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ABSTRACT 

We build a stochastic model to analyze the dynamics of HIV in a homo­
sexually active population. In our model, we introduce the effects of a 
hypothetical campaign that promotes HIV testing as well as the effect of a 
VEl (Vaccine Efficacy for Infectiousness) type vaccine. We analyze how the 
efficacy of the vaccine and campaign affect disease dynamics, particularly 
the probability of eventual extinction of the disease. The general conclusion 
is that increasing the efficacy of the vaccine results in a higher probability of 
extinction of the epidemic as expected. However, increasing the efficacy of 
the campaign above some optimum counter-intuitively decreases the prob­
ability of extinction. We find the minimum efficacy of the vaccine and the 
optimum efficacy of the campaign to drive the epidemic to extinction. 
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1 Introd uction 

Human Immunodeficiency Virus (HIV) , the virus that causes Acquired 
Immune Deficiency Syndrome (AIDS), is the culprit of a worldwide grow­
ing epidemic. There are about 33.6 million people already infected with 
HIV / AIDS as of the end of 1999 and more than 16,000 new infections every­
day [7,10]. Researchers have been struggling to understand the dynamics 
of this deadly virus in hope to find a cure. Vaccines may eventually be 
developed to effectively protect individuals from becoming infected or effec­
tively slow progression of the virus in the infected. However, since a large 
proportion of the population would have to be vaccinated in order to halt 
the epidemic, it is expected that such drugs will be costly at both the in­
dividual and population level. A national campaign promoting HIV testing 
can be comparatively much less expensive and possibly just as effective at 
reducing the epidemic for the overall population. Such a campaign could 
also be put into effect sooner than a vaccine, which may take time to de­
velop, test, approve, and distribute. Statistics show, however, that there 
is a higher risk of HIV infection among young gay men, largely due to the 
nature of the method of transmission [10]. Some researchers have discovered 
vaccines called Vaccine Efficacy for Infectiousness (VEl). These vaccines are 
atypical in that they prevent transmission of the virus from the vaccinated 
individual instead of protecting the individual from infection [5]. It may be 
possible to slow or halt the epidemic by lowering the transmission rate of 
the virus. Hence, we study the effects of the VEl vaccine and a national 
education campaign on an HIV epidemic within a homosexually-active male 
population. 

The strain of HIV we use in our study is the HIV -1 virus. Studies suggest 
that there are four different levels of infectivity for this virus, the last stage 
being full-blown AIDS [6]. In the first stage, initial innoculum, the virus 
is introduced into the body and the individual becomes highly infectious 
because slhe has no immunity initially built up against the virus. In the 
second stage, initial transient, both the T-cell population that fights against 
foreign invaders of the body and the virus population fluctuate greatly. The 
cells of the body begin to create antibodies at this stage to fight the virus, 
and infectiousness decreases as a result. It is these antibodies that individ­
uals test for when screened for HIV. It has been shown that 95% of newly 
infected individuals develop antibodies within three months, and nearly all 
individuals within six months [7]. In the third stage, clinical latency, there 
are extremely large numbers of virus and T cells which results in an appear­
ance of a disE)ase-steady state. Eventually, the virus overruns the immune 
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system so that the infected develops full-blown AIDS [9]. 
Recent studies have been conducted which show that up to 70% of people 

newly infected with HIV experience some flu-like symptoms which include 
fevers, chills, night sweat, and joint pain [7,8]. The hypothetical national 
campaign we introduce targets those who exhibit these early symptoms to 
test for HIV. We hope to educate some members of the population in the 
first stage of infection. We anticipate that when they are aware of these early 
symptoms of HIV, a fraction will go to the doctor, get tested, and change 
their behavior if tested positive. For the purposes of our study, we assume 
that those who test positive for the virus stop infecting other individuals. 
We examine the behavior of the epidemic by varying the efficacy of such a 
campaign on the population. 

According to Koopman [6], a person is most infectious during the first 
two to three months of infection - up to 1,000 times more than those in the 
second or third stages of infection. The idea of the VEl type "nonvaccine­
vaccine" as an epidemic immobilizer was conceived under this assumption 
[5]. Research is presently being conducted to develop and test these type 
of vaccines. The hypothetical vaccine we introduce in our model neither 
protects an individual from becoming infected with HIV nor keeps one from 
developing HIV and AIDS symptoms, nor stops or slows the progression of 
the infection to the AIDS stage. Its only function is to prevent an infected 
individual from passing the virus on to a susceptible. We show the potential 
of the vaccine to assuage the epidemic based on the fraction of the population 
vaccinated and the vaccine's efficacy. 

Some researchers are skeptical, however, of the ability of prophylactic 
vaccines to perform as effective epidemic dampeners. Blower [4] believes 
that their effectiveness on the population level is hindered because people 
are unable to build immune systems strong enough to clear their infection, 
rendering traditional protective vaccines useless. It was also argued that the 
sexual behavior of the community has too much of an impact on the epidemic 
since HIV is mostly spread through sexual intercourse [4]. However, because 
of its non-traditional property of preventing transmission from vaccinated 
infectives rather than directly protecting susceptibles from infection, it is 
believed that the use of a VEl type vaccine can have a significant effect on 
the population [6]. 

In our study, we develop a model that is based on four stages of HIV 
infection. We use two compartments for each of the first three stages and 
the susceptibles class - one set of compartments representing the vaccinated, 
and the other, the non-vaccinated. We also include a compartment that rep­
resents the class of people who realize that they are infected through either 
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Figure 1: Stages of Infection (Time interval values obtained from [3] 

developing full-blown AIDS or getting tested because of the campaign's in­
fluence and stop infecting others. We use our model to find an expression 
of the basic reproductive number using a modified Markov chain process, 
from which we obtain the probability of extinction of the epidemic. We 
then analyze the effects of the campaign and vaccine using 3-D plots and 
simulations. 

1.1 The Model 

Assumptions 

• We assume a homogenous homosexual male population in which all members 
have the same immune system response. The vaccine has the same efficacy 
for everyone. 

• We assume for our study that until the individual has been infected for six 
months, he will not test positive for the virus with the standard antibody 
test. If an individual tests negative, he will not test for HIV again. 

• We assume three stages of infection II, 12 , 13 before individuals develop 
full-blown AIDS. Every stage of infection has the same duration (Le. an 
individual spends the same amount of time in 11 as in 12 , as in Is). We 
set each stage of infection to last for three years since it takes an individual 
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about nine years to develop full-blown AIDS. 
h is the most infectious state in which individuals are asymptomatic and 
test negative during the first six months, after which they test positive. 
12 is the state in which individuals are asymptomatic and test positive. 
13 is the state in which individuals are symptomatic and test positive. 

• Since we are focusing on the effects of the campaign, we screen only those who 
exhibit early symptoms as dictated by the campaign - thus, only individuals 
in the first stage of infection can be screened. Since infected individuals do 
not test positive within the first six months of infection, only a fraction of 
people in the first stage of infection test positive. 

• Individuals that have not developed AIDS are unaware of what stage of infec­
tion they are in except if confirmed by testing. Sexual behavior is therefore 
unaffected if individuals are not tested for their condition or if they develop 
full-blown AIDS. 

• We assume that the virus does not mutate so that the efficacy of the vaccine 
does not change due to this factor. 

• We focus on sexual contact as the method of transmission. We assume that 
contact between any non-vaccinated infected and a susceptible results in 
transmission of the virus to the susceptible. If the infected acquires the vac­
cine previous to the infection, then it transmits the infection with probability 
1 - Ve , Ve being the efficacy of the vaccine. 

• We assume that any susceptible who becomes infected begins in the first 
stage of infection and follows the same progression of infection. 

• We assume that those who develop full-blown AIDS do not infect others, as 
well as those who are confirmed to have HN. 

• The proportion of people who find out they have HN by methods other than 
the campaign are assumed to be insignificantly small and are therefore disre­
garded. Also disregarded are those who enter the sexually active population 
already infected with HN. 

• Vaccination is random and is only effective on individuals who are not already 
infected with the HN virus. 

• Vaccination does not affect the transition rates from one stage of infection to 
the next. 

• The rate at which the vaccine losses its efficacy is independent of the status 
of the vaccinated (SV, Ir, if, In. 
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Rates Explanation 
Parameters 

• S = Susceptible population (sexually active) 

• Ii = Population in infection stage i 

• D = Population that becomes aware of their infection through cam-
paign testing or developing full-blown AIDS 

• v = Vaccinated (as superscript) 

• N = S + SV + II + If + 12 + if + 13 + If = Sexually active population 

• N + D = Total population 

• a = Rate of sexually active susceptibles entering population ~ 0.00125 
since the growth rate of the population is 0.025 [12] and the fraction 
of the population that is homosexual is about 0.1 [13]. 

• d = Death rate by AIDS 

• c = Contact rate 

• Bi = Probability that infected in state Ii will infect a susceptible 
0< Bi < 1 

• /3i = C * Bi = Infectiousness at state ii Note: /31 > /32 > /33 We fix 
/31 = 2,/32 = 1.5,/33 = 1.1 

• f = Probability that an individual will be vaccinated 0 < f < 1 

• f.L = Natural mortality rate 0 < f.L < 1 We fix f.L = 1/73 ~ 0.01355 
since the average life span is 73 years 

• ¢ = Rate at which any of the infectious state is left; We fix ¢ = 1/3 ~ 
0.333 years 

• 'Y = Vaccination rate; We fix 'Y = 1 

• w = Waning effect (rate at which vaccine loses its efficacy) We fix 
w = 1/33 ~ 0.03 (see Appendix D) 
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Parameters to Vary 

• Ve = Probability that a vaccinated-infected will not infect a susceptible 
in every contact (independent of stage of infection) 

• A = Screening rate (rate at which individuals are screened for HIV due 
to campaign) 

Since we assume that an individual cannot test positive for HIV 
within the first six months of infection, there is a probability 1 - e -2>' that 
an infected individual in the first stage of infection will test negative if A is 
the screening rate. 

We assume that the screening rate, A is related to the campaign 
efficacy. We say that the campaign efficacy is the probability that an infected 
responds to the campaign by seeing the doctor and testing for HIV (at which 
point, he may be diagnosed positive). The campaign efficacy can be defined 
therefore as the probability that the infected individual is screened before 
passing to the next stage of infection, or 

P _ A 
- )'+1> 

The screening rate corresponding to a campaign of efficacy P is 

A = 1~1p 

2 Methodology 

We begin by computing the reproductive number· Ro. Since our 
parameters are from exponential distributions, our model is a continuous­
time Markov chain. Let Dij be the rate at which an individual passes from 
state i to stage j, then the probability of transition from i to j is: 

8· . 
kij = ",';1~ .. 

L.Ji U~j 

In our epidemic model, there are states where individuals can pro­
duce new infected individuals through sexual contact or offspring. Following 
Hernandez [11] we label these states active infectious states. There are also 
non-infectious states that are considered part of the infectious state such as 
latent states, chronic states, etc. These will be called passive infectious if 
an individual in this state can visit one infectious state without the aid of 
external infection. We will divide the state space into two disjoint sets, W 

and ..6., where w has the active and passive infectious states and ..6. contains 
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the rest of the states. ~ is called absorbing state. Thus, in our model w = 
{Il,12,13,lf,12,13} and ~ = {D,S,SV}. If we define Ar to be the contact 
rate of an individual when he is in r E w, and also define E[ZrJ as the ex­
pected time an individual spends in r E w before passing to a k E ~, then 
Ro can be written as 

where i is an active infectious. From here we can see that the problem of 
finding Ro turns to the problem of finding the expected time an individual 
spends in evey infectious state. In order to calculate these expectations, we 
use a modified version of the Markov chain (Appendix A). Basically, it is 
known that the expected number of visits to stage r between two visits to 
~, E[Nr ], is given by 

E[NrJ= ~ 

where 1r r is the element corresponding to state r, from the stationary distri­
bution IT (see Appendix B), of the modified Markov chain we are using. 

If we let Di be the rate at which an individual leaves state i, that is 
Di = L:i#i Dij, i E state space, then we can see that the expected time spent 
in state r between two visits to ~, E[ZrJ is given by 

It is very important to consider that when calculating Ro the in­
fected individual is introduced into a population already at the disease-free 
equilibrium with respect to the fraction of ,the population vaccinated and 
unvaccinated. This assumption is made in order to see the sole effects of the 
infected individual. We therefore introduce an infected into a population in 
which the rate from S to SV equals the rate from SV to S, or 

thus, the fraction of vaccinated population at the disease-free equilibrium 
is equal to A. 

We use this result to find probability of extinction of the epidemic, 
Pe (see Appendix C). 
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3 Ro Results 

In order to find the expression for the probability of extinction (Pe ), we first 
find the expression for the reproductive number. Using the modified Markov 
Chain, we obtain Ro (see Appendix A for a more in depth explanation of 
Markov Chains, Appendix B for calculations of Ro, and Appendix C for 
relationship between probability of Pe and Ro). 

->. A 
Rt = _1_( (e""2 (e"2 C->.)(AWB2(>.+Bl+h«1-Ve)C2(>.+C)A-C(-J334>\f>.+3Cl+J32C(>.(Ve-2l+C(Ve -3)))w+w 2 (>'+3C)A+w 3 A))) + 

o h+w C2(>'+C)B (>.+B) 

Ih(>.+c +h(>.~c - >'~B») 
where: 
A = i33¢ + i32(j.L + ¢) 
B=j.L+¢+w 
C=j.L+¢ 

3.1 3-D Plots and analysis 

We find that increasing Ve invariably results in increasing Pe for any value 
of the campaign efficacy until Pe = 1 for Ve = 0.95 or above (see figure 3). 

One might think that increasing the efficacy of the campaign would 
invariably increase Pe as well. What we find from figure 3 tells otherwise -
that there exists a threshold above which Pe decreases. 

We can see how the probability of extinction depends on the waning 
effect and the efficacy of the vaccine in figure three. For large values of w 
(when the vaccine is not effective for long periods of time), the probability 
of extinction is almost constant. For 0 < w < 0.04 (if the vaccine is effective 
for 25 years or more), however, the probability of extinction is increased 
to one for some values of the efficacy of the vaccine. In order to make the 
epidemic die out, we fix w equal to 0.03 - that is, the vaccine loses its efficacy 
at an average of 33.3 years. 
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Figure 3: Probability of extintion Vs efficacy of the vaccine and wanning effect 

Figure four shows how the probability of extinction depends on the 
efficacies of the campaign and vaccine. We see that there is an optimum 
value for the efficacy of the campaign at 66.3% - that is, for any vaccine 
efficacy, increasing the efficacy to this value increases the probability of 
extinction, but increasing the efficacy above this value decreases the prob­
ablity of extinction. This is counter-intuitive if one neglects to remember 
that the campaign provides a way in which infected individuals can move 
to the next stage of infection by testing falsely negative if tested during the 
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first six months of infection. We can explain this unexpected result using 
"real world" terms by remembering that individuals in II and If can either 
be screened, tested positive, and moved to D (stage where they cannot in­
fect others), or they can continue to the next stage of infection undetected. 
Again, they can escape detection by either missing the screening process en­
tirely, or being screened during their first six months of infection and testing 
falsely negative. Increasing the efficacy of the campaign would result in in­
dividuals testing earlier, which would increase the proportion of those who 
test for HIV before they reach the six month mark. Because of this, overly 
increasing the efficacy of the campaign can actually help the epidemic to 
thrive since it would allow more infected individuals to pass through to the 
next stage of infection undetected (see Appendix D). 

To calculate the threshold, we find the minimum of the expression 
for the probability that individuals move from the first stage of infection to 
the next, undetected (see Appendix C). We find that increasing P from 0 
to about 0.663 increases Pe , but increasing P beyond 0.663 decreases Pe . If 
Ve = 1, we find that Pe = 1 for 0.565 ~::; P ~::; 0.887. If Ve decreases, then 
the interval of P for which Pe = 1 shrinks until there is no value of P to 
make Pe = 1 (see Appendix E). 

3.2 Simulations of Ro 

In addition to making three-dimensional plots, we also ran stochastic 
simulation in order to investigate the effects of the vaccine and campaign 
on the epidemic. We ran computer simulations of a hypothetical population 
of 1000 people for a duration of 50 years. At t = 0, we start with 999 
susceptibles and one infected individuaL We fix all parameters at values 
that were assumed reasonable or obtained from data (see section 1.1 for 
parameter values), except for Ve and A, where Ve is vaccine efficacy and A 
is the screening rate, through which we investigate campaign efficacy. In 
order to fix a value for w, we plotted it against Ve and Pe and found that 
w needs to be between 0 and 0.04. We thus fix w at 0.03 for the puposes 
of our simulations (see Appendix D). The general focus is not to gather 
numerical data but to observe general patterns in the effects of changing 
Ve and A. The following are sample plots of our findings. It should be 
emphasized that these are representative of numerous simulations we ran 
throughout our study, and that because they are stochasic simulations, they 
do not represent all of the results we had obtained. No two runs of the same 
parameter values result in the same picture. We only use these simulations to 
show that such behavior is possible, and the only plots we choose to include 
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as figures in this paper reflect our results from the three-dimensional plots. 
In our set of simulations, we show that solely changing Ve has a 

bigger effect on the population than solely changing>. by observing that the 
population dynamics does not change much when fixing Ve and changing >. 
(see figure 3). When fixing>. and changing Ve, however, there are noticeable 
changes in the dynamics of the population. In particular, we investigated 
changes in the population for a set of values within 0 :::; >. :::; 0.999 where for 
each fixed value of >., we varied Ve from 0.6 to 0.8. We observed a general 
pattern that the greater the >., the less Ve had to be in order for the epidemic 
to die out. 

We also tried to simulate a population with a more realistic set of 
parameters where Ve = 0.8 and P = 0.70. This resulted in a endemic equi­
librium, in which the epidemic was kept at minimum levels, that lasted for 
approximately 30 years before the infection took hold of the population. This 
result is promising in that although the epidemic did not die out completely, 
it is plausible that new vaccines or methods to combat the epidemic could 
be created during the thirty years that the equilibrium was maintained. 

We show that increasing the value of Ve results in an increased Pe 

for fixed values of >.. We also show in the upper plot, the typical behavior 
of when conditions for disease-free equilibrium are not met - that is, there 
exists a period of time in which the epidemic is kept at a minimum, which 
gives way to an outbreak. 

We show that increasing the value of P up to the optimum level 
of 66.3% results in an increased Pe (see figure 4). Increasing P above the 
optimum value decreases the Pe of the epidemic (lower plot). 

4 Conclusions 

In our study of how the efficacies of the VEl vaccine and campaign 
affect the behavior of an HIV epidemic, we conclude that in order for the 
epidemic to die out, the efficacies of the vaccine and campaign must be excep­
tional. We found from our graphical analyses that the efficacy of the vaccine 
has a greater impact on the epidemic than the efficacy of the campaign. The 
efficacy of the vaccine must be greater than or equal to approximately 95%, 
w has to ,be less than 0.04 (Le. the vaccine must be effective for 25 years or 
more), and the efficacy of the campaign must be between 56.5% and 86.5% 
if the vaccine were to be 100% effective. Anything less effective results in a 
period of controlled epidemic followed by the eventual infection of the entire 
susceptible population. A vaccine of an efficacy of 95% is unrealistic - it is 
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very difficult to create a vaccine with such a high efficacy. Our study shows, 
however, that although a vaccine with an efficacy of less than 95% is used, 
although it will not allow the epidemic to be completely eradicated, such an 
vaccine would still benefit the population in that it would reduce the preva­
lence of the disease for a prolonged period of time, especially if coupled with 
a national campaign. We can hope that if this period is long enough, this 
will give scientists and researchers enough time to develop new methods to 
combat the epidemic, to either prolong the control of the epidemic or cause 
the epidemic to die out completely. 

Probably the most important conclusion from our study is that there 
is such a thing as a campaign that is too effective - that is, the campaign 
efficacy promotes a higher Pe only up to a threshold, above which it is 
becomes detrimental rather than helpful to the population in eradicating the 
epidemic. Due to time constraints, we did not investigate how the efficacy 
of vaccine depends on the infectiousness of the people in different stages of 
infection, nor the sexual activity of the population. 

5 Future Studies 

There are many ways in which the dynamics of our model can be 
further analyzed. Much more can be done to further explain how a campaign 
and a VEl type vaccine can or cannot help to eradicate and/or lower the 
HIV / AIDS epidemic. For example, the model can be modified by using 
a heterosexually active population instead of a homosexually active male 
population. We can vary more parameters and run more simulations over 
a longer time scale to more fully understand this model. For example, we 
saw that the waning effect had a strong impact on the value of Ro but an in 
depth analysis can be conducted using simulations to reveal more insights. 
We can also investigate the dependence of the population on the infection 
rates and fraction of population vaccinated. There are unlimited possibilities 
for modifications that can be made due to the fact that new developments 
are being made daily towards the advancement of assessing the virus. 

Appendix A : Modified Markov Chains 

A discrete-time Markov chain is a stochastic process {Xn, n = 0,1, ... } 
that takes on finite or countable number of possible values. The set of pos­
sible values in the process will be denoted by {O, 1, 2, ... }. If Xn = i, the 
process is said to be at state i at time n. We suppose that whenever the 
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process is in state i, there is a fixed probability 8ij that it will be in state j 
in the next time unit. That is, 

P{Xn+l = jlXn = i,Xn- l = in-I, ... ,Xl = il,XO = io} = 8ij 

for all states io, iI, i2, ... ,in-I, in, j and 'ifn ;::: 0 
For our purposes, we use a continuous-time Markov chain - that is, a 

discrete-time Markov chain whose domain is an interval of the real line. We 
calculate II = limn-+oo pn, where P is the transition matrix of the Markov 
chain. Since 

II = lim pn = lim pn-lp = IIP 
n-+oo n-+oo 

That is, 

II = IIP 

From this property, we obtain: 

That is, 

IIP + IIJ = II + IIJ 

IIP + IIJ - II = I' 

II(P + J - I) = I' 

II = l'(P + J - I)-I (1) 

where J is a matrix with all its entries equal to 1, I is the identity matrix, 
and l' is the vector [ 1 1 1 1 1 1 1]. 

We tried to calculate II directly using the Continuous-time Markov 
Chain process and our solution was 

II = [ 0 0 0 0 001] 

which means that no matter which stage one begins at, we always finish in 
the absorbent state (with probability of one). This solution does not give 
the desired information. Therefore, in order to obtain the time an individual 
spends in each infectious stage" we used a modified version of a continuous­
time Markov chain. This version allows an individual at a absorbing state, 
~, to come back to an infectious state, we called ..6. the reflective state. Then 
we can form the reflective matrix by adding in the last row of the transition 
matrix the probability that once in stage ..6. one begins in If or h [11]. 
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Appendix B : Computation of Ro 

To begin our computation of Ro, we first compute a transition ma­
trix, the entries of which contain the probabilities of moving from any ex­
amined state to another [11]. The transition matrix is given by: 

-A -A 

0 !i£+.>.-.>.e"2 0 0 0 0 ~+'>'e"2 
4>+Jl.+'>' ¢>+JL+'>' 

0 0 .-!L 0 0 0 .....l!:-
¢>+JL ¢>+JL 

0 0 0 0 0 0 1 

B= 
-A -A 

W 0 0 0 !i£+.>.-.>.e"2 0 ~+'>'e"2 
W+¢>+JL+'>' W+¢>+JL+'>' W+¢>+JL+'>' 

0 W 0 0 0 ~ --1L-
W+¢>+JL ¢>+JL+W ¢>+JL+W 

0 0 W 0 0 0 -1!::±L 
W+¢>+JL w+¢>+JL 

1- -.b..... 0 0 -.b..... 0 0 0 h+w h+w 

To simplify calculations, we divide Ro into two disjoint cases and 
take their weighted sum. R"5 will be the Ro value when the probability of 
starting at stage his 1, and R5 will be the value of Ro when the probability 
of starting at stage If is 1. We weight R"5 with 7#w and R5 with the term 

1 - 7#w. The sum of these two quantities gives the same result as Ro for 
the matrix B. 

-A -A 

0 !i£+.>.-.>.e"2 0 0 0 0 ~+'>'e"2 
¢>+JL+'>' ¢>+JL+'>' 

0 0 .-!L 0 0 0 .....l!:-
¢>+JL ¢>+JL 

0 0 0 0 0 0 1 
p= -A -A 

W 0 0 0 !i£+.>.-.>.e"2 o. ~+'>'e"2 
W+¢>+JL+'>' W+¢>+JL+'>' W+¢>+JL+'>' 

0 W 0 0 0 ~ --1L-
W+¢>+JL ¢>+JL+W ¢>+JL+W 

0 0 W 0 0 0 -1!::±L 
W+¢>+JL w+¢>+JL 

1 0 0 0 0 0 0 
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-A -A 
0 ~+>'->'e""2 0 0 0 0 L!:+>.e""2 

¢+Jl.+>' ¢+Jl.+>' 
0 0 --fL 0 0 0 ....l!:.-

¢+Jl. ¢+Jl. 
0 0 0 0 0 0 1 

A= -A -A 
W 0 0 0 ~+>'->'e""2 0 L!:+>.e""2 

W+¢+Jl.+>' W+¢+Jl.+>' W+¢+Jl.+>' 
0 W 0 0 0 ~ ~ W+¢+Jl. ¢+Jl.+W ¢+Jl.+W 
0 0 W 0 0 0 .-i!:±L 

W+¢+Jl. W+¢+Jl. 
0 0 0 1 0 0 0 

The transition matrix P is for the case when we assume that the 
probability of starting at stage 11 is 1, and transition matrix A is for the case 
when we assume that the probability of starting at stage If is 1. Note that 
the matrices are identical except for the last row of each, which represents 
the reflective distribution. We calculate Ro for each of the matrices above. 
We use (1) and obtain 

1 

(</> + fL)('\ + fL + </» 
->. 

</>(,\ + </> - '\eT 

(fL + </»2(,\ + fL + </» 

Solving for R6, we obtain: 

In the same way we calculate the time an individual spends in each stage 
for the matrix P, 
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W 

(>. + J.L + </»(>' + J.L + </> + W) 
-A A 

eT w(e"2(>. + </» - >.)(>. + 2(J.L + </» + W) 
(J.L + </»(>' + J.L + </»(J.L + </> + W)(>. + J.L + </> + W) