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Abstract 

The evolution of influenza type A virus is linked to a non-fixed 
evolutionary landscape driven by tight co-evolutionary interactions 
between hosts and influenza strains. Cross-immunity, host isolation, 
and age-structure are three factors responsible for the coexistence of 
multiple strains of influenza. Here we show that cross-immunity and 
host isolation alone may support multi-strain epidemics. Further, we 
show it is possible to produce sustained oscillations with realistic pe
riods. We estal;>lish these predictions via Hopf-bifurcation theory, and 
illustrate our results with numerical simulations. Period lengths agree 
with reported data. 
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1 Introduction 

Early recordings of influenza pandemics indicate that the virus antigent vari
ability is responsable for recurrent epidemics. Surface antigens haemagglu
tinin, and neuraminidase undergo two types of antigenic variation. Antigenic 
shift involves major changes that result in new subtypes, that later contribute 
to major epidemics. The lifespan of a subtype is determined by the time it 
takes until a new subtype appears(pandemic). For example, a virus having 
H3 antigents is said to be responsible for the 1918 pandemics. On the other 
hand, antigenic drift involves relative minor, but frequent changes(variants) 
that take place everyone to three years. There are several theories that 
contribute to the origin of new viruses. Unfortunately, it is the combina
tion of various factors that determine the complexity of influenza type A 
virus. Studies show that influenza strains crossbreed stronger than other 
virus, therefore, we investigate epidemic recurrence via interacting strains. 
As a matter of fact, interaction of multiple strains for influenza type A virus 
has been analyzed under distinct frameworks[2][5][6][1l]. It has been shown 
that cross-immunity, age-structure, and quarantine are contributing forces 
to sustained oscillations[1][3][5]. In particular, due to the long-lasting cross
immunity between related strains, serious consideration of cross-immunity 
has been presented[3] [5]. In this paper we demonstrate that for a two-strain 
model with quarentine and cross-immunity, sustained oscillations persist. 
For strongly couple strains(O" = 0.2), the system goes through cycles with a 
period of 3 years, where each cycle contains multiple outbreaks. As cross
immunity is weaken, the two strains become antigenically unrelated, resulting 
in damped oscillations. 

2 Epidemiology of Influenza type A 

Type A virus particles contain at least four antigenic components. Only the 
surface antigens, haemagglutinin and neuraminidase are responsible for the 
virus variability. Specifically, haemagglutinin is responsible for the attach
ment of the virus particle to the receptor sites on the surfaces of the host 
cells. Even though anti-neuraminidase antibodies fail to neutralize the virus 
infectivity, it determines the virus subtypes and variants. Type A influenza 
virus has been isolated and classified into three SUbtypes: H1N1, N2H2, and 
N3H3. Interaction among the strains of a subtype give rise to new strains as 
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the haemagglutinin protein changes its antigenic structure(antigenic drift). 
Recent studies show that for influenza type A virus, strains belonging to 
similar subtypes share a level of cross-immunity. Through cross-immunity, 
the presence of one strain of the virus can reduce the pool of susceptible 
individuals for co-circulationg strains[3]. Furthermore, it has been shown 
that cross-immunity among related strains may determine possible survival 
of related strains. On the other hand, antigenic shifts results in new subtypes 
that give rise to major pandemics. Factors that contribute to the complex
ity of influenza virus have been explored in the last years. Age-structure, 
proportionate mixing, and cross-immunity, are among some of the mecha
nisms responsible for recurrent epidemics [5] [7]. Reports show that during 
cold months the virus is significally more infective, therefore causing serious 
illness [15] . During the appearance of Asian and Hong Kong subtypes, it was 
observed that a change in transmission, as well as seasonal effects, perpet
uated the slow development of the pandemic experienced in U.S.A. during 
1957 and 1968 [14]. Preparation of influenza vaccine is based on the strains 
in circulation at the time of production. It is likely that an unpredicted 
new strain will appear after the vaccine has been manufactured and distrib
uted. As a result of new strains, individuals with antibodies stimulated either 
by previous infection, or vaccination, may no longer be protected from new 
strains. 

3 The Model 

We study the following two-strain influenza model. The population is di
vided into ten different classes: S is the susceptible class, Ii denotes those 
infected by strain i, Qi denotes the isolated individuals from strain i, ~ are 
individuals recovered from strain i, Wi are individuals recovered from strain 
i, but still susceptible to strain j. Lastly, W describes individuals who have 
recovered from strains i, and j. 
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Figure 1 describes the interactions among the classes of the two-strain 
model. A is the rate at which individuals are born into the population, f3i 
denotes the per-capita infection rate for strain i, /-l is the per-capita mortality 
rate, Oi is the quarantine per-capita rate, "Ii denotes the per-capita recovery 
rate from strain i, ai is the per-capita rate at which individuals leave the 
isolated class, and (J denotes the cross-immunity among strains. 
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Figure 1: Diagram of the Compartmental Model 

We assume that individuals are born into the population at a constant 
rate. Individuals have a life expectancy of 70 years. For influenza, the 
infectious period lasts from 2 to 7 days, therefore the per-capita recovery 
rate is based on a two day recovery period[15]. We assume that individuals 
in isolation do not infect anybody. Individuals that go to isolation do so 
after having been infected for a period of 2 to 3 days. Since the incubation 
period last from 1 to 3 days, and duration of infectiousness last from 3 to 6 
days, we assume that individuals stay home until they recover. We refer to 
total cross-immunity by (J = 0, whereas, (J = 1 denotes no cross-immunity. 
For 0 :s; (J :s; 0.3, cross-immunity is strong, and 0.7 :s; (J :s; 0.9 describes weak 
cross-immunity. 
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Our assumptions lead to the following model: 

dS A - (J1 S (11 : WI) _ (J2S (12 : W2) - fJB, (1) 
dt 
d1i (11 + WI) 

i = 1,2 (2) - (J1 S A - (M + 1'1 + 81)h, 
dt 

dQi 
8111 - (fL + a1)Q1, i = 1,2 (3) -

dt 
d~ (12 + W2) 

i = 1,2 (4) 
dt 

- 1'111 + a1 Q1 - MR1 - (J2 (J'R 1 A ' 

d~ (II + WI) 
i = 1,2 (5) -- - (J1 (J'R2 A - (M + 1'1) WI, 

dt 
dW 

1'1 WI + 1'2 W2 - M W, (6) 
dt 

4 Stability of Equilibria 

Adding the differential equations (1-6) we find for the population size N = 

Ai + Qi = S + Ii + Qi + Ri + ~, where i = 1,2. Further we observe that 
A = N - Qi. The stability analysis of the system at the disease-free state is 
simplified by the absence of the infected classes. Note that since no infectives 
are considered then recovered classes do not exist, were A = MN*. 

dS 
dt =A- MS 

At disease-free we obtain S = N*. Therefore, disease free-equilibrium is 
described by the following: 

EO = (N*,O,O,O,O,O,O,O,O,O,) 

Since stability at disease-free is determined by the corresponding eigenvalues, 
we find conditions that depend on Ro to assure stability. The BasicReproductiveNumber, 
Ro describes the number of secondary infections caused by infected individ-
uals in a population of susceptibles. For interacting strains we find that 

R - (Jl 
1 - M + 1'1 + 81 ' 

and 
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If 

and 

R2 < 1 

the disease-free equilibria is locally asymptotically stable. Let 

Ro = max(R1 , R 2 ) 

where Ro < 1. To study our model at the endemic state, we analyze the 
endemic equilibria for strain 1, E 1 . We partitioned the original 10 by 10 
state matrix into four submatrices An, A12 , A2b and A22(Appendix). Recall 
that at the endemic state, Rl and R2 are greater than l. 
Hence 

and 

where 

Rl ~(1- i-) 
A ~+J.l 

1 (J.l + 1'2 + 82)(T~(1 - iJ _ 
R2 < -R - ( )(~) - f(Rl) 

1 J.l + 1'2 + J.l 

Therefore, endemic stability is determined by the region where both, trace 
and determinant conditions are satisfied. To complete the stability analysis 
for the system, we explore the conditions of stability for the An matrix. 

A3 + alA2 + a2A + a3 = 0 (7) 
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/3111 
a1 - 2M + a1 + A 

M/3111 /31 alII /318111 /3iI1 2 

a2 ~ + A + RoA + RoA + M + Mal 

M/318111 M/3iI1 a1/3iI1 
a3 = ARo + ARo + ARo 

Using Routh-Hurwitz criteria we show that the necessary inequalities are 
a1 > 0, a3 > 0, and a2a3 > a1. Referring back to equation (7), and using a 
Taylor expansion on E, we obtain. 

Al = A2 = 0 + bE + CE2 + dE3 + ... 

where 

E = Vii 
To simplify the leading coefficients of the characteristic polynomial, we let 

II ~(1-~) 
-

A ~+M 

W = W1E + W2E2 + W3E3 

Substitute in M = E2 in (8) to obtain. 

a1 - a1 + 2E2Ro 

a2 - -E4 + 2E4RO - E2al + 2E2Ro(al + 81 + (31) 

a3 - (1- ~)(2E481 + 2/31E4 + 281E2(31) 

(8) 

Now the leading coefficients of (7) are in terms of Ro. We show that Routh
Hurwitz inequalities are satisfied. First, since M = E2 and Ro > 1, this 
implies that a1 > O. For the endemic state, Ro > 1, therefore, condition 
a3 > 0 is satisfied. Lastly, for parameters that pertain to influenza virus, the 
conditions a1a2 > a3 are met. 
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5 Hopf-Bifurcation 

The stability our system is determined by the conditions obtained from the 
submatrices, A22 , All. In particular, for the All submatrix, we showed that 
the Routh-Hurwitz criteria is satisfied. Ignoring higher order terms of (8), 
we find conditions that lead to a Hopf-Bifurcation. For our case, if the (J 

is varied the trace corresponding to the Taylor expansion changes in sign. 
Specifically, the trace changes from negative to positive, whereas, the deter
minant remains positive. A bifurcation may transform a stable equilibrium 
into a stable or unstable periodic solution. To determine the sign of w, we 
look at the corresponding E terms and determine conditions under which a 
Hopf-bifurcation appears. Analyzing E3 terms leads to the condition that 
originates the change in stability. 

c 81 /31 
a 1 = Ro - 81 - Ro + /31 

Furthermore, solving for the condition where the determinant equals to zero, 
we obtain a function W2 that depends on the isolation period. 

81 /31 1- Ro 
w2(al) = -Ro - -(Ro -1) + -( ) 

al al Ro 

We can conclude that for certain condition that depend on the isolation 
period, our system loses stability. For w2(al) > 0, if al < al, endemic 
equilibrium, El is stable. For w2(al) < 0, if al > aI, then El is unstable. 
For the case when the determinant is equal to zero, that is, w2(al) = 0, a 
Hopf-Bifurcation occurs takes place at a c. 

6 Numerical Solutions 

In this section we use Runge-Kutta Method to analyze the model equations 
numerically. In particular, we study influenza dynamics by considering pa
rameters that are pertinent to the type A virus. We assume that the acute 
phase ranges from 3 to 5 days, therefore, infectious period lasts 3 days. For 
influenza, we assume a life expectancy of 70 years. Since influenza virus is 
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particularly infectious, individuals that stay home, remain there from 5-7 
days. We analyze the interaction of both strains with symmetric as well as 
asymmetric contact rates. We study the change in behavior as we vary cross
immunity and transmission coefficient. For all illustrations, we assume an 
isolation period of 7 days, and mention that ignoring quarantine always re
sults in damped oscillations. For isolation periods of 60 days, periodic cycles 
coexist similar to the cases where isolation period is 7 days. By explor
ing total cross-immunity, we obtain sustained oscillations for the one-strain 
case[l]. Further, as cross-immunity increases, periodic cycles get shorter, 
and multiple outbreaks occur. For our two-strain model, we show that for 
small symmetric contact rates, and quarantine oscillations with multiple out
breaks take place. As the contact rates increase, oscillations become damped 
for many cross-immunity rates and isolation periods. For asymmetric contact 
rates, isolation and cross-immunity introduce 9 month periodic cycles with 
multiple outbreaks. We refer to strong cross-immunity for a=O.l, medium 
for a= 0.4, and large for a= 0.8. 

6.1 Simulations 

~.-------------~ 
sigma= 0.1 
slgma= 0.5 
sigma= 0.9 

time Is years 

Figure 2: Describes individuals infected from strain 1. For (j = 0.1, 4 year period cycles 

appear. As (j increases, periodic cycles shortened to 6 months{weak cross-immunity). 

Simulations agree with previous results in [1] and [5], where quarantine was responsible 

for sustained oscillations. 
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Figure 3: Depicts the behavior of two interacting strains without isolation. AB expected, even in the case 

of co-interacting strains, damped oscillations result. In the following simulations, we will illustrate the 

impact of isolation under strong and weak cross-immunity. 
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Oscillations for strain appear with a year frequency, but after 30 years, multiple outbreaks show every 

3 years. Strain 2 oscillations, although shorter in amplitude, have similar period, but not recurrent 

outbreaks, 

aa~----~-----'~----';-----'~----2".~----3a----~~----~----~,-----~ 
....... :,0.-.-

Figure 5: CT = 0.5 Isolation = 7 days 

Note that for strain 1, weaker cross-immunity has shorten the period cycle to a year, and the amplitude 

of the oscillations has decreased dramatically. On the other hand, strain 2 amplitud of oscillations has 

increase, event hough period cycles have shorten to a year. It is worth noting that even weaker cross

immunity, CT = 0.8, shorter period oscillations persist. 
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Figure 6: (7 = (71 = (72 and /31 = /32 = small. 

16 18 20 

For the remaining simulations we assume a 7 day quarentine period and ob
serve the effects of infection as we consider strong, medium and weak cross
immunity correspondingly. For strong cross-immunity the disease eventually 
dampens. For medium cross-immunity, cycles of period two and small ampli
tude appear. As cross-immunity becomes weak, cycles of multiple outbreaks 
with period of 6 months to one year persist. 
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Figure 7: (7 = (71 = (72 and {31 = k{32 
For strong cross-immunity we observe 6 month to 4 year periodic cycle. As 
immunity weakens, 8 month cycles with multiple outbreaks can be observed 
for the strain with highest transmission coefficient. For very weak cross
immunity, 7 month periodic cycle occur with multiple outbreaks. The rates 
of infection for each strain are different, here k = 2. 
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Figure 8: (Y = (Yl = (Y2 and I f31 - f32 I = small 

20 
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As the difference of f31 and f32 becomes small. For strong and weak cross
immunity, sustained oscillations do not appear. For medium values of cross
immunity, as I f31 - f32 I becomes small, the amplitude of oscillations and 
period cycles are reduced. Sufficiently small difference, and medium cross
immunity result in damped oscillations. Damped oscillations later become 
excited as f31 = f32. 
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7 Discussion 

Since the isolation of the various strains and subtypes of influenza type 
A virus began, researches have focused in the factors that contribute to 
recurrent epidemics. Statistics indicate that newsubtypes responsable for 
the major pandemics cannot be predicted. On the other hand, new rising 
strains may be explained by considering factors such as, cross-immunity, age
structure, and isolation, and other enviromental factors [1] [3] [4] [5] [6] [7] [8]. We 
have analyzed a two-strain model with quarentine and cross-immunity. Our 
results rehabilitate sustained oscillations previously shown as a quarentine 
class is considered for a single-strain case. In section 4 we give conditions 
for which disease-free, as well as the endemic state equilibria eixst. For the 
disease-free equilibria, we give conditions under which Ro provides disease 
eradication. We showed stability of boundary endemic equilibria by using 
Routh-Hurwitz criteria. We show that conditions for stability are met. Fur
thermore, we show that for conditions that depend on the period of isola
tion, sustained oscillations persist. Such oscillations change periodicity, as 
well as amplitud as we vary cross-immunity. Our numerical explorations 
seem to indicate that after 30 years, multiple outbreaks occur for strong 
cross-immunity(o- = 0.2), and 7 days periods of isolation. As cross-immunity 
becomes weaker, 0- = 0.8, the period of recurrent eidemics lenghtens, and 
oscillations eventually dampen out. As a result of periodic solutions of our 
model, we predict the occurrence of a Hopf-bifurcation. We found a bifur
cation point that depends on the isolation period, and hope to prove the 
existence of limit cycles via central manifold theory. As a explanation to 
the recurrent epidemics caused by antigenic variation of the influenza type A 
virus, we hope that considering the factors that give rise to the virus unique 
entity can provide some solutions for the virus eradication. In particular, 
targeting key periods of isolation, as well as cross-immunity levels that per
petuate the recurrence of multiple outbreaks may allow for diasese control. 
As previously explored in [5] [8], age-structured must also be considered since 
significant portion of the virus spreading takes place among children. 
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Appendix 

One strain endemic equilibrium analysis: 
The following illustration describes the partitioning of the 10 by 10 Jacobian 
matrix analyzed for single strain endemic equilibria. 

Analysis of 10 by 10 matrix 

Au describes the interactions with Strain 1 

A22 describes the interactions with Strain 2 

A12 and A21 describe the interactions driven by a = 0 

Note that our initial 10 by 10 matrix can be easily simplified by noting 
a negative real part eigenvalue along the diagonal. The remaining 9 by 9 
matrix is partitioned into the following two matrices. Since we are interested 
in exploring the cases where strains range from closely related, to distinct 
subtypes. We ignore matrices A12 , and A21 . 

p)] -PIS 
0 

PISI] --p 
A A A 
I!J I!l.-{p+r +0.) 0 

=lSII 

All = A A I I A2 

0 rl -p al 

0 °1 0 -{p+aJ 

This 4 by 4 matrix describes strain 1 endemic equilibrium. Conditions 
needed to establish stability are simplified by the eigenvalues along the diag
onal. 
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Similarly, this 5 by 5 matrix describes strain 2 endemic equilibrium. In 
section 4 conditions that guarantee stability of endemic equilibria are pro
vided. 

Pfl_~+y +0) 0 0 0 
Pfl 

A )) 

P1a(I1+W) 
A 

y) -fl- a) 0 0 

A22= 
A 

0) 0 -(uta)) 0 0 

0 
P1a(I1+W) -~+YJ 0 

A 
Pl'RI 0 0 0 Pl'Rl_~+r) 
A A ) 
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