi­
cans. Fluconazole operates by inhibiting lanosterol C-14 a - demethylase, 
the cytochrome P-450 dependent enzyme essential for ergosterol synthesis 
of fungal cell wall, thereby disrupting the structural integrity of the plasma 
membrane and making it more susceptible to further damage by fluconazole 
[5] ,[3]. Fluconazole also alters the activity of membrane bound enzymes, 
such as those that are necessary for nutrient transport and chitin synthe­
sis. However, studies indicate that infection recurs within about 3 months of 
treatment in up to 80% of HIV patients [4]. Because of this there has been 
a greater number of patients with C. albicans strains that are resistant to 
fluconazole. Although other azoles can be used for treatment resistance to 
these can develop as well [11]. Due to this trend, resistance to fluconazole 
and other antifungal medications has become a major clinical problem in 
management of immunosuppressed patients. 

Resistance is usually due to natural selection of favorable genetic traits 
within the population. Genetic variability in C. albicans is assumed to be 
due, solely, to genetic mutations in the fungus due to the fact that there 
is currently no known method by which C. albicans may undergo sexual 
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recombination [9]. In general, the rate of adaptation to antifungal treatment 
is a combination of the rate at which genetic variability, due to mutations 
in the case of C. albicans, arises and the sequence in which mutations confer 
an adaptive advantage [7], [1]. It is believed that resistance in C. albicans to 
fluconazole is caused by reduced cell permeability and target site alteration 
[2], [6]. 

Resistant strains flourish when the antifungal treatments are not imple­
mented correctly. Though different strains exist, resistant strains of Candida 
albicans can coexist with non-resistant strains. If an antifungal agent is used 
after the resistant strains have developed, the antifungal agent will only be 
capable of killing the susceptible strain, leaving behind less virulent, resistant 
strains. 

In this study we will look at the simplest possible deterministic model and 
focus on the joint dynamics of susceptible and resistant strains of the fungus, 
Candida albicans. Resistance to antifungal treatment in a given population of 
Candida albicans is modeled via a system of nonlinear differential equations. 
We take into account that treatment is available and that the fungus mutates 
with some low probability. Using this model we will also create a stochastic 
model to be used to simulate the treatment of fungal infections. Using these 
models will determine the effect of various parameters on the development 
of resistance in Candida albicans. 

2 Methodology 

2.1 Deterministic Model 

In the development of the deterministic model, we assume that if an anti­
fungal agent is used after the resistant strains have developed, the antifungal 
agent will only be effective in killing the susceptible strain, while the resis­
tant strain can survive, but with reduced virulence. Resistance to antifungal 
treatment in a given population of Candida albicans is modeled via a system 
of nonlinear differential equations. We let x(t) denote the density of sus­
ceptible Candida albicans at time t; y(t) is the density of resistant Candida 
albicans at time t. It is assumed that the dynamics are separated by two 
thresholds. The stable density where the fungus is resident and the immune 
system can regulate its population is denoted by kl (allele effect), while k2 
denotes the maximum density that can be regulated by the immune system. 
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We further assume that treatment is available at the rate b and that the 
fungus mutates into the non-resistant strain with probability q. The growth 
rate for the susceptible fungus is Tl, and T2 for the resistant fungus. It is 
assumed that Tl > T2 and kl < k 2. With these assumptions we arrive at the 
following model. 

dx (x) ( x+y) dt = T1X 1 - kl 1 - ~ - bx (1) 

dy (y) ( x+y) - = T2Y 1 - - 1 - -- + bqx 
dt kl k2 

(2) 

The deterministic model is visually represented by the diagram in Figure 
(1). 

In our model, when there is no treatment (b = 0), we have two equilibrium 
points. As shown in Figure (2) there is one low level equilibrium at kl, 
representing the resident population, and one take off point, k2' where, if we 
perturb x + y = k2 the immune system will suppress the fungus back to the 
low level equilibrium point or the fungus will grow exponentially. 

