
Deterministic and Stochastic 
Reaction-Diffusion Models in a Ring 

BU-1532-M 

Gerardo Chowell 
Universidad de Colima, Colima, Mexico 

Sara Del Valle 
New Jersey Institute of Technology, Newark, NJ 

Dulcie Kermah 
Howard University, Washington, DC 

Leisis Martino 
Barry University, Miami Shores, FL 

Juan Pablo Aparicio 
Cornell University, Ithaca, NY 

August 2000 

Abstract 
It is known that Fisher's equation in one dimension supports trav

eling wave solutions in an unbounded domain. It is easily shown that 
solutions become stationary on a ring. In this study we divide a 
bounded domain into a large number of patches capable of supporting 
local populations. It is assumed that the local dynamics are governed 
by a logistic equation and that individuals disperse, but only to their 
nearest neighbors. Furthermore, it is assumed that local population 
growth and dispersal are stochastic events. Simulations are used to 
compute the rates of convergence to the stable states and our results 
are compared to those obtained analytically from Fisher's model on a 
ring. 
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1 Introduction 

All organisms are discrete entities that normally interact with either neigh
boring species of their own or different species. This behavior is mostly seen 
in sessile organisms, such as terrestrial plants, marine macro organisms etc. 
Nevertheless, motile organisms also have their impact in the area in which 
they move. In our case, we do not deal with a day to day movement, but 
rather a global dispersal of individuals. Even though it seems interactions and 
dispersal between species and individuals in a space are a trivial solution, it 
has important consequences. In this project, we see that mathematical mod
els can be used to include population dynamics to account for interaction 
and dispersal of individuals. 

The concept of diffusion has been vastly studied in the past. Diffusion 
could broadly be described as the tendency for a group of particles initially 
concentrated near a point to spread out in time, gradually occupying an 
even larger space. A more general definition is exploring diffusion as a phe
nomenon by which the particle group as a whole spreads according to the 
irregular motion of each particle. The fundamental importance of the spatial 
distribution of organisms, emphasized by Skellam in his classic work, has 
recently been given high recognition in the literature of theoretical biology 
(see Okubo 1980). 

The classic theory of diffusion was founded more than one hundred years 
ago by the physiologist A. Fick. The equation used by him is 

aN _ Da2N 
at - ax2 (1) 

where D is the diffusion coefficient and N is the concentration of matter. 
Leading to a further step is the analysis of an interactive population diffusion 
system, also referred to as reaction diffusion. Such mechanism was proposed 
by Turing in one of the most important papers in theoretical biology and 
applied mathematics. These types of systems have been widely studied since 
1970. The reaction diffusion equation is obtained when reaction kinetics 
(such as births and deaths) and diffusion are coupled. In a simple one
dimensional scalar case, this equation is, 

aN = D
a2N 

f(N) 
at ax2 + (2) 

where N is the concentration, f(N) is the demographic function and D is 
the diffusion coefficient. 
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One of the most popular cases of the nonlinear reaction diffusion equa
tion was suggested by Fisher as a deterministic version of a stochastic model 
for the spatial spread of a favored gene in a population. Fisher's equation is 
an extension of the logistic growth population model. This is 

-=D-+rN I--aN a2N (N) 
at ax2 K (3) 

where K and D are positive. Note that, even though (3) is now referred to 
as Fisher's equation, it was first reported by Luther, (see Okubo,1980). 

In an ecological context, "reaction" can be defined as the process of pop
ulation change or species interactions in the absence of dispersal whilst dif
fusion describes the movement of individuals . Thus the reaction part of the 
reaction diffusion model could be the logistic equation, or any growth nmc
tion. Looking at a given population divided into patches, we suppose that 
individuals have the probability of leaving the patches in any given interval 
of time. In section 2 of this paper, we define the deterministic model and the 
stochastic model is discussed in section 3. After discussing our models, we 
compare the results from the computer simulations to that of the determin
istic results. Also the speed of propagation of the wave front is computed 
from both the stochastic simulations and the deterministic model. The re
sults from each approach are recorded and then compared. The models are 
then used to see the importance of local fluctuations on the dynamics of a 
population. 

2 Deterministic Model 

The most common mathematical approach to spatial population models 
involves the analysis of the reaction diffusion equation. The reaction term 
is usually described by an exponential growth function or the logistic equa
tion among others, while the diffusion term describes the movement of the 
individuals. Also the diffusion term corresponds to a simple passive spread. 
One of the most known equations and the one on which this paper will be 
focused is Fisher's equation. Fisher's equation is the combination of passive 
diffusive spread and the logistic growth of a population and it is given by 

-=D-+rN I--aN a2N (N) 
at ax2 K (3) 
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where D is the diffusion coefficient, r is the intrinsic growth rate, K is the 
carrying capacity per unit of area, and N is the density of individuals at 
position x at time t. 

Equation (1) for an unbounded domain gives traveling wave solutions (see 
Okubo, 1980). Let us now consider a population undergoing logistic growth 
with diffusion on a ring with a Gaussian normal distribution as the initial 
condition. We will first look for equilibrium points. Let 

aN 
at = o. 

Since the equation does not depend on t anymore, then it can be written as 

Let 

dN ,d2N 
9 = dx and 9 = dx2 

substituting it back into the previous equation yields 

r 
Dg' +rN - _N2 = 0 

K ' 

and writing the above equation in a matrix form we obtain 

dN - kD D . ( 
g' ) _ ( LN

2 
-.!..N) 

dx 9 

In order to find equilibria we let g' = 0 which leads to 

and solving for Noo we obtain 

-N --1 =0 r (Noo ) 
DocK 

Hence, the equilibrium points are Noo = 0 and Noo = K. Now we will 
analyze the stability of the nontrivial equilibrium of equation (3) by using the 
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perturbation method around its equilibrium point Noo = K (see Appendix). 
After the perturbation analysis the equation becomes 

8n 82n 
at = D 8x2 - rn. (4) 

In order to solve the equation above, we will transform it into a simpler 
equation. The important point is that, if there was no diffusion within the 
population (D = 0), then the population at each point xo would 'damp'exponentially 
to 0 according to 

n(x, t) = n(xo, O)e-rt . 

Because of this observation, take 

n(x, t) = e-rtw(x, t), 

where w(x, t) would represent the population due to diffusion only. Substi
tuting this expression into (4) we arrive at 

8w _ D82w 
8t - 8x2 • 

Solving this equation using the separation of variables method and ap
plying the given boundary conditions we have: 

00 

w(x, t) = L Bme-m2Dt cos (mx) , 
m=1 

where 

where ¢( x) is the initial distribution (which we assume to be close to K) and 
hence, the solution of problem (4) is 

00 

n(x, t) = e-rt L Bme-t(Dm
2
) cos(mx). 

m=O 

However, it is easy to see that as t -+ 00, n(x, t) -+ O. Now 

N(x, t) = n(x, t) + K, 
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which implies that the population perturbed about K will always converge 
to K, that is 

lim N(x, t) = K. 
:1)->0 

In addition to the perturbation method, a simple application of the max
imum principle can be used to find that there are no non-constant periodic 
steady state solutions of equation (3) (see Appendix). Therefore, Fisher's 
equation supports constant solutions on a bounded domain in contrast to 
traveling wave solutions on an unbounded domain. 

100 

75 

Population 50 
t5 

Position 

Figure 1: This figure shows how the population starts out as a Gaussian 
normal distribution, however, as time increases it converges to its carrying 
capacity which in this case is 100. 

As we mentioned previously, with a large diffusion, our model would 
behave as though on an unbounded region where the solutions are traveling 
waves, and where the speed of propagation is given by the minimum velocity, 
that is em = 2VrJ5. It is important to see that the minimum velocity of 
propagation is equal to the ultimate speed of propagation. 
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3 Stochastic Model 

In terms of randomness, diffusion can be defined as "a basically irreversible 
phenomenon by which matter, particle groups, population, etc., spread out 
within a given space according to individual random motion" (Okubo 1980). 
In our stochastic model, the dispersion process is based on a simple random 
walk in one dimension, and this random walk is performed by a group M of 
particles initially distributed in a certain pattern such as a normal distribu
tion or equally concentrated in a certain number of patches. Each particle 
may either move to the left or to the right in fixed steps with the same 
probability of ~. The space where the population is placed consists of a ring 
divided in a certain number of identical habitat patches equally connected to 
each other. The local dispersion, that is, movement within the same patch, is 
not relevant for this work: Rather we are interested in the global dispersion 
of individuals, which is the movement of an individual to the right or left 
patch. Only two events are involved in the dispersion process: these are the 
dispersion to the right, and the dispersion to the left. 

The probability P(m, n) that a particle will reach point m after n steps 
involves a birth-death process governed by a logistic growth, and it is given 
by (Murray 1989) 

The following are the parameters used in the stochastic model below: 

b = per-capita birth rate, 

/-La = death rate at 0 density, 

/-Ll = density-dependent death rate, 

K = carrying capacity, 

DR = dispersal rate to the right, 

D L = dispersal rate to the left, 

T = total number of patches, 

M = total number of individuals, 
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Ni(t) = population at time t. 

The logistic growth can be written as: 

dN(t) ( N) ----;It = bN(t) - (J-lo + J-l1N(t))N(t) = rN 1 - K 

where r = b - J-lo, and the carrying capacity K is given by b-yo. 
j.tl 

In the stochastic model, one of four events takes place in each patch at 
time t. Therefore, the total number of events in a system of T patches is 

The total population M is initially distributed in each patch with a certain 
pattern, letting Ni(t) be the population at time t in patch i. 

EVENTS EFFECT TRANS. PROB. 
Birth P(i) N(i) ----7 N(i) + 1 ~ 
Death P(i) N(i) ----7 N(i) - 1 (j.to+j.tlN(i))N(i) 

fJ 

Disp. to the Right DR N(i) ----7 N(i) - 1 DRN(i) 
B 

N(i + 1) ----7 N(i + 1) + 1 
Disp. to the Left DL N(i) ----7 N(i) - 1 lhN(i) 

B 
N(i - 1) ----7 N(i - 1) + 1 

Figure 2: These are the probabilities at which the events occur, where 1 ~ 
i ~ T and () is the sum 40f all the rates. 

A) Normal distribution. 

The total population M is distributed according to the normal distribu
tion, given by 

M (re_tt)2 

f(x) = e-7u2 , 
V2K(J' 

where (J'2 is the variance, x is the patch number, J-l is the mean position, and 
M is the total number of individuals. 

B) Dirac Delta distribution. 
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Figure 3: Population with a normal distribution over a linear space 
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Figure 4: Population distributed uniformly over a number of patches 
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The total population is distributed in one patch. 
The state space of our stochastic model is given by 

N(t) = [N1(t), N2(t), N3(t), ....... NT(t)] 

where N1(t), N2(t) and so forth specify the current population in each patch. 
The following are the events that may occur in each patch: 

1. Birth of an individual 

2. Death of an individual 

3. Dispersion to the right 

4. Dispersion to the left 

As shown in the table in Figure 2, the probability that the event j takes 
place in the patch i is given by 

"T ,,4 ' 
L...-i=l L...-j=l ~j 

where ~j is the rate at which the event j will take place in the patch i. The 
time to the next event is an exponential random variable given by 

8 __ log(u) 
t - ()' 

where () = L:'J:l L:;=1 ~j is the sum of all the rates and u is a uniform 
random number (0,1). 

4 Computer Simulations 

Using the stochastic model we generated a series of simulations with the 
aid of a computer program written in Visual Basic (see Appendix). Different 
parameter values were used in our simulations. We fixed the values of the 
birth rate (b = 4), the carrying capacity (K = 100), the initial population 
(M = 1000), and the number of patches (N = 100), and only varied the 
values of the initial death rate and the dispersal rate between a and 4. The 
simulations were computed using two different initial conditions: one was 
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a Gaussian normal distribution and the other was a Dirac delta function 
positioned in only one patch. 

From the simulation results, we conclude that if we keep the disper
sal rate constant and we increment the value of /-Lo the population tends to 
take longer to converge to the carrying capacity. In addition, the fluctuation 
decreases due to the fact that there are fewer people as /-Lo rises. However, 
when /-Lo is kept constant and dispersal rate is increased, dispersion increases 
throughout the ring. Therefore, the population reaches its steady state faster, 
though the population fluctuates about its equilibrium point due to local sto
chasticity. Graphical results and their analysis are found in Figures 5 through 
12. The stochastic and deterministic graphs are plotted on the same set of 
axes, to facilitate the comparison. The plots reflect similarities between both 
results. In general, as time increases, the population approaches stability. 
The smooth graphs correspond to the deterministic solutions. 
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Figure 5: Population distribution at /-Lo = 1 and D = O. 

It can be seen from the graphs that as time increases the population does 
not disperse and it only experiences logistic growth with an intrinsic growth 
rate equal to b - /-Lo = 3, due to the fact that the dispersal rate is 0 (see 
Fig.5). 

As time increases, the population grows logistically and also disperses. 
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Figure 6: Since there is no dispersion the variance over time remains stable 
as the graph shows. 

Figure 7: Population distributed at flo = 1 and D = 2. 

At the 5th year we can see how the population has considerably dispersed 
and at the 10th year the population has almost dispersed throughout the 
whole ring and the carrying capacity has been reached. At the 15th year the 
population has already reached its equilibrium at the carrying capacity (Fig. 
7). This conclusion is supported by looking at the plot of variance versus 
time (Fig. 8). The graph shows that the equilibrium is reached shortly after 
the 10th year. 
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Figure 8: Variance versus time for a dispersed population 
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Figure 9: Population distributed at J-lo = 1 and D = 3. 

As expected, the population in this case Figure 9 reaches its equilibrium 
in a shorter period of time than the one in Figure 7. The respective variance 
versus time graph Figure 10 shows that the equilibrium is reached at the 8th 
year, and after the 8th year the variance is stable. 

'01 

• f , ~ I 1.0 lJ: ~, 

t'imI! (yu.:u) 

Figure 10: Variance versus time for a dispersed population 

In the last example, the population grows logistically when the intrinsic 
growth rate is equal to 1 and disperses at a rate of 4 (Fig. 11). It can be 
observed how the variance stabilizes beyond the 15th year (Fig. 12). In 
fact, the stability all around the ring is reached at the 16th year and the 
population in each patch fluctuates around the carrying capacity (K = 100). 

5 Speed of Propagation 

As we have seen, a population that experiences logistic growth and dis
persion in a ring eventually reaches its equilibrium at the carrying capacity 
(K). If we consider a ring composed of a large number of patches and 
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Figure 11: Population distributed at J-lo = 3 and D = 4. 
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Figure 12: Plot of variance versus time for a dispersed population 

a population is introduced to a localized region of the ring, the population 
follows a wavelike solution that expands in each direction until both wave 
fronts meet at a point of the ring and eventually the population reaches a 
steady state. In front of the wave is an uninvaded territory of the ring, and 
behind the wave the population is at the carrying capacity. In an unbounded 
domain, the rate at which the wave fronts propagate has been proved to be 
2Vri5, where r is the intrinsic rate of increase of population growth (see Ap
pendix). The same rate is applied to our bounded domain in order to know 
how fast the population goes to the steady equilibrium, considering a ring 
with a high number of patches and the fact that the wave front propagates 
in each direction without knowing that the domain is bounded. In order to 
compute the speed of propagation of the wave front for our stochastic model, 
the time at which the wave front reaches each of the patches is recorded and 
by using the least squares method we could find the slope - which is the 
speed of propagation of the wave front - of the line that best fits the points 
representing the patch number reached by the wave front at a certain time. 
Different thresholds were used to calculate the speed of propagation and were 

754 



compared to the deterministic speed. However, the best approximation was 
obtained when the threshold was equal to 20% of the carrying capacity. The 
average of the results was calculated to get an accurate approximation of the 
solution. 

Regression Plot 

o 

TIME 

Figure 13: Parameters used: r = 3 and D = 2. 

The speed of propagation of the wave fronts given by the stochastic sim
ulations for this particular parameter set, is 4.32. However, using the same 
parameters to evaluate the rate using the deterministic model gives 4.89. 

Regression Plot 

R-Sq=O.B94 

"ME 

Figure 14: Parameters used: r = 3 and D = 3. 

The speed of propagation of the wave fronts given by the stochastic model 
for this case is 5.46. Nevertheless, the value of the rate of convergence given 
by the deterministic model is 6. 

After several trials of the stochastic simulations using different values for 
dispersal rates (D) and intrinsic growth rate (r), we obtained a slower speed 
of propagation from about 86% to 89% of the deterministic result. 
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6 Qualitative Explanation 

In the stochastic model the dispersion occurs with discrete units of in
dividuals, in contrast to the deterministic model, where dispersion occurs 
continuously and there is always movement of material. Therefore, a slower 
speed of propagation can be expected in the stochastic model due to the fact 
that you only have movement of a whole unit. 

'" 

015 

tn 
10 

Regression Plot 
Y=4.97440 +1.$177X 

R-Sq = 0.995 

TIME 

10 12 

Figure 15: Parameters used: r = 2 and D = 1. 

The above pictures show that the spatial variance and standard deviation 
in our stochastic model are quadratic and linear respectively over time. 

7 Conclusions 

The time that the population takes to reach the steady state depends on 
several factors, such as initial distribution, dispersal rate, intrinsic growth 
rate, carrying capacity and number of patches. When the total population 
is concentrated in one patch, it takes longer to converge to its stability than 
when the population is distributed normally along the ring. The intrinsic 
growth rate and the dispersal rate playa crucial role. The greater the values 
of rand d, the faster the constant state is reached. If the carrying capacity 
and the number of patches is enlarged then, more time will be needed to 
attain the steady state. 

When the population is subjected to only diffusion, it spreads throughout 
the ring and the spatial variance increases linearly over time. On the other 
hand, when the population is subjected to both diffusion and reaction with a 
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logistic growth, the spatial variance is quadratic over time and the standard 
deviation is linear while the wave fronts at each direction have not met each 
other. Once the population has spread all over the ring and is steady at the 
carrying capacity, the variance reaches a steady state and no longer increases. 

The speed of propagation obtained from the stochastic model is slower 
than that computed from the deterministic model (from about 85% to 89% 
of the deterministic result). 

8 Future Studies 

Even though in our project we chose a constant dispersal rate for all the 
patches we could consider a dispersal rate that varies in each of the patches. 
For instance, the dispersal rate may be a linear function of local density or 
position, or any other function, along the patches. 

Another option to explore could be varying the carrying capacity of the 
patches and considering individuals that disperse to the right or to the left 
with different probabilities, which depend on the number of individuals and 
on the carrying capacity of the patch. 
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A Perturbation Analysis 

We will solve Fisher's equation 

aN a2N N 
- = D-+rN(l--) 
at ax2 K 

Using the perturbation method, we first let 

N(x, t) = n(x, t) + Nco, 

where we asssume n(x, t) is small. Thus 

(3) 

(5) 

(6) 

(7) 

Since n is small, we can neglect any nonlinear terms. Thus the previous 
equation can be written as 

Substituting the equilibrium point Nco = K leads to the equation 

an a2n 
at = D ax2 - rn. 

A.1 Maximum Principle 

Theorem A.I There are no positive non-constant periodic steady state so
lutions of 

aN = a
2 
N + aN _ j3N2 

at ax2 

N(O, t) = N(27r, t) 
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Proof: Let N(x) > 0 and solve the steady state problem 

a2N - + aN - f3N2 = 0 
ax2 

N(O) = N(21r) 

(10) 

(11) 

This is a continuous function on the circle, but every continuous function 
on the circle achieves a maximum and a minimum. Let N(xo) = max(N). 
Thus 

so by (7) aN(xo) - f3(N(xo))2 > 0, which implies N(xo) < ~. 
Therefore, max( N) < ~. 

Similarly, let N(Xl) = min(N). Then 

a2N 
ax21xl > 0, 

so by (7) aN(xd - f3(N(Xl))2 < 0, which implies N(Xl) > ~. 

Thus min(N) > max(N), a contradiction, proves the theorem. 

A.2 Speed of Propagation 

(12) 

(13) 

We look for a solution of the reaction diffusion equation which represents 
a wave of stationary form propagating in the direction of positive x with 
velocity c. Thus we assume 

N(x, t) = N(x - ct) = N(~) (14) 

where ~ = x - ct(c > 0). 
Substituting (10) into the logistic equation, and observing that 

a dad 
at = -c d~ and ax = d~' 

we obtain the following ordinary differential equation for N (~), 
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By letting 

Dd2N edN 2 
d~2 + de +aN - f3N = O. 

dN 
9 = -"d[' 

(12) can be cast in the form 

dg 2 
Dg dN - eg + aN - f3N = O. 

(15) 

At the point of inflection, 1li is positive. If 11 tends to a limit K as N tends 
to zero, i.e., at the very end of the advancing front, then K must satisfy the 
equation (Kendall,1948) 

Dk2 - ek + a = O. 

Since K may tend to neither zero nor infinity, solutions exist only for 

or 
e 2: 2VaD 

which guarantees that K has real roots. Fisher suggested that ultimately 
only the minimum velocity of advance em = 2vaD, is possible. It "is in
teresting to observe that this minimum velocity of propagation of a logistic 
population is equal to the ultimate speed of propagation of a Malthusian 
population; the carrying capacity of the resources, ~ = Ne , for the logistic 
population has no contribution to the wave speed. (see Okubo, 1980). 
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A.3 Stochastic Simulator 

T =0.400009099195482 VAR 2=20.7938772036215 
T =0.600005715970965 VAR 3=34.0612481954949 
T =0.800002689912598 VAR 4=49.6175872189538 
T=1.0000oo5248334 VAR 5=71.7440572040969 

Figure 16: Stochastic Simulator Interface. The program receives from the 
user a series of parameters. It allows the initial population to be initially 
distributed as a delta function or as a gaussian distribution. Also, the user 
can set the time during which the simulation will be running and the output 
files are stored according to the sampling rate. 
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