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Abstract 

Typically, for an epidemic to occur, infectious individuals have to 
generate at least one secondary infection before they die or recover 
ORo >1). A simple model is introduced where epidemics are possible 
when Ro < 1. Models with varying levels of complexity in the pop
ulation dynamics are introduced and the question of whether or not 
they force or drive disease epidemic patterns is analyzed in a single 
and multiple patch system connected by dispersal. Interaction of this 
sort between patches can disrupt the initial one patch disease dynam
ics; for example, dispersal can cause a disease-free equilibrium where 
otherwise there would be none. 
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1 Introduction 

A species dominating an isolated environment will generate demographic 
patterns that depend on the distribution, availability and competition for 
resources. Two extreme competitive behaviors observed within a species are 
scramble (equal distribution of resources) and contest (part of the popula
tion'taking most of the resources)[6]. Populations under scramble competi
tion (e.g. those governed by Ricker's model) may exhibit complex, possibly 
chaotic demographic dynamics while those under contest competition via the 
Verhulst model do not. In this paper we analyze the dynamics of a disease 
in populations with demographic patterns of various degrees of complexity. 

Previous studies have addressed these questions in the presence of susceptible
infected-susceptible (S-I-S) epidemics (Castillo-Chavez and Yakubu, 2000). 
Here we use an adapted version of the general framework proposed by these 
researchers with the addition of a latent stage where individuals are asymp
tomatic and infected but not infectious. 

Again we follow the approach of Castillo-Chavez and Yakubu (2000) and 
model the force of infection via a non-linear 'probability' function that de
pends on the prevalence of the disease. Some results are established for 
general probability functions while others were established for particular 
functional forms. Throughout and using simulations we focus on various 
questions including whether or not complex demographics can drive a dis
ease as well as whether or not exogenous reinfection (the effect on disease 
progression of latently infected individuals who continue to interact with in
fectious individuals) can support epidemics when ~o (the basic reproductive 
number) is less than one. 

Finally, we use numerical simulations to look at the role that disease
enhanced or disease-suppressed dispersal plays in disease dynamics in a two 
patch system. 

The paper is organized as follows: First we define the general model of 
our system. We then provide examples of different recruitment functions: 
geometric, constant and Ricker's. Stability and existence of equilibria is 
determined for each recruitment function and for different type forces of 
infection. Local patch dynamics are studied before dispersal occurs so that 
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we may understand the effect of dispersal on the prevalence of a disease. 

2 Single Patch S-E-I-S Model 

The epidemic model of Castillo-Chavez and Yakubu, is a 2-dimensional sys
tem with a recruitment function f : [0,(0) -+ [0, (0) and a function such that 
G : [0, (0) -+ [0,1] that represents the probability of remaining susceptible 
or latent (so that 1 - G represents the probability of becoming either latent 
or susceptible). The function G is a monotone decreasing function with a 
maximum value of 1, which occurs when there are no infecteds (G(O) = 1). 
Also, G" is always non-negative. Furthermore, we introduce a latent stage 
in the disease, where its probability of moving on to infective is governed by 
the same function G. The general system is set up in the following manner: 

where 

8tH = f(It) + "(8tG (aft) + "((1 - 8)It 

EtH = "(8t(1- G (aft)) + "(EtG(aft) 

ItH = ,,(Et(1- G (aft)) + 8"(It 

8 t = population of susceptibles at generation t, 
E t = population of latent at generation t, 
It = population of infecteds at generation t, 
f(Tt) = recruitment at generation t, 
"( = probability of survival, 
a = a weight given to the proportion of infecteds on the probability 

of becoming infected, 
8 = probability that an individual does not recover, and 

(1) 

It = total population at generation t, is the sum of individuals in all the 
stages. Therefore, 

(2) 
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The time that an individual stays in the latent period depends on the 
growth of the infectious population. This leaves open the interpretation as 
to how this interaction occurs. In some cases, an increase in the proportion 
of infectives means more interactions with these and therefore a greater like
lihood to develop the disease. In other cases, an increase in the number of 
infectives could reflect the presence of pathogens flowing in the environment. 

3 Geometric recruitment J-llt 

In this section, we analyze System 1 with new susceptibles joining the popula
tion at a geometric rate (that is, when the recruitment function !(It) = f£'It ). 

The method for finding mo, fixed points of the system and determining their 
stability can be applied to other forms of the recruitment function. 

It+! = !(It) + ",(St + ",(Et + ",(It 
= f£Tt + ",((St + Et + It) 
= (f£ + "'( )Tt 

and by solving recursively, we obtain the following expression: 

(3) 

(4) 

Note that the long-term behavior of the population is determined by the 
rate f£ + "'(. As t tends to infinity, the population goes to extinction when 
f£ + "'( is less than one or grows geometrically if f£ + "'( > 1. Hence, we define a 
term md (representing the basic demographic number) in the following way: 
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where 1~'Y is the life expectancy (in generations per capita) and J-l is the 
recruitment or birth rate. Hence, Rd represents the average number of off
spring that an individual will produce in its life-span. When Rd < 1, the 
average individual is not producing enough offspring to replace itself so the 
population will die out. Otherwise, when Rd > 1 the population increases 
geometrically. In the unlikelihood that Rd = 1 (such that Tt = To for all t) 
the population will remain constant. 

When f(Tt) = J-lTt System (3) is homogenous it can be written using pro
portions of the total population. However, it is important to emphasize that 
this method does not reflect the absolute demographic dynamics. Following 
(4), then the proportions have the following interpretation: 

1. If J-l + 'Y < 1 then the total population will tend to zero along with 
Bt , Et and It and the proportions will change asymptotically. 

2. If J-l + 'Y = 1 then the value of Tt = To, so the total population remains 
constant. This situation is very unlikely in reality but proportions are 
interpretable and therefore would be an appropriate approach. 

3. If J-l + 'Y > 1 then the total population grows geometrically. This can 
lead to some misinterpretation of the proportions. For example, It 
might settle to a finite equilibrium point (loo < 00), but if Too ---7 00 
then the proportion will tend to 0 and the behavior of It is not reflected. 

With these precautions in mind, we can rescale the system by letting 
X -&. v_§. Z - lJ.. th t-Tt,I.t-Tt' t-Tt' en 

(5) 

with this rescaling we obtain the new system 

(1 - q) + qXtG(aZt) + (1 - 'Y)qZt, } 
- qXt(1 - G(aZt)) + ytqG(aZt) , 

qyt(1 - G(aZt)) + 8qZt, 
(6) 
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where q = ~ and 1 - q = ~. 

Using (5) we reduce (6) to a two-dimensional system. 

- q(1 - yt - Zt)(1 - G(aZt)) + ytqG(aZt) , } 
qyt(1 - G(aZt)) + 8qZt 

3.1 Disease-Free Equilibrium and ~o 

(7) 

Clearly, the disease-free equilibrium (DFE) of System (7) occurs when all 
individuals are at the susceptible stage (X* = 1), that is (Y*, Z*) =(0,0). 
The local asymptotic stability of the DFE is established by applying the Jury 
test to the Jacobian matrix evaluated at (0,0). That is, by applying it to 

The conditions to be satisfied by matrix A for local asymptotic stability 
are I trace (A) I < det(A)+1 < 2. The second part ofthe inequality, q28+1 < 2 
always holds because both q and 8 are less than one. The first part of the 
inequality q(1 + 8) < 1 + q28 is also always satisfied since, 

q(1+8) < 1 
1+q28 

and we defined q = ~+ which when substituted into the previous inequality 
. ~ 7 

gIves, 

that is the fraction of old recruits that do not become infected. Note this 
is always true since 8 ::::; 1 and ;;}y ::::; 1, so the DFE will always be locally 
asymptotically stable for all values of the parameters. 

3.2 Endemic Equilibria 

Solving System (6) simultaneously for Yoo and Zoo will not give explicit solu
tions for the fixed points because G is an unknown function of Zoo. However, 
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we can prove the existence of positive solutions by looking at the roots of the 
non-linear equation, 

(8) 

where 

Every root of (8) will yield a corresponding value of Yoo via these values 
for Zoo are substituted into the expression: 

(1 - 8q)Zoo 
Yoo = q(l- G(aZoo))' (9) 

These corresponding values are the coordinates of the endemic equilibria. 

Instead of Studying the general case, we focus on a few particular cases. 
The following sections are the details of what was done for each example of G. 

3.3 

From the general model, we know that there exists a DFE at (1,0,0). Fur
thermore, red ueing the system of equations to 2-dimensions and linearizing 
at this point determines that the value for a:?o = 1+8 < 1 always. Hence, the 

J.I, 1 
DFE is always locally stable. 

3.3.1 Endemic Equilibria 

While we always have a locally stable DFE, we also have a coexisting EE at 

8(-1.-1) } IRQ ,..--' ___ _ 

1 _ .L _ 8 ± 1. /1 _ 482 + 482 
2 IRQ 2V IRQ 

(10) 

Theorem 3.1 Let G (alt..) = 1-lt... Tt Tt 
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1. Ij ~o ~ max(1!~~2' 2ff!1) then system (3) a DFE and two EE at (10). 

2. If ~o < max(1!~~2' 2ff!1) we only have the DFE. 

3. If ~o = 1!~~2 and ~o ~ 2;!1)' system (3) has a DFE and only one EE 
at (10). 

Proof 
If ~o > 1!~~2 we will have 1 - 28(~0 - 1) > O. Furthermore if ~o > 2;!1 the 
discriminant will be positive. Hence, we will have 2EE and the DFE. 
It can be quickly verified that we have the DFE only if ~o < max( 1!~~2 , 2ff!1). 

If ~o = 1 !~~2 then the discriminant is 0 and if ~o ~ 2ff! l' we have 1-28 (~o -
1) > O. Hence both a DFE and one EE coexist. 

Remark: If p, = ,,/, then we will have no endemic equilibria. The proof 
can be easily derived from Theorem 3.1 

3.3.2 Global Stability of DFE 

Here we define a Lyapunov function to prove that the DFE is globally stable 
in the absence of an EE. 

Theorem 3.2 If 0 < ~o < 2;!1 then DFE is globally stable. 

Proof By Theorem (3.1), ~o < 2;!1 implies there are no EE equilibria. Hence 

~o < 28(1 - ~o) 

1 1 
=* "2 < 8(~o - 1) 

So we can choose a, b > 0 such that ~ < a < b8(~0 - 1). Let f(yt, Zt) = 

(yt+b Zt+1) , where f is a reproduction function of system 7 with G(aZt) = 

1 - Zt. Now we construct a Lyapunov function for f. 
Define V : [0, (0) x [0, (0) ---7 [0, (0) by V(yt, Zt) = :0 (ayt + bZt). In order 
to show that the DFE is globally stable, we must show that V(J(yt, Zt)) < 
V(yt, Zt) for all (yt, Zt) =1= (0,0). 
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Let (yt, Zt) E (0,00) x (0,00) 

8 
V(f(yt,Zt)) = ~o (aYt+1 + bZt+1) 

= a(1 - yt - Zt)Zt + ayt(1 - Zt) + bYtZt + bOZt 
= (b - 2a)ZtYt + aZt - aZ; + ayt + bOZt 

and b - 2a < 0 by definition of a so, 

(11) 

(12) 

Next we show that the above inequality holds when either yt =1= 0 or Zt =1= o. 
If Zt = 0 and yt =1= 0, then by comparing the yt terms in (11) and (12) it is 
clear that 

ayt < ~oayt 

is always true since ~o > l. 
From the choice of a and b we know that a < 8b( ~o - 1). Furthermore, if 
yt = 0 and Zt =1= 0 we have: 

8 
(a + bO)Zt < ~o bZt 

Therefore, V(f(yt, Zt)) < V(yt, Zt), and the DFE is globally stable. 

3 4 Wh G -ali.. . en = e Tt 

As in section 3.2, the solutions for Zoo are all implicit, so we turn to the 
method for the general case (section 3) where we define the right and left 
sides of an equation as two functions of Zoo. Specifically, 

When we superimpose the graphs of Land M for fixed values of the 
parameters, we observe the existence of at least one intersection point (Zoo = 
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a) 0.2 b) 0.2 

~ 0.1 f(Z) 0.1 

0.1 0.2 OJ 0.1 0.2 OJ 
z z 

c) 0.2 

1.(Z) 

f(Z) 0.1 
M(Z) 

0.1 0.2 OJ 
z 

Figure 1: The graphs show M(Zoo) and L(Zoo) with fixed parameter values. The 
points where the graphs intersect will be the values we need for Zoo. In case (a) the 
DFE is globally stable since it is the only intersection. Notice that in (c) there are three 
intersections, so for these parameters there will be coexistence. (b) shows that a threshold 
can be reached when 0: ~ 6.77, q = 0.5 and {5 = 0.9. This threshold is where the system 
goes from having 1 endemic equilibrium to 2. The values for the parameters where the 
tangency occurs can only be approximated which is not useful when analyzing stability 
numerically. 
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0) and at most three (see Figure 6). This implies that there can be three 
coexisting equilibria for the system. Numerical simulations indicate that 
when this is the case for G, then they will exist as a locally stable and 
unstable pair (in addition to DFE). 

4 Limiting Systems 

Up to this point we have only dealt with a homogenous system. We were 
able to reduce the System (3) to two dimensions by looking at proportions of 
the total population. If a system is not homogenous, we cannot use the same 
method of looking at proportions. However, if Tt reaches a limiting value as 
t ~ 00, then one can obtain a two dimensional limiting autonomous system 
by substituting for Tt with its limiting value. Results of Thieme and Castillo
Chavez show that this limiting system has the same qualitative dynamics for 
general continuous time systems, which simplifies the analysis. Furthermore, 
simulations show that this is the same for systems like System (3). Hence 
we assume that the limiting system as the same qualitative dynamics as the 
original system. 

5 Constant Recruitment Rate A 

In a setting where the number of individuals entering the system is con
stant per generation, the growth rate will be constq,nt. Such would be the 
case of immigration policies that allow a limited number of individuals into 
a given area. Here we consider this situation by setting !(Tt) = A with 

G (a~) = 1- # in the System (1). 

Given that TtH is the sum of individuals in all stages, we see that, 

or that 

TtH = 8tH + EtH + IH !, 

= A + "ITt, 

fTI A 1-1t 
tfTI 

.Lt = 1-')' + "I .LO· 
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Thus, 

limt-+oo Tt = 1 A • -"1 

At the DFE, most if not all of the population will be in the susceptible 
class (Soo = Too) so there are now infected or latent individuals. Hence, In 
this case the DFE will occur at the point (So,Eo'!o)=( l~'Y'O,O). 

5.1 Stability of the disease free equilibrium and ~o 

Unlike the previous case for recruitment, here solutions are not exponential 
and therefore System (1) can not be easily simplified using proportions. We 
can, however, work with the limiting system where the total population has 
reached an equilibrium state, Too. In order to determine when the DFE is 
locally stable, we perform linearization of the system in the neighborhood of 
the DFE, to obtain the system, 

or in matrix form, 

This linearized form of the system is analyzed for local stability as shown 
in Section 3.1. The inequality q28 + 1 < 2 (from the Jury test) is always 
satisfied since 8"? < 1 is always true. Again, from the condition I trace (A) I < 
det(A) + 1 we get, 

')'(1 + 8) < 8')'2 + 1 or that, 

::::} aio = 8')' < 1 

which always hols. Hence, DFE is locally asymptotically stable for all values 
of the parameters and aio is the number of individuals (in the infected state) 
that survive and do not become infected. 
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5.2 Endemic equilibria 

We begin searching for endemic equilibria by letting Too = 1~'Y' i. e. the total 
population is asymptotically constant. Proceeding as in Section 3.3.1, we 
obtain 

Letting Yoo = k and Zoo = t- to look at proportions of the total 
population allows for a simpler model that can be analyzed for equilibrium 
points. In this case the equilibrium points are, 

v _ 1-81 } .I 00 -
1 (15) 

We utilize the same method that was used in section (3.3.1) to determine 
when endemic equilibria occur and stability of the equilibria. In this case we 
have that 1 - 2Y 00 > ° if ~ - ~ < 8 < 1. The discriminant is greater than or 

482 1 equal to zero whenever mo 2: 482+1 > 2". 
Again the DFE for constant recruitment is globally stable when there is 

the only equilibrium poi. This is proved using a similar Lyapunov function 
and in the same way as in (3.2) with the difference that we cannot work with 
proportions and therfore f and V become functions of Et and It instead. 

If we choose a to be ~ < a < b(~ - 8) with a,b E JR+ then we can define a 

Lyapunov function V: [0,00) x [0,00) --7 [0,00) by V(Et,It) = ~o (aEt+bIt ). 
DFE is globally stable when V(J(Et, It)) < V(Et, It) for all (Et, It) =1= (0,0). 

6 Ricker's growth function 

We now let f(It) = Iter- kTt and we assume that limt-->oo It = Too, where 
Too = (-In( 1 - "() + r) / k. By simple analysis we know that Too is a unique 
fixed point for ° < r < 2/(1 - "() + In(l - "(). Hence by substituting Too for 
It we obtain the following limiting system: 
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StH = Too(l -')') + ')'St(St + Et)/Too + (1 - 8)')'It } 
EtH = ,),StIt/Too + ,),Et(St + Et)/Too 
ItH = ')' EtIt/T 00 + 8')' It 

(16) 

where St is replaced by Too - Et - It 
We linearize at the DFE (St = Too, 0, 0) and we determined that ~o = 8,)" 

which is always less than one. Following the same method that was used in 
section (5.2) we obtain the same expressions of System (15). We can define a 
Lyapunov function that is exactly the same as that defined for the constant 
growth function to determine the global stability of the DFE whenever in 
the absence of an EE. 

100 = (Too - 2Eoo) ± J(Too - 2Eoo)2 - 4(Too/')' - Too)Eoo (17) 
2 

then the EE will be stable. 
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7 Backward bifurcation: coexistence of a DFE 
and an EE 

As stated before, if the basic reproductive number ORo) is less than one, then 
essentially an individual will on average cause less than one secondary in
fection before dying or recovering. Hence the disease that is present in the 
susceptible population will eventually die out. However, in all the examples 
we have shown of System (1), lRo < 1 always (so the DFE is locally stable) 
and yet the disease can prevail, implying that the fate of an epidemic will de
pend on its initial conditions. Previous studies in continuous time show that 
the backward bifurcation phenomena is a result of exogenous re-infection. 
The case seems to be same for discrete time systems. The appearance of an 

a) b) 

•.• 2(t) 

•. t 

o.~ . 

'.0 O.St 0.:\115 0.93 

Figure 2: Shows the number of equilibria according to the values of 8 and 'Y. (a) is 
the graph of (10) as a function of its parameters. Recall that this expression for Zoo was 
obtained with G = 1- 4t. If we fix the value for one of the parameters we get a projection 
that looks like (b). This second function was done by fixing 8 = 0.8. The value pointed 
out in the diagram (*) is similar to Rm in that passing that value of 'Y will result in the 
appearance of a second endemic equilibrium. Wherever there are two equilibria, the lower 
one will always be the unstable one due to the stable nature of the DFE. 

endemic equilibrium (EE) occurs at a value of lRo (called lRm). Beyond lRm, 
the equilibrium point splits into two separate steady states, one stable and 
the other unstable (see Figure 2). For values of lRo close to one, the presence 
of only few infected individuals may cause an epidemic whereas for values of 
lRo close to lRm an epidemic will only thrive if there are many infecteds in 
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the system. This has further biological implications that are discussed later 
in the paper. 

8 Dispersal Models 

We allowed dispersal of susceptibles between two patches (see figure 3) in 
the same fashion Hastings showed in 1993 [4]. The movement of susceptible 
individuals S is modeled in the following manner: 

st+1 
Et+1 
It+1 
S;+1 
E;+1 
t/:+1 

where S represents the population of susceptibles before dispersal. Dl 
and D2 represent the probability of dispersal out of patch 1 and patch 2 
respectively and 0 < D1 , D2 < 1. 

8i+l =ft(Si,Ei,It
l ,7;l) 

Dl 
8t: l = f2(S/ ,E;, I t

2,T/) 

Et~l = gl (Sf,Et
l , Ii ,7;1) EL = g2(S/ ,E;, I t

2 ,~2) 

D2 
I;+1 = h,. (Sf,E;, Ii ,7;1) I t: l = ~(S; ,E; ,It2 ,~2) 

patch 1 patch 2 

Figure 3: General local dynamics and dispersal between patches. St+l' Et+l and n+l 
(for i = 1,2) represent the functions mentioned previously where i is the patch number. S 
represents the dynamics of susceptibles when these move between patches, following the 
dynamics shown in (18) and (18). 
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8) b) 

Figure 4: Basin of attraction for a two patch system with geometric recruitment. a) The 
darker area represents the basin of intial conditions where the point will eventually reach 
an endemic equilibrium. The lighter area is basin for the DFE. b )Basin of attraction for 
the DFE in patch 2. 

We show various scenarios with various levels of dispersal. For simplicity, 
throughout this section, when we mention equilibria and refer only to the 
EE's, we imply the coexistence of the DFE since lRo is always less than one. 
We compare the patterns that arise in a patch, before and after dispersal. 
Here we discuss only the drastic, more interesting cases for each recruitment 
function, but the behaviour we describe could occur only for a given set of 
parameters. 

8.0.1 Case1: Geometric Recruitment 

We begin by exploring the long-term behaviour when both patches have geo
metric recruitment and infection probability is governed by G = 1 - #. 
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a) b) 

Figure 5: Basin of attraction for a two patch system with constant recruitment. a) Basin 
of attraction for patch 1 after dispersal. The darker area represents the basin of initial 
conditions where the point will eventually enter the chaotic attractor. Initial values in the 
lighter area will go to the DFE; b)Basin of attraction for patch 2 after dispersal. Note 
that here the DFE is globally stable. The top half in both cases is discarded because we 
use proportions so we can only look at the points where Xoo + y 00 + Zoo = 1. 

We start out with only one attractor in each patch. Hence, both patches 
have a DFE only. After allowing dispersal between the two patches, patch 1 
has two attractors. This particular case is very interesting since an increase 
in dispersal caused an empidemic even though both patches were disease free. 

8.0.2 case2: Constant Recruitment 

The second example we consider constant growth for the recruitment func
tion, with G(ft) = 1- ft. We assume that the total population has reached 
an asymptotically stable steady state (Too). 

A single patch with this recruitment function initially shows very pre
dictable and ordinary dynamics. However, introducing dispersal between 
two patches of this same type will cause significant changes in the dynamics 
so that the demographics will not reflect the behaviour of the disease. 

In a system where both patches begin with endemic equilibria, dispersal 
will cause one patch to lose its endemic attractor and the other patch to 
retain it. However, the endemic attractor in this second patch changes in 
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a:) b) 

Figure 6: Basin of attraction for a two patch system with Ricker's growth function after 
dispersal. a) Basin of attraction for patch 1. The darker area represents the basin of intial 
conditions where the point will eventually enter the stable period 8 cycle. The lighter area 
is the basin for the DFE. b )Basin of attraction for the DFE in patch 2. 

nature to become chaotic. This is a clear example where the demographic 
dynamics have no influence on the dynamics of a disease since the local patch 
dynamics are very simple but after dispersal is allowed the dynamics become 
very complex. 

8.0.3 case:3 Ricker's Equation, with G = e -a* 
Finally, we analyze the beviour of the system when the patches are governed 

by Ricker's equation with G = e -a* and r in a chaotic region. 
For this case we see the opposite effect of dispersal on the attractors as in 
the previous case. Patch 1 had a chaotic attractor for the EE, patch 2 had a 
DFE only. After dispersal we no longer had a chaotic attractor but a stable 
period 8 cycle. Again we show evidence that dispersal can change the nature 
of an attractor. Patch 2 remained with a DFE only. 