2.1.1 Definition of Parameters 

x = susceptible population of Candida albicans 
y = resistant population of Candida albicans 
Tl = the maximal intrinsic reproductive rate of the susceptible strain x 
T2 = the maximal intrinsic reproductive rate of the resistant strain y 
kl = the stable threshold where the fungus is resident when no antifungal 
agent is implemented 
k2 = the unstable threshold where the fungus may grow exponentially when 
no antifungal agent is implemented 
q = the probability that a non-resistant strain of C. albicans will mutate into 
a y state, given that it has been affected by the antifungal agent 
b = the rate at which non-resistant strains leave the population either from 
death induced by fluconazole or from mutating into the resistant strain 

2.1.2 Parameter Conditions 

2kl < k2 
For this model, we assume that when Candida albicans exists in small amounts, 
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there is no competition between strains, but for greater amounts, approaching 
the take-off point, the two strains have an additive effect. This assumption 
holds only if k2 (the take-off point, without treatment) is significantly larger 
than k1. In addition, for ~ < 2 we observe a nonlinear fixed point with 
dubious biological meaning. 
rl > r2 
This assumption is based on the hypothesis that there is a trade-off of a lower 
reproductive rate for a higher resistance. 

2.1.3 Rescaled Model 

If we rescale our model such that 

x=: 
YA = 11. 

kl 
A b 
b= -

Tl 

k = k2 (k > 2) 
kl' 

r = T2 (r < 1) 
Tl' 

t=rCY. 
our equations become: 

dX_A(1 A) (1 x+y) bAA --x -x --- -,-- X 
dr k 

dy A(1 A) (1 x + y) bA A -=ry -y --- + qx 
dr k 

(3) 

(4) 

Rescaling our model will be useful when we evaluate the deterministic 
model in Section 4. For simplicity, we drop the A notation and rename r as t 
in the remainder of the paper. 

2.2 Stochastic Model 

In order to provide a comparison for the deterministic model stochastic sim­
ulations were run using a stochastic model adapted from the deterministic 
model. During the simulation five different events can occur. The non­
resistant x population can either increase or decrease by one while the resis­
tant y population remains the same; the x population can remain the same 
while the y population can increase or decrease by one; or the x population 
can decrease by one while the y population increases by one. 
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Event 
x, y -----+ 

x, y -----+ 

x, y -----+ 

x+1,y 
x-1,y 
x,y+1 
x,y-1 

Rate Of Event 
R(x) = x(l - x)(l - T) 

R(y) = ry(l - y)(l - ~) 

x - 1,y R(bx) = bx 
x - 1,y + 1 R(bqx) = bqx 

If rate 
>0 
<0 
>0 
<0 

An exponential function is used to calculate the time till the next event 
with respect to e - the total rate. e is calculated by adding the absolute 
value of each of the rates. Therefore e = IR(x)1 + IR(y)1 + R(bx). 

In order to determine the probability of each event, the absolute value of 
the rate of each event is divided bye. These probabilities are arranged on 
a scale from 0 to 1, as shown in Figure (3). To choose an event at random, 
a random number between 0 and 1 is generated - for any range the random 
number falls in, the respective event occurs. 

3 Results 

3.1 Deterministic Model: Finding Equilibrium Points 
and Stability 

By setting (3) equal to 0 it was determined that 

x = 0, !(1 + k - y ± v1- 2k + 2y + k2 - 2ky + y2 + 4bk). 

However, due to the difficulty of solving the cubic ~ for y only 3 equilibria 
points were found analytically: (0,0), (0,1), (0, k). Numerical integration of 
(3) and (4) for various parameter values showed that other equilibria existed. 
Alternate methods and the cases b = 0 and q = 0 were used to approximate 
these equilibrium points. We evaluated the system for b = 0 to observe 
how our model behaved if no antifungal agent was used. We then evaluated 
the system at q = 0 because we knew q was a small number and assumed 
perturbations would lead us to find all possible equilibrium points. 
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3.1.1 The Trivial Equilibrium Points 

The Jacobian of the system of equations (3) and (4) is 

(
(1 - 2x)(1 - xty) - X(l;X) _ b _X(l;X) ) 

ry(~-y) + bq r(1 _ 2y)(1 _ xty ) _ ry(~-y) . 

At the point (0,0) the Jacobian becomes 

(
1- b 0). 

bq r 

In this case the eigenvalues are 1 - band r. The value r is equal to 1:2. and 
rl 

is a positive growth rate. If b < 1, the first eigenvalue is positive and (0,0) 
is unstable. If b > 1, then this eigenvalue is negative and (0,0) is a saddle 
p~~. -

At the point (0,1) the Jacobian becomes 

(

k-l _ b 0) 
k bq -r(kk1). 

Here the eigenvalues are -rkk1 and kkl - b. The first eigenvalue -rkk1 will 
always be negative. Now consider the other eigenvalue. Because k > 2, kkl 
will be positive. If kkl > b then this eigenvalue will be positive, meaning 
(0,1) is a saddle point. If kkl < b then this eigenvalue will be negative 
implying that (0,1) will be stable under this condition for b. 

At the point (0, k) the Jacobian is given by 

( 
-b 0) 

r(k - 1) + bq r(k - 1) . 

This time the eigenvalues are -b and r(k - 1). Note -b is a negative eigen­
value and r(k - 1) is always positive. Thus, this equilibrium point is always 
a saddle point. 

3.1.2 The Existence of a Non-Trivial Equilibrium Point 

Based on numerical integration of (3) and (4), it appears that a stable in­
terior equilibrium point lies within the region 0, where 0 = {(x, y) : ° < 
x, ° < y; x+y < k}. We therefore assume that, for equilibrium point (xo, Yo), 
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Xo+Yo < k. Because ~~ = 0 and ~ = 0 at (xo, Yo), we can analyze conditions 
for Xo and Yo. Analyzing (3) and (4) the following was obtained: 

Xo +Yo 
xo(l - xo)(l - k ) = bxo 

Xo +Yo 
rYo(1- Yo)(l - k ) = -bqxo 

Noting signs, we see that 1 - xotYO is positive. Therefore Xo must be 
less than one and greater than zero, and Yo must be greater than one. This 
indicates that the interior equilibrium point must lie outside of the square 
bounded by (1,1) and the origin. 

Using a numerical solver for the values q = 0.015, r = 0.4, and k = 3, we 
plotted the values for Xo and Yo as functions of b in Figure (4). 

As shown in the figure, this equilibrium point moves to the left with 
increasing b until it is out of the first quadrant, crossing through the equi­
librium point at (0,1). This occurs at approximately l We will later show 
that more generally speaking this occurs approximately at kil. 

Further numerical analysis yields the existence of three other equilibria 
with varying positions. They will be discussed further in Section 4.1.5. 

3.1.3 Stability Analysis of Non-trivial Equilibrium points 

In order to analyze stability let Xo + Yo = m where (xo, Yo) is the non-trivial 
equilibrium from (3) and (4), and assume 0 < m < k. At the moment assume 
(xo, Yo) is an equilibrium with Xo > 0 and Yo > O. We will also assume that 
Xo + Yo < k or k - m > O. If we multiply both sides by k, and set our new ± 
equal to zero we have the equation, 

(1 - xo)(k - m) - kb = 0 
kb 

xo=l--­
k-m 

Now if we set equation (4) equal to zero, and solve for Yo we get, 

4bkqxo 
1 + --,----=-----,--

r(k - m) 
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The Jacobian of equations (3) and (4) is: 

(
(1 - ~)(1 - 2x) - ix(1 - x) - b 

-~y(1 - y) + bq 
-ix(1- x) ) 

-ry(1 - xty
) - ~y(1 - y) . 

Using equations (5) and (6) we find that the Jacobian at (xo, Yo) is: 

( 
1 1 1) 

b -l-xo - k-m - k-m 
Xo --.!L + .!L _.!L + --.!L + --.!L . 

k-m Xo YO i-yo k-m 

We see that the trace(xo, Yo)= --1 1 + kq-
1 

_.!L + -Ll . It is easy to see from -Xo -m Yo -yo 
equations (5) and (6) that 1 - Xo > 0 and 1 - Yo < O. But also, because q 
is a probability, q - 1 < 0 so that every term of the trace(xo, Yo) is negative; 
therefore the trace of any non-trivial equilibrium is always negative. 

Next we will look at the determinant. Algebraic simplification gives us 

detJ(xo Yo) - (XOb)2q[( __ 1- - _1_)(_..L + _1_) - 1 + 1 1 
,- 1-xo k-m Yo i-yo (l-xo)(k-m) xo(k-m) 

The first quantities are both negative (since 1 - Yo < 0), so their product 
is positive. The sum of the last two terms is (11-2)(% ). Xo -xo -m 

One can see, from equation (5), that in the case b > ~, 1 - 2xo > O. If we 
know that 

kb 
1 - Xo - Xo = 2 - l. 

k-m 

then the condition for the numerator to be positive is 2 k~~ > 1, mak­
ing the determinant positive. Given these conditions, the equilibrium point 
(xo, Yo) is stable. 

3.1.4 Case #1: b = 0 

Solving for : = 0 and !!if = 0 six possible equilibria were discovered when 
the anti-fungal agent is absent (b = 0). The revised equations under this 
condition are 

- = x(1- x) 1---dx (x+y) 
dt k 

(7) 

dy (x+y) dt = ry(1- y) 1- -k- . (8) 

623 



There are five trivial equilibria, (0,0), (0,1), (0, k), (1,0), (k, 0), and one 
non-trivial equilibrium (1,1). We also note that there is a line of equilibria, 
x+y = k, that both (0, k) and (k,O) lie on. We will first discuss the stability 
of the trivial equilibria. 

The Jacobian of system (7-8) is now given by 

(
(1 - 2x)(1 _ ~) _ X(l;X) X(l;X) ) 

TY(~-Y) r(l _ 2y)(1 _ xtY) _ TY(~-Y) . 

At the point (0,0) the Jacobian becomes 

(~ ~). 
Both 1 and r are positive eigenvalues, so the point (0,0) is always unstable. 

At the point (0,1) the Jacobian becomes 

(
1- 1 0 ) 

o k -r(l- V . 
Because we assume k > 2, 1 - f; is a positive term. It also follows that 
-r(l - f;) is a negative term. Therefore the point (0,1) is always a saddle 
point. 

The Jacobian for the point (1,0) is 

(
-(1- V f; 1 ) 

o r(l - k) . 

Our first eigenvalue, -(1 - f;), is negative, while the second, r(l - f;), is 
. positive, so the point (1,0) is always a saddle point. 

At our non-trivial equilibrium point (1,1) the Jacobian is 

(
-(1- ~) 0 ) 

o -r(l-~)· 

Because we assume k > 2, both eigenvalues, -(1 - ~) and r(l - ~), are 
negative, and our non-trivial equilibrium is stable. 

The Jacobian at the points (0, k) and (k,O), or any point on the line 
x + y = k, results in a row of zeros, giving us zero eigenvalues. Initially we 
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considered using higher order linearizations, but after inspecting the eigen­
vectors our zero eigenvalues made more sense, and higher order linearizations 
would have proven futile: taking the Jacobian of our original equations (3) 
and (4), about the point (0, k) we get the following eigenvectors and eigen­
values: 

and 

Al =-b 

( 
b(l- q) ) 

vI = 1, -1 + b + r( k _ 1) , 

A2 = r(k -1) 

V2 = (0,1). 

The first eigenvector points in the direction of the line x + y = k when b = 0, 
but the eigenvalue is also zero. This is because the line x + y = k is a line of 
unstable equilibrium points. The eigenvalue is zero because no point on the 
line x + y = k is any more attractive than any other (see Figure (5)). 

3.1.5 Case #2: q = ° 
In this section the rescaled model is 

- = x(l - x) 1 - -- - bx dx (x+y) 
dt k 

(9) 

dy (x+y) dt = ry(l- y) 1- -k- . (10) 

Here we consider the possibility that the anti-fungal agent is effective in 
killing the susceptible strain, b > 0, and the dosage is taken properly and 
that there is no mutation of x into y, q = 0. 

Our equilibrium points are (0,0), (0,1), (0, k), (4(k+l)±.J(k - 1)2 + 4bk, 0), 
and Gk ± 4.J(k - 2)2 + 4bk, 1). The Jacobian for system (9-10) is 

(
(1 - 2x)(1 - ~) - X(I;X) _ b _X(I;X) ) 

- rYI~-Y) r(l - 2y) (1 - X;Y) _ ry(~-y) . 

We have already evaluated the stability of the points (0,0), (0,1), and (0, k) 
in Section 4.1.1. Therefore we will concern ourselves with the remaining four. 
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The Jacobian for the point G(l + k + J(k - 1)2 + 4bk, 0) is 

Our first eigenvalue is 21k((k - 1)2 + 4bk + (k + l)J(k - 1)2 + 4bk), and is 
clearly always positive because all of its terms are positive. Since 1 - k < 0 
and b > 0 the second eigenvalue, - 21k (r( -k + 1 + y'k2 + 4bk - 2k + 1)), is 
positive. Thus the point (~(1 + k + J(k - 1)2 + 4bk, 0) is always unstable. 

At the point (HI + k - J(k - 1)2 + 4bk, 0) the Jacobian is 

(

1 (k-l)2+4bk-(k+1)y'(k-l)2+4bk 1 (-(k+1)+Y(k-l)2+4bk)(1-k+y'(k-l)2+4bk)) 
2 k 4 ,..."k-----:--::--_. o 1 r(k-1+y(k-l)2+4bk) . 

2 k 

Our new eigenvalues are fk((k - 1)2 + 4bk - (k + l)J(k - 1)2 + 4bk) and 

A (r(k - 1 + J(k - 1)2 + 4bk)). We know that the latter is always positive 
because all of the terms are positive. Also k = ~~ > 1 implies k -1 > 0, r is a 
positive ratio between r2 and rr, and we have already shown that (k-l)2+4bk 
is always positive. The former eigenvalue is dependent on b. If b > 1 then 
this eigenvalue is positive, and G + ~ - ~J(k - 1)2 + 4bk, 0) is unstable. 
However, if b > 1 the equilibrium point is in the second quadrant. Therefore, 
this equilibrium can be considered nonexistent in a biological sense. Inversely, 
if b < 1 then the point is in the first quadrant and this eigenvalue is negative. 
Thus this point is a saddle point. 

The Jacobian for the point (~+ ~J(k - 2)2 + 4bk, 1) is 

(

1 (k-2)2+4bk+ky'(k-2)2+4bk 1 (k+Y (k-2)2+4bk)(k-2+y'(k-2)2+4bk)) 
2 k 4 ,..."k'---,:--::--_ o 1 r(2-k+y(k-2)2+4bk) . 

2 k 

The eigenvalues are 21k((k - 2)2 + 4bk + kJ(k - 2)2 + 4bk) and ;k(2 - k + 
J(k - 2)2 + 4bk). The former is always positive. The latter is also al­
ways positive but could use a bit more explanation. The sign of our eigen­
value depends on -k + 2 + J(k - 2)2 + 4bk. Because b > 0, 1 - k + 
21 < J(k - 2)2 + 4bk. So this eigenvalue is always positive, and the point 
(~ + ~J(k - 2)2 + 4bk, 1) is unstable. 
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At the point (~ - ~J(k - 2)2 + 4bk, 1) our Jacobian becomes 

(

1 (k-2)2+4bk-kV (k-2)2+4bk 1 (-k+V (k-2)2+4bk)(2-k+V (k-2)2+4bk)) 
2 k 4 k't-:---:-::-_ o _1 r(k-2+y(k-2)2+4bk) . 

2 k 

The eigenvalues are 2\((k - 2)2 + 4bk - kJ(k - 2)2 + 4bk) and -fk(r(k-
2 + J(k - 2)2 + 4bk)). b > 0 implies that k - 2 < J(k - 2)2 + 4bk. So 
the second eigenvalue is negative. As long as b > k:;;l, the first eigenvalue is 
positive, and this equilibrium point is a saddle point. However, when b > k:;;l 
the equilibrium point becomes negative - meaning that this equilibrium point 
is non-existent in a biological sense. When 0 < b < k:;;l the eigenvalue is 
negative, and this equilibrium is stable. 

The following is a table summarizing stability and conditions under which 
the equilibria points are positive for different values of b. 

Equilibria Points b 
(k-l,l) (1,00) 

(0,0) U ± 
(0,1) S S 
(O,k) ± ± ± 
(~(1 + k + J(k - 1)2 + 4bk) , 0) ± ± ± 
(~(1 + k - J(k - 1)2 + 4bk) , 0) ± ± DNE 
(~+~J(k-2)2+4bk,1) U U U 
(~- ~J(k - 2)2 + 4bk, 1) S DNE DNE 

Note: S =Stable, U = Unstable, DNE =Does not exist, ± =Saddle 

3.1.6 Connecting the Case q = 0 to the Bifurcation graph (Figure 
(10)) 

In general our q value is very small. About 99% of all strains of Candida 
albicans are susceptible. So our results for the case q = 0 are very close to 
situations when q is very small. After examining the bifurcation graph at 
q = 0.015, the average value we found for q, we noticed that our results were 
similar. In fact, we numerically found that a perturbation about q for the 
q = 0 case would have proven accurate up to three decimal points. 

In the q = 0 case we found that when b = k:;;l the stable interior equi­
librium point crashes into the saddle point located at (0,1), transferring 
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its stability (Figure (7)). For b < k-;;l both points exist (Figure (6)). For 
b> k-;;l the saddle point becomes negative, and unimportant to our system. 
This change corresponds to the leftmost curve in Figure (10). 

At b = 1, which can be read directly from the bifurcation graph, the 
saddle point on the x-axis disappears. As b increases from zero to 1, the 
saddle point moves toward the unstable equilibrium at (0,0). When they 
collide (0,0) becomes a saddle point (Figure (8)). This is shown by the 
rightmost vertical line in the bifurcation graph and in our discussion of the 
local stability at the point (0,0). 

We could not approximate the horizontal line on the bifurcation graph. 
We did find that the line corresponded to the appearance and disappearance 
of two equilibrium points in a saddle-node bifurcation, one unstable and one 
saddle point, that, if they existed, were born on the stable manifold of the 
(0, k). This stable manifold forms the basin boundary, analogous to the 
unstable line x + y = k in the b = 0 case (Figure (9)). We also noticed 
that if we extended our bifurcation graph into the second quadrant, the 
line we initially thought was exponential displayed erratic, distinctly non­
exponential behavior. By trying different parameter values we were able 
to move the portions of the horizontal line that displayed unusual behavior 
into the first quadrant. At the values r = 0.0001, b = 0.01, k = 6.8, and 
q = 0.015 we actually found that there were two stable interior points, three 
saddle points, two along the axes and one between the stable points, and one 
unstable point at (0,0). Finding a situation where there was two stable points 
seemed very promising biologically, as it gave us more possible stable levels 
where the fungus could live in the body harmlessly, but the parameters are 
not biologically realistic. Our value r = !2. is, by virtue of r2 < rl, between 

Tl 

1 and 0, but r2 would have to be substantially smaller than rl for this to 
happen. Because we are dealing with the same species, but different strain of 
a fungus, their respective growth rates could not differ by a factor of 0.0001. 

3.2 Stochastic Results 

The stochastic simulation for the most part supports the deterministic re­
sults. The simulations show that for a sufficient value of b, x is killed off while 
leaving a resident population of y (Figure (11)). This value, which happens 
to be, approximately, b> k-;;l only applies whenever the initial x population 
is less than some value corresponding to boundary of the deterministic basin 
of attraction. However, for values of b < k-;;l a stable population of x and y 
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remain present (Figure (12)). Also for some values of b there appears to be 
an equal chance of either the x population growing exponentially or the x 
population going extinct and leaving a resident y population. Under the con­
dition that the initial x population is greater than some value corresponding 
to boundary of the deterministic basin of attraction the population takes off 
rapidly (Figure (13)). In order to suppress this outbreak, it is necessary to 
drastically increase the value of b (Figure (14)). 

4 Discussion 

Results from the deterministic model indicate that there are treatment rates 
at which a stable population of resistant bacteria and non-resistant bacteria 
is established. Although our model does not show this, we can assume that 
at these instances the susceptible population remains resident and the resis­
tant population goes to near extinction due to its smaller reproductive rate 
and competition with the susceptible population for resources. However, at 
higher treatment rates the susceptible population is driven to extinction leav-

. ing behind only a resident resistant population. This is significant because 
if a patient's immune system were to be compromised at this state, doctors 
would have a more difficult strain of C. albicans to treat. Results from the 
stochastic simulation provide support for these conclusions about variable 
treatment rates. Also from stochastic simulations it is clear that misuse of 
antifungal treatment can create harmful situations in which more resistant 
strains can develop. For example, the use of treatment before any harmful 
symptoms appear in hopes of destroying any resident non-resistant strains 
can result in the creation of more resilient strains. However, it appears that 
if used responsibly-meaning for the necessary period of time and in the cor­
rect dosage-the chance development of resistant strains can be minimized, 
as simulation results reflect. 

Possible future studies include investigating the k < 2 case, if such a case 
biologically exists. Also if possible, we would like to determine strict parame­
ters for r, to the exclusion or inclusion of the cases where there are two stable 
interior points. We would also like to expand our model to include multi­
ple strains of Candida albicans of varying resistance. In addition, it would 
be interesting to see if competition at resident population could be included 
in the model. Finally, we would like to modify the model to take into ac­
count a death rate for the resistant populations, any possibility of backwards 
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mutation into a susceptible strain, and the immune systems strength. 
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A Matlab code for the Stochastic Simulations 

function state =candida(8A,RA,b,q,r1,r2,k1,k2,tfinal,hm) 
close 
hold on 
for i = l:hm 
t=O; 
totalJate= 1; 
gen=O; 
8=8A; 
R=RA; 
state=[t 8 R]; 
while (gen < tfinal) & totaLrate>O 
R_8 = r1 *8*(1-8/k1)*(1-(8+R)/k2); 
R_B = b*8; 
R_R = r2*R*(1-R/k1)*(1-(8+R)/k2); 
A = abs(R_8); 
B = abs(R-R); 
totalJate = A+B+R-B; 
if totaLrate>O; 
time_toJlext = -log(rand)/totaLrate; 
t = t+time_toJlext; 
P=R-B/totaLrate; 
PR=B/totaLrate; 
PB=q*P; 
r=rand; 
ifr<P 
8=8-1; 
if r<PB; 
R=R+1; 
end 
end 
if P<r & r«PR+P) 
if R-R>O 
R=R+1; 
else 
R=R-1; 
end 
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end 
if r>PR+P & r<l 
R_8>0 
8=8+1; 
else 
8=8-1; 
end 
end 
if 8<0 
8=0; 
end 
curr..state=[t 8 R]; 
state=[state;curr..state] ; 
gen=gen+1; 
end 
end 
x=state(:, 1); 
y1=state(:,2); 
y2=state(:,3); 
plot(x,y1, 'b-' ,x,y2,'r-'); 
end 
legend (,Non-resistant' ,'Resistant') 

634 



u 

B Figures 

bqx 
x y 

Figure 1: Graphical representation of the deterministic model: a = rlx(l -
L )(1-~) and f3 = r2y(1- L)(l- ~) 
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Figure 2: Graph of j; vs. x for b =0 
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Figure 3: A probability distribution for choosing the next event 
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Figure 4: The top line is a plot of Yo as function of b. The bottom line is a 
plot of Xo as a function of b. 
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x +y =k 

• 
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Figure 5: Phase-plane diagram for when b = O. x + y = k represents a line 
of unstable points. Trajectories within the region are drawn to the stable 
equilibrium point. Trajectories outside the region go towards infinity. 
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Figure 6: Seven equilibrium points: Non-trivial equilibrium point still exists. 
[14] 

Figure 7: Six equilibrium points: After stable interior equilibrium point 
crashes into saddle at (0,1) [14] 
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Figure 8: Five equilibrium points: After the saddle crashes into the unstable 
point at (0,0) [14] 
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Figure 9: Three equilibrium points: After the saddle and unstable equilibria 
lying along the boundary annihilate each other. [14] 
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Figure 10: Bifurcation graph of deterministic model for r = 0.4 and q = 0.015 
[14] 
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Figure 11: parameter values = [b=7, q=O.015, r1=10, r2=3, k1=100, 
k2=1000, xO=1000] The non-resistant x population is going extinct and is 
being replaced by a resident resistant y population 
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Figure 12: parameter values=[b=6, q=O.015, r1=10, r2=3, k1=100, 
k2=1000, xO=1000] The non-resistant x population nearly goes extinct but 
a resistant y population is also established 
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Figure 13: parameter values=[b=l1, q=0.015, r1=10, r2=3, k1=100, 
k2=1000, xO=1200] The initial non-resistant x population is increased past 
k2 (equal to 1000) by 200; the non-resistant population explodes. 
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Figure 14: parameter values=[b=25, q=0.015, r1=10, r2=3, k1=100, 
k2=1000, xO=1200] b (treatment rate) which was 11, is increased to 25, the 
point at which the explosion is suppressed and the non-resistant x population 
is driven to extinction and a resistant y population develops. 
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