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Abstract 

Dispersal and dormancy are two of the fundamental evolutionary 
mechanisms used by nature to support and generate ecological diver­
sity. In this investigation, we focus on the role of disease-enhanced 
or disease-suppressed dispersal on the dynamics of populations in a 
multi-patch system. Single patch systems, which are capable of sup­
porting simple and complex dynamics, are studied both analytically 
and numerically. The impact of disease and dispersal is also studied 
numerically. Our results are compared to those in the literature that 
focused on dispersal in disease free multi patch systems. 
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1 Introduction 

Nature uses dispersion to support and generate ecological diversity. In [9], 
Hastings investigated the role of dispersal on local dynamics in discrete-time 
models. Hastings' model consists of two patches connected by dispersion. 
He showed that dispersal between patches can stabilize a system that is 
chaotic when there is no dispersion. Hastings also showed that dispersal 
between patches can lead to the creation of multiple attractors with fractal 
basin boundaries. Castillo-Chavez and Yakubu [3] in a recent paper explored 
the effects of dispersion using different intraspecific competitive regimes on 
patchy environments. In addition, they incorporated an S-I-S epidemic model 
to the dispersion model and wrote explicit equations for the dispersal of sus­
ceptible and infectious individuals between patches. Their model provides a 
framework to answer several interesting questions such as: Do complex pop­
ulation dynamics drive disease dynamics (see [1] and [3])? or, can dispersal 
help eliminate a disease or help it become established? 

In this paper we focus on how dispersal between two patches affects the 
dynamics of a disease in a population. First we formulate and analyze a 
single patch discrete time Susceptible-Exposed-Infectious-Susceptible (SEIS) 
model. In the single patch model we obtain thresholds for the persistence of 
a disease. We also study the role of different recruitment functions, such as 
Ricker's model, constant recruitment, and geometric growth on single-patch 
disease dynamics. Ricker's model is known to generate complex dynamics. 
We use different functions to describe the frequency dependent probability 
that an individual remains susceptible or becomes infectious. In the two 
patch model we study the effects of dispersal of susceptibles, that is, infectives 
and latent individuals are assumed to be sedentary. 

2 S-E-I-S Single Patch Model 

In this section we introduce and analyze an S-E-I-S model in a single patch; 
which models the dynamics of a disease that divides a population in three 
classes. These classes are: susceptibles (individuals that do not have the 
disease or have recovered from it), exposed individuals (who have the disease 
but do not transmit it), and infectious (individuals that have and transmit the 
disease). We assume that the disease is not lethal and does not give partial 
or permanent immunity. The latter statement implies that an infectious 



individual becomes susceptible to the disease again after treatment. Also, 
we assume that a susceptible individual has to be in the exposed class before 
becoming infectious. In the same way, an exposed individual must become 
infectious before recuperating and becoming susceptible. 

In order to construct the equations for the model, we define the notation 
that will be used in the rest of this paper. At generation t, the number of sus­
ceptibles is denoted by St; Et represents the number of exposed individuals; 
and It is the number of infectious. Hence the total population represented 
by Tt is given by Tt = St + Et + It. This model allows for the birth of new 
individuals. The number of new individuals that enter the system per gen­
eration is given by a recruitment function f. We assume that an individual 
first survives, with probability ,,(, and then changes class (or not); i.e., the 
demographic dynamics happen before the disease dynamics. The probability 
that an exposed individual stays exposed is 0", and 8 is the probability that 
an infected individual does not recuperate. The probability that a suscepti­
ble does not become exposed is given by a function G; thus 0 :S G:S 1, where 
G is a function of the proportion of infectives. If there are no infectious, then 
the probability that a susceptible does not become exposed to the disease is 
1, thus G(O) = 1. As the proportion of infectives increases, the probability 
that a susceptible does not become exposed decreases; thus G' < O. Aside 
from these conditions we will require that G" 2: O. With these assumptions 
the discrete time S-E-I-S model is 

StH 
EtH 
ItH 
TtH 

- f(Tt) + ,,(G(#)St + "((1 - 8)It, ) 
"((1 - G(#))St + "(O"Et, 

- "((1 - 0" )Et + "(8It, 
- StH + EtH + ItH = f(Tt) + ,,(Tt. 

(1) 

In this section, we analyze system (1) where the new recruits are governed 
by geometric growth (f(Tt) = f-tTt), constant recruitment (f(Tt) = A), and 
Ricker's equation (f(Tt) = Tter- kTt ) 

2.1 Geometric Growth 

In this case the recruitment function f(Tt) is of the form f(Tt) = f-tTt ; i.e., 
the number of new individuals in generation t + 1 is proportional to the 
individuals present in generation t. Hence, the total population is governed 
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by 

(2) 

which implies geometric growth. Hence, the fate of the population depends 
on the value of J.L + '"Y, in other words, on the demographic basic reproductive 
number, Rd = ~ (a dimensionless quantity that gives the number of descen­
dants produced by small pioneer populations over their life-time [2]). Rd < 1 
implies that the population goes extinct; Rd = 1 implies that the population 
remains constant; and Rd > 1 implies unbounded geometric growth. 

This recruitment function makes the system homogeneous of order one; 
hence the system can support geometric solutions. We use the homogeneity 
property to rescale the system using Xt = t, Yt = ~, and Zt = -#. The 
rescaled system becomes: 

Xt+1 = (1 - q) + qG(Zt)Xt + q(l - 8)zt } 
Yt+1 = q(l - G(Zt))Xt + qaYt 
Zt+1 = q(l - a )Yt + q8zt 

(3) 

where q = if:y and Xt + Yt + Zt = 1. Rescaling makes the analysis easier; but 
care must be excercised in the interpretation of results. It is important to note 
that while the actual number of a class of individuals may be approaching 
zero, the proportion may not. Similarly, the number of a class may approach 
infinity as the proportion goes to a value less than 1, including zero. Since, 
Xt = 1-Yt - Zt, System (3) reduces to the following two dimensional system: 

Yt+1 - q(l - G(zt))(l - Yt - Zt) + qaYt } 
Zt+1 = q(l - a )Yt + q8zt . 

(4) 

2.1.1 Equilibria and Stability 

To analyze the stability of equilibria we use the Jury test [5]. The Jacobian 
for System (4) is 

_ (a - (1 - G(z)) -(1 - G(z)) - G'(z)(l - Y - z) ) 
J(y, z) - q 1 _ a 8 . (5) 

The stability of the disease free equilibrium (dJ.e.), where the proportion 
(number) of infectious and exposed individuals is zero, is obtained from 

J = J(O, 0) = q ( 1 ~ a -~(O)), 
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and the Jury criteria. Since trace(J) = q((J" + 0) 2:: 0 and det(J) = q2((J"0 + 
G'(O)(l - (J")), then the d.f.e is locally stable whenever 

q((J" + 0) < 1 + q2((J"0 + G'(O)(l - (J")) < 2, 

or equivalently when 

-q2G'(O)(1 - (J") < 1 + q2(J"0 - qo - q(J" < 2 - q2G'(O)(1 - (J") - qo - q(J". 

Notice that the second part of the inequality is always true. Hence, the 
stability condition reduces to 

-q2G'(O)(1 - (J") 1 
(1 - qo)(l - q(J") < . 

Therefore, we can define the basic reproductive number Ro as 

Ro = -q2G'(O)(1 - (J") 
(1 - qo)(l - q(J")' 

(6) 

and the condition for local asymptotic stability of the d.f.e is given by Ro < 1. 
Ro is the number of secondary infections that an infectious individual 

produces when rare, that is, in a population of mostly susceptible individuals. 
To give an epidemiological interpretation of Ro we first consider Rd = 1, that 
is, we exclude demographic considerations. In this case, 1!qa = 1!'}'a' which 
is the death-adjusted number of generations that an individual stays in the 
infectious class before recovery or death,· likewise, -1 1 = -1 1 is the death -qu -'}'u 
adjusted number of generations that an individual stays in the exposed class. 
We observe that -q2G'(O) is the maximum rate of infection per individual 
[2]. If (J" is close to 1, then (1 - (J"), the probability that an exposed becomes 
infectious is small, thus the number of infectious is reduced. Hence (1 - (J") 
reduces the maximal infection rate, -q2G'(O), per individual. 

When Rd =I- 1, 1!qu is the average number of generations that an individ­
ual who survives stays in the exposed class before becoming infectious; while 
1!qa is the average number of generations that an infectious individual who 
survived takes to recover. 

Theorem 2.1. The disease free equilibrium is globally stable whenever it is 
locally stable. 
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Proof. We will show this by exhibiting a function that meets the Lyapunov 
conditions for stability [6] . 

Let F: [0,1] x [0,1] ---+ [0,1] x [0,1] be defined by 

F(y, z) = q((l - G(z))(l - Y - z) + cry, (1 - cr)y + 8z), 

that is, F is the reproduction function of System (4). Note that F(O,O) = 

(0,0), i.e., (0,0) is a fixed point of F. Now, define V : [0,1] x [0,1] ---+ [0,1] 
by 

qG'(O) 
V (y, z) = y - 1 _ q8 z 

We will show that V is a Lyapunov function for F. Clearly, V is continuous 
on its domain and V(O,O) = 0. Moreover, V(O,O) > 0 V(y, z) =1= (0,0). Since 
F((O,l]x {O}) C (0,1] x(O,l] and F({O} x (0,1]) C (0,1] x (0,1]' then to 
show global stability of (0, 0) it is sufficient to prove that V(F(y, z)) < V(y, z) 
for (y, z) E (0,1] x (0,1]. 

Now, 

V[F(y,z)] 
qG'(O) 

q[(l - G(z))(l - Y - z) + cry] - q 8 [(1 - cr)y + 8z] 
1-q 

< q(l - G(z)) + q [cr - qG'(O) (1 - cr)] y _ q [q8G'(0)] z 
1- q8 1- q8 

< q [cr - qG'(O) (1 - cr)] y _ qG'(O) [ q8 + 1] z 
1- q8 1- q8 

qcr (1 - q8) - q2G'(0) (1 - cr) qG'(O) 
-"---'----'-----::--'--'--''------'-y - z. 

1- q8 1- q8 

In order for V[F(y, z)] < V(y, z), we need to have 

qcr (1 - q8) - q2G'(0) (1 - cr) 1 
1- q8 . <, 

which is equivalent to 

-q2G'(0) (1 - cr) 1 
(1 - q8)(1 - qcr) < , 
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and since 

Ro = -q2G'(0) (1 - 0") 
(1 - q8) (1 - qO") , 

the condition for global stability of the dJ.e is 

Ro < 1. 

Therefore, the disease free equilibrium is globally stable whenever it is locally 
~~k. 0 

Endemic Equilibrium In order to find conditions for existence and unique:­
ness of an endemic equilibrium we consider 

Yoo q(1 - G(zoo))(1 - Yoo - zoo) + qO"yoo 

q(1 - O")Yoo + q8zoo . 

From Equation (8) 

where B = qi~~~). Replacing Equation (9) into Equation (7) we get 

(1 - qO")yoo = q(1 - G(BYoo))(1 - (1 + B)yoo). 

If we let 

and 

(7) 
(8) 

(9) 

(10) 

(11) 

then the existence of an endemic equilibrium (Yoo, zoo) is established whenever 
these two functions intersect with Yoo E (0,1). We show the existence of a 
unique Yoo E (0,1) such that M(yoo) = H(yoo). Since M(yoo) is a line 
that passes through (0,0), then to find conditions for the existence of the 
intersection we need only analyze the behavior of H(yoo). 
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Note that H(yoo) also passes through (0,0), H(yoo) 2:: ° for Yoo E (0, l~B); 
and, limyoo->oo H(yoo) = -00. Thus, we have at least one endemic equilibrium 
when M'(O) < H'(O), i.e., when 

(1 - qa) < -qBG'(O). 

Hence, an endemic equilibrium exists when 

-qBG'(O) 1 
(l-qa) > , 

that is, when Ro > 1. Therefore, the existence of an endemic equilibrium 
brings instability to the d.f.e. 

Note that when positive Yoo exists, Yoo < 1, since when Yoo > 0, M(yoo) > 
0, so we must have H(yoo) > 0, and thus we need 

We observe that 

1 ° < 1 - (1 + B)yoo or Yoo < -B < 1. 
1+ 

since G'(Byoo) < ° and G"(Byoo) 2:: 0. Hence, H(yoo) is concave down. This 
result implies uniqueness of Yoo. 

We summarize these results in the following theorem: 

Theorem 2.2. If Ro > 1, then there exists a unique endemic equilibrium of 
System (4). 

2.2 Constant Recruitment and Ricker's Equation 

In this section we consider constant recruitment and Ricker recruitment. 
Ricker's equation allows for the possibility of fixing the disease free dynam­
ics (demography) to various degrees of complexity (fixed points to chaos). 
Hence, it allows the possibility of studying whether or not the demography 
drives disease dynamics (Barrera et. al. [1]). 

Hence, we consider the recruitment functions f(Tt) = A and f(1t) = 

1ter - kTt • These functions make System (1) nonhomogeneous. To simplify 
the analysis, we consider an equivalent limiting system, which qualitative 
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dynamics behave similar to the original system under some assumptions [14]. 
The limiting system is found by substituting Tt by Too = lim Tt. 

t--+oo 

(12) 

where Too = 1~'Y for !(Tt) = A and Too = r-lni1-'Y) for !(Tt) = Tter-kTt. 
If !(Tt) = A, the total population at generation t + 1 is given by TtH = 
A + '"'(Tt, and since 0 < '"'( < 1, then Too is always stable and positive. When 
!(Tt) = Tter- kTt , Too is stable and positive whenever 0::; r < 1~'Y +In(l-'"'(). 

Using the unjustified substitution, St = Too - Et - It reduce the System 
12 to 

'"'((1 - G(/t)) (Too - Et - It) + '"'(O"Et } 

'"'((1 - 0" )Et + '"'(bIt 

2.2.1 Equilibria and Stability 

(13) 

Consider the local stability of the disease free equiliibrium. The Jacobian 
matrix of System (13) at (0,0) is 

( 
'"'(0" -,",(G' (0) ) 

J(O, 0) = '"'( (1 - 0") '"'(b . 

The Jury test implies that (0,0) is locally asymptotically stable whenever 
the following inequality is satisfied 

or, equivalently, when 

The second part of this inequality is always true. Hence, the condition for 
the asymptotic local stability of (0,0) for System (13) is 

_'"'(2 (1 - 0") G' (0) 
(1 - '"'(0")(1 - '"'(b) < 1, 
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and thus, we define 

Ro = _,,(2 (1 - a) G' (0) 
(1 - "(a) (1 - "(8) . 

(14) 

The interpretation of Ro in this case is analogous to that of (6) when 
Rd = 1. 

Theorem 2.3. The disease free equilibrium of System (13) is globally stable 
whenever it is locally asymptotically stable. 

Proof. The proof of this theorem is like that of Theorem 2.1. In this case 
the Lyapunov function is V (E, 1) = E - 'Yl~~~) 1. D 

Endemic Equilibrium To find conditions for the existence of an en­
demic equilibrium, consider 

"((1- G(t-)) (Too - Eoo - 100 ) + "(aEoo } 
"((1 - a)Eoo + "(8100 

(15) 

System (15) is similar to the one obtained in section 2.1.1. The procedure to 
find conditions for the existence and uniqueness of the endemic equilibrium 
is similar. Thus we state the following result without further ado. 

Theorem 2.4. System (15) has a unique endemic equilibrium when Ro > 1. 

The proof patterns the procedure of section 2.1.1. Now, 100 satisfies 
0<100 < Too. 

3 Examples 

In this section we use specific forms of the probability function G to obtain 
conditions for the stability of the endemic equilibrium. First, we consider 
the probability that an encounter between a susceptible and an infectious 
does not produce a new exposed is given by a Poisson process. Thus the 

probability that a susceptible does not become exposed is given by G ( *) = 

e -a4t (where a is a parameter that measures the impact of the proportion 
of infectives), as it was used in [2]. Although we have a specific function for 
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G, we are still not able to find a specific value for the endemic equilibrium. 

So, we consider a simpler function, namely G (ft) = 1 - ft, obtained by 

searching for the simplest probablity function (random mixing). Clearly, 

G ( ft) = e -a# , and G (ft) = 1 - ft satisfy the conditions given in Section 

2: G(O) = 1 G'(lt..) < 0 GI/(alt..) > 0 and 0 < G < 1. , Tt ' Tt-, --
First we consider G (ft) = e-a#. If f(Tt) = JlTt, then we substitute 

G'(O) in (6) from Section 2.1.1 and we get that 

Ro = q2a(1 - a) 
(1 - q8)(1 - qa)' 

where q = ~. Theorem 2.1 implies that (1,0,0) is globally asymptotically 
stable when Ro < 1. Theorem 2.2 implies that a unique endemic equilibrium 
exists when Ro > 1. Simulations with Dynamics [12] show that different 
trajectories converge to a fixed positive equilibrium (see Figure 3). Now, if 
f(Tt) = Tter-kTt or , f(Tt) = A, substituting G'(O) in (14) gives 

Ro = /,2a (1 - a) 
(1- /,a)(l- /,8)' 

Theorems 2.3 and 2.4, implies that disease free equilibrium (Tocl) 0, 0) is glob­
ally stable whenever Ro < 1, and guarantee the existance of a unique endemic 
equilibrium when Ro > 1. Again the likelihood of the local stability of the 
unique endemic equilibrium is supported by simulations (Figure 3). 

Now we consider G (ft) = 1 - ft and f(Tt) = JlTt, then 

Ro= q2(1-a) 
(1 - q8)(1 - qa)· 

(16) 

The disease free equilibrium is globally asymptotically stable when Ro < 1. 
In this case we can find the values for Yoo and Zoo explicitly, they are: 

[ 

Yoo 1 = [ (1-RQl)~+)'(1-8» ] 

Zoo 'Y(l-u) (l-RiJl) . (17) 
'Y2 (2-u-8)+JL 

If f(Tt) = A or f(Tt) = Tter- kTt then 

Ro= /,2{1-a) . 
(1 - /,a) (1 - /,8) 
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Figure 1: These are examples of how with different initial conditions the 
trajectories stabilize at the unique positive endemic state. 

The disease free equilibrium is globally asymptotically stable whenever Ro < 
l.To find the unique endemic equilibrium we must solve System (15).' Some 
algebra shows 

Too - Eoo - 100 
(1-'Yo) ( (1+'Y2a8)(Ro-l)) k 
(I-a) 'Y2(I-a)+'Y(I-'Y8) 'Y 

(1+'Y2a8) (Ro-l) k 
'Y(I-a )+(1-'Y8) 'Y 

where Too = 1~'Y for J(Tt ) = A and Too = r-lni
1

-'Y) for J(Tt) = Tter- kTt . 

4 Multipatch Model and Dispersal 

The local dynamics of a single patch have been analyzed in the past sections; 
we have considered different recruitment functions as well as different proba­
bility functions for the rate of not becoming exposed to the disease. We found 
conditions for stability of the disease free equilibrium and for the existence 
of a unique endemic equilibrium. We also performed numerical simulations 
to support the local asymptotic stability of the endemic equilibrium. 

Now we couple populations living in two patches via the dispersal of 
individuals. We are interested in exploring questions such as: Can dispersal 
help eradicate the disease in one patch? in all patches? Can dispersal of one 
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class of individuals be relevant enough as to change the behavior of the total 
population? These questions are relevant because some diseases, like rabies, 
enhance the dispersal of the infected individuals [8]; while others diminish 
their capacity to disperse. 

First we present analytical models for the dispersion of all individuals by 
using methods introduced by Hastings [9], and Castillo-Chavez and Yakubu 
[3]. We provide examples of how this general model can be adjusted to fit 
disease enhanced or disease suppressed dispersal. Finally we focus only on 
the dispersal of susceptibles via simulations. 

4.1 General Dispersion Model. All Classes Disperse 

Let X t i be the population size of type X in patch i at time t, and let Xl be 
the population in class X on patch i at time t after the local dynamics have 
occurred (right before dispersal occurs), i.e., assume that. local dynamics 
occur before dispersal. Where X = {S, E, I}, and i = {I, 2, ... , N} Hence, 

Sti = h(Tn + l'iGi(¥r)Sf + l'i(l- 8i)lf 
. t 

E- i_ 
t -

]
-i _ 
t -

l'i(1 - Gl¥r))Sf + l'iO"iEf 
t 

l'i(1 - O"i)Ef + l'i8dl 
Then, the model where all classes disperse is 

N _ N _ . 

St~l - (1 - L: dijS)Sti + L: djiSS/ 
j=l j=l 
#i #i 
N _ N _ . 

Et~l - (1 - j~ dijE)Eti + j~ djiEE/ (18) 
j#i j#i 
N _ N _. 

It~l (1 - L: dijI)lti + L: djiII/ 
j=l j=l 
#i #i 

where dijX is the proportion of individuals in class X that disperse from 
patch i to patch j. 

If we wish to consider disease suppressed dispersal, i.e., dispersal where 
only "healthy" individuals disperse, then dijE = dijI = 0 Vi,j = {I, 2, ... , N}. 
Likewise, we consider disease enhanced dispersal, which arises from diseases 
where infectives or exposed are more likely to disperse; then dijS = 0 Vi, 
j = {I, 2, ... , N}. To gain insight on the effects of dispersal on the dynamics 
of the disease we ran simulations using both MatLab and Dynamics. 
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4.2 Susceptihles Disperse: A Numerical Perspective 

Consider System (1), and allow susceptibles to disperse between two patches. 
Then, the system that gives the population at generation t + 1 in patch i is 

St~l = (1 - di)[ji (Tn + /'iGi(#)Si + /'i(l - 8i)In 
. t . p. . 

+dj[Ii(Ti) + /,jGj (#" )Sl + /'j(l - 8j )IlJ 
. t 

Et~l - /'i(l - Glilr))Si + /'iO'iEi 
t 

Patch i (19) 

It~l /'i(l - O'i)Ei + /'i8iIi 

where i = {I, 2}, j = {I, 2}, j =f. i. 
We consider the symmetric situation where the recruitment function and 

the probability of infection function are the same in both patches, i.e., h = h 
and G1 = G2 • 

Next, we show the results of simulations when f (Tt) = J-lTt and G (#) = 

1 - # in both patches. In this case we use the normalized System (4). To 
study the long run effects of dispersal on the disease, we consider different 
combinations of dispersal rates. We plot dispersal from patch 1 to patch 2 
(d1) versus dispersal from patch 2 to patch 1 (d2 ). For every combination 
(d1 ,d2 ) we observe what happens to the proportions of infectious individuals 
in both patches. If the proportion is zero, then we call the patch disease free 
(DF); if it is not, then we call the patch endemic (E). 

From simulations we observe that some combinations of dispersal produce 
changes in the disease dynamics. For example, dispersal causes the emergence 
of an endemic equilibrium even though flo < 1, or vice versa, an endemic 
equilibrium may disappear although flo > 1. These possibilities can be seen 
from regions clearly defined by lines (see Figures 4.2 and 4.2). However, 
when both patches have similar disease dynamics without dispersion, no 
combination of dispersal provokes a simultaneous change of behavior in both 
patches. For example, if both patches have an endemic equilibrium without 
dispersal then there are no dispersal values that produce simultaneous stable 
disease free equilibria. In addition if the disease dynamics are exactly the 
same in both patches; i.e., all parameters are equal then symmetric behavior 
is observed. 

Our simulations have led to the following conjetures 

Conjecture 4.1. If floi < 1 for all i E {I, 2} then the full two-patch system 
can not have an endemic equilibrium. 
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Rdl =Rd2=1 Rol =Ro2>1 Rdl=Rd2=1 Rol>l Ro2> 1 

d2 

Figure 2: In this figure we observe symmetric behavior when disease and 
population dynamics are the same in both patches. The symmetry is broken 
when the ROi's are different. The points in the upper right corner of both 
graphs are points that diverge or become negative; they are indicative of a 
Hopf Bifurcation. [4] 

Conjecture 4.2. Ij Roi > 1 for all i E {I, 2} then the full two-patch system 
can not have a stable disease free equilibrium. 

Ricker's Equation 
Here we present the results of simulations that investigate the behavior of 

the total population and the population of infectives when susceptibles are 
allowed to disperse. We use the dispersion model (19), where f(Tt) = Tter - kTt 

and G (li) = 1 - li. 
Tt Tt 

The simulations show that the quantitative behavior of each patch does 
not change, that is, if a patch has a stable disease-free equilibrium in the 
absence of dispersion then, dispersion does not create an endemic state. How­
ever, the qualitative behavior of the patch does change. Dispersion creates 
multiple attractors or stabilizes chaotic behavior; our results agree with the 
results in [9] (see Figures 4.2 and 4.2). 

In Figure 4.2 we compare the behavior of the total population and that of 
the infectious with and without dispersion. When there is no dispersion, the 
total population in patch 1 has chaotic behavior while the total population 
in patch 2 has period 3 (see Figure 4.2 (a) and (b) top). Also, the infectious 
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1 <Rdl<Rd2 Rol<l Ro2>1 Rdl<Rd2<1 Rol<l Ro2>1 

d2 

Figure 3: Disease dynamics in both patches are different when there is not 
dispersion. In the left we see that for some combinations of dispersion the 
system becomes disease free, while in the right, the system develops an en­
demic equilibrium. 

population of Patch 2 follows the dynamics of the total population (see Figure 
4.2 (c) top), while the infectious population of Patch 1 is almost constant[l]. 
When dispersion is introduced (bottom Figure 4.2), we see that the behavior 
of Patch 1 stabilizes into a period 6 cycle and patch 2 undergoes a period 
doubling bifurcation. Hence, dispersion can stabilize chaotic behavior. 

In addition to stabilizing chaotic behavior, dispersion is capable of cre­
ating multiple attractors [9]. An example of this is presented in Figure 4.2. 
Without dispersion, Patch 1 has chaotic behavior, while Patch 2 has peri­
odic behavior. When dispersal is allowed, both patches support at least two 
attractors. 

5 Conclusions 

We have extended the discrete-time 8-1-8 model of Castillo-Chavez and Yakubu 
[2] to an 8-E-I-8 modeL Our model allows for the study of diseases like respi­
ratory infections. In the single patch 8-E-I-8 model, we obtain thresholds for 
the persistence of the disease. These thresholds differ from those obtained by 
Castillo-Chavez and Yakubu due to the presence of the exposed class. When 
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Figure 4: (a) top:behavior of Patch 1 and Patch 2 without dispersion. bot­
tom: behavior of the patches with dispersion. (b) Details to see the 
behavior of the total populaiton. ( c) Details to see the behavior of the 
infecitous in each patch. 

comparing the basic reproductive numbers of both models we observe that 
the value corresponding to the 8-E-I-8 model is less than the one correspond­
ing to the 8-1-8 model. Hence it is easier to eliminate the disease if there is 
an exposed class. 

In the two patch 8-E-I-8 model with dispersion we obtain multiple at­
tractors where, without dispersion there would not be any. We also observe 
that dispersal can stabilize chaotic behavior, as well create stable periodic at­
tractors (without dispersion there would be chaos). These results agree with 
those obtained by Alan Hastings in a two patch ecological model without dis­
ease dynamics [7],[9]. The emergence of chaotic attractors due to dispersion 
gives opportunity for ecological diversity. 

Moreover, when a population exhibits geometric growth, and there is a 
disease in a two patch system, dispersal can help a disease establish, where 
without dispersal the disease would perish. Likewise, dispersal can help 
eradicate a disease where without dispersal it would invade. However, when 
the two patch system has an endemic equilibrium in the absence of dispersion, 
dispersion can not free the system of disease and viceversa. 
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Figure 5: Behavior of patches 1 and 2 with different initial conditions. 

Appendix: MatLab Programs 

function doublebif3(vO,wO,yO,zO,pts,c1,c2,c3,c4,c5,c6,c7,c8,its,fig) 
figure; 
hold on; 
p1=[c1 c2 c3 c4]; 
p2=[c5 c6 c7 c8]; 
d1=linspace(O,1,pts); 
d2=linspace(1,O,pts); 
[D1,D2]=meshgrid(d1,d2); 
V=vO.*ones(pts,pts); 
W=wO.*ones(pts,pts); 
Y=yO.*ones(pts,pts); 
Z=zO.*ones(pts,pts); 
for k=1:its 
new_V=latent(D1,D2,V,W,Y,Z,p1,c6); 
new_W=infected(D1,D2,V,W,Y,Z,p1); 
new_Y=latent(D2,D1,Y,Z,V,W,p2,c2); 
new_Z=infected(D2,D1,Y,Z,V,W,p2); 
V=new_V; 
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W=new_W; 
Y=new_Y; 
Z=new_Z; 
end %for k 
for j=i:pts 
for i=i:pts 
if (W(i,j)<O) I (Z(i,j)<O) %cuidado! 
plot(Di(i,j),D2(i,j),'r.'); 
elseif(W(i,j)<=O.OOOOOOOi) & (Z(i,j)<=O.OOOOOOOi) %DF,DF 
plot(Di(i,j),D2(i,j),'b.'); 
elseif(W(i,j»O.OOOOOOOi) & (Z(i,j)<=O.OOOOOOOi) %E,DF 
plot(Di(i,j),D2(i,j),'g.'); 
elseif (W(i,j)<=O.OOOOOOOi) & (Z(i,j»O.OOOOOOOi) %DF,E 
plot(Di(i,j),D2(i,j),'y.'); 
elseif (W(i,j»O.OOOOOOOi) & (Z(i,j»O.OOOOOOOi) % E,E 
plot(Di(i,j),D2(i,j),'k.'); 
else 
plot(Di(i,j),D2(i,j),'c.'); 
end %if 
end %for i 
end %for j 
xlabel('di'); 
ylabel('d2'); 
title(['Number ' num2str(fig)]) 
function t=latent(di,d2,v,w,y,z,p,c) 
t=p(i).*(w.*((i-di).*(p(2)-v-w)+d2.*(c-y-z))./p(2)+p(4).*v); 
function s=infected(di,d2,v,w,y,z,p) 
s=p(i).*((i-p(4)).*v+p(3).*w); 

This program, tplot3, plots the trajectories that the populations follow as 
time progresses. 

function tplot3(uO,vO,wO,xO,yO,zO,ci,c2,c3,c4,c5,c6,c7,c8,c9,ci0,Di,D2,its) 
%Here uO, vO, wO, xO, yO, zO are vectors of initial conditions 
pi=[ci c2 c3 c4 c9]; 
p2=[c5 c6 c7 c8 ci0]; 
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%cl-gammal 
%c2-rl 
%c3-deltal 
%c4-sigmal 
%c9-kl 
%c5-gamma2 
%c6-r2 
%c7-delta2 
%cS-sigma2 
%cl0-k2 

u=uO(l).*ones(l,its); 
v=vO(l).*ones(l,its); 
w=wO(l).*ones(l,its); 
x=xO(l).*ones(l,its); 
y=yO(l).*ones(l,its); 
z=zO(l).*ones(l,its); 
tl=ones(l,its); 
t2=ones(1,its) ; 

for k=l: (i ts-i) 
tl(k)=u(k)+v(k)+w(k); 
t2(k)=x(k)+y(k)+z(k); 

u(k+l)=sucep(O,O,u(k),v(k),w(k),x(k),y(k),z(k),pl,p2,t1(k),t2(k)); 
v(k+l)=latent(u(k),v(k),w(k),pl,tl(k)); 
w(k+l)=infected(v(k),w(k),pl); 
x(k+l)=sucep(O,O,x(k),y(k),z(k),u(k),v(k),w(k),p2,pl,t2(k),tl(k)); 
y(k+l)=latent(x(k),y(k),z(k),p2,t2(k)); 
z(k+l)=infected(y(k),z(k),p2); 
end %for k 

tl(its)=u(its)+v(its)+w(its); 
t2(its)=x(its)+y(its)+z(its); 

U=ones(3,its); 
V=ones(3,its); 
W=ones(3,its); 

734 



X=ones(3,its); 
Y=ones(3,its); 
Z=ones(3,its); 
Ti=ones(3,its); 
T2=ones(3,its); 

for j=i:3 
U(j,:)=uO(j).*ones(i,its); 
V(j,:)=vO(j).*ones(i,its); 
W(j,:)=wO(j).*ones(i,its); 
X(j,:)=xO(j).*ones(i,its); 
Y(j,:)=yO(j).*ones(i,its); 
Z(j,:)=zO(j).*ones(i,its); 
end 

for k=i: (its-i) 
TiC: ,k)=U(: ,k)+V(: ,k)+W(: ,k); 
T2(: ,k)=X(: ,k)+Y(: ,k)+Z(: ,k); 
U(:,k+i)=sucep(Di,D2,U(:,k),V(:,k),W(:,k),X(:,k), 

Y ( : , k) , Z ( : , k) , pi, p2 , TiC: , k) , T2 ( : , k) ) ; 
V(:,k+i)=latent(U(:,k),V(:,k),W(:,k),pi,Ti(:,k)); 
W(:,k+i)=infected(V(:,k),W(:,k),pi); 
X(:,k+i)=sucep(D2,Di,X(:,k),Y(:,k),Z(:,k),U(:,k), 

V ( : , k) , W ( : , k) , p2 , pi, T2 ( : , k) , TiC : , k) ) ; 
Y(:,k+i)=latent(X(:,k),Y(:,k),Z(:,k),p2,T2(:,k)); 
Z(:,k+i)=infected(Y(:,k),Z(:,k),p2); 
end %for k 

Ti(:,its)=U(:,its)+V(:,its)+W(:,its); 
T2(:,its)=X(:,its)+Y(:,its)+Z(:,its); 

tiinf=(c2-1og(i-ci))/c9; 
t2inf=(c6-1og(i-c5))/ci0; 

Tiinf=tiinf.*ones(i,its); 
T2inf=t2inf.*ones(i,its); 

figure; 
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hold on; 
%plots for patch 1 
subplot (421) 
title('Patch 1') 
hold on 
plot(t1,'b') %CAREFUL! this only plots 
plot(w,'r:') % one initial condition when d1=d2=O 
plot(T1inf,'k--') 
ylabel('No dispersion') 
hold on; 

subplot (423) 
hold on 
plot(T1(1,:),'b') 
plot (W (1, : ) , , r : ' ) 
plot(T1inf,'k--') 
title('Condition 1') 
subplot (425) 
hold on 
plot(T1(2,:),'b') 
plot (W (2, : ) , , r: ' ) 
plot(T1inf,'k--') 
title('Condition 2') 
ylabel(['d1 = , num2str(D1) , d2 = , num2str(D2)]) 

subplot (427) 
hold on 
plot(T1(3,:),'b') 
plot(W(3,:), 'r:') 
plot(T1inf,'k--') 
title('Condition 3') 

%plots for patch 2 

subplot (422) 
title ( , Patch2' ) 
hold on; 
plot(t2,'b') 

736 



plot(z,'r:') 
plot(T1inf,'k--') 

subplot (424) 
hold on 
plot(T2(1,:),'b') 
plot(Z(1,:),'r') 
plot(T2inf,'k--') 
title('Condition 1') 

subplot (426) 
hold on 
plot(T2(2,:),'b') 
plot(Z(2,:),'r:') 
plot(T2inf,'k--') 
title('Condition 2') 

subplot (428) 
hold on 
plot(T2(3,:),'b') 
plot(Z(3,:),'r:') 
plot(T2inf,'k--') 
title('Condition 3') 
legend(['Total' num2str(j)],['Infectives'num2str(j)]) 
legend('Total' ,'Infectives') 
%functions called in the program: 

function r=sucep(d1,d2,u,v,w,x,y,z,p,q,t1,t2) 
r=(1-d1).*(t1.*exp(p(2)-p(5).*t1)+ 

p(1).*u.*(u+v)./t1+(1-p(3)).*p(1).*w)+ 
d2.*(t2.*exp(q(2)-q(5).*t2)+ 
q(1).*x.*(x+y)./t2+(1-q(3)).*q(1).*z); 

function t=latent(u,v,w,p,t) 
t=p(1).*(u.*w./t+p(4).*v); 

function s=infected(v,w,p) 
s=p(1).*((1-p(4)).*v+p(3).*w); 
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