9 Conclusions 

The fact that there exists a backward bifurcation in the single and two patch 
dynamics is the result of both a latent stage in the system and controlling 
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the movement of individuals from the latent stage to the infectious stage. In 
a system where the latent stage is present and its flow to stage It is constant, 
the coexistence is lost so there will either be a DFE or an EE but not both 
(Gonzalez, Saenz and Sanchez, 2000) simultaneously. A possible explanation 
for this is that latency period creates a reservoir of potential infectious indi
viduals that will be 'exploited' when the proportion of infecteds reaches the 
appropriate value. 

Tuberculosis is an example of a disease where an individual may acquire 
partial immunity to initial infection (therefore be in the latency period) but 
may develop the active disease with re-infection [1]. A reservoir of latents 
can also be created in examples of vaccination where only a portion of a 
population is vaccinated and the effect of the vaccine wears out with time. 
The speed at which the immunity is lost will determine if coexistence occurs 
in the system [5]. 

On the other hand, the restrictions for ~o so that there exists an endemic 
equilibrium (greater than one-half) suggests that regardless of the portion of 
latents in the system, if ~o < ~ the endemic equilibrium will not occur. Fur
ther more if there is no endemic state, then the DFE will show global stability. 

Coexistence of this sort has important evolutionary implications since the 
destiny of a given population (or disease in this case) will depend not only 
on the population strategy but also on the initial conditions, that is, going 
back to the origin or emergence of the population. 

The effect of the demographical dynamics on the disease dynamics is not 
clearly marked. The geometric and constant recruitment functions have sim
ilar effects on the disease since they exhibit the same properties for ~o and 
coexistence of EE and DFE are possible. For Ricker's equation with ap
propriate values of the parameters, coexistence also occurs but the endemic 
attractor exhibits chaotic behaviour. This reflects the chaotic nature of a 
population governed by Ricker's dynamics with suitable parameter values. 
On the other hand, when local demographics follow constant recruitment 
and dispersal is introduced, the disease will enter a chaotic attractor (coex
isting with the DFE), implying no effect of the population dynamics on the 
disease. Further studies using other demographic regimes such as Verhulst 
dynamics should exhibit this sort of behaviour. 
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Dispersal between patches showed to generally work against the disease. 
When both patches begin with an EE, there will always be a set of para
meters for which the EE in one of the patches will collapse except when the 
recruitment into the system follows geometric growth. This usually occurs 
with an increment in the dispersal between patches suggesting that the more 
movement between the patches, the higher the probability of the patch of 
becoming disease-free. 

In the case where dispersal is zero and both patches only have a DFE, 
then the geometric recruitment is the only one where an EE appears with 
dispersal. This means that for a population with geometric growth carrying 
a disease that follows our model then the movement of infecteds is not nec
essary to push the epidemic to an equilibrium. The effect of the movement 
of latent or infected individuals between patches, could be substantial in the 
arisal of EE's where they originally did not exist. 

If one patch has local dynamics such that there is a DFE and the other 
shows coexistence, the effects of dispersal change depending on the recruit

. ment function. For constant recruitment, the EE is lost and the whole system 
becomes disease-free. The Ricker's recruitment causes one of the patches to 

,., remain as a DFE, whereas the other patch shows coexistence with an en
demic chaotic attractor. Geometric recruiment doesn't affect the local patch 
dynamics. 

Numerical explorations of the basins of attraction with different parame
ters are by far the most time-consuming because of the numerous parameters 
in the system. In order to facilitate the simulations, we made some simplify
ing assumptions. We assumed that a probability of dispersal greater than 0.7 
would not be realistic since in a given population it is rare that most of the 
individuals disperse. Also, it is important to note that our observations are 
only for fixed parameter values, hence any conjectures made may not hold for 
different values, because there is a lot to explore in this sense. We leave this 
topic as future work. Moreover, in this case we only allow dispersal of the 
susceptible portion so further studies should concentrate on the movement 
of the infecteds or latents, depending on the nature of the disease. 

Clearly, the possibilities for this kind of study are still open since there are 
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still many numerical explorations to be done not only with these examples 
but with many others. The use of computer packages like Dynamics and 
others of the sort are clearly very useful and can help visualize and explain 
behaviour that otherwise would be unpredictable. 
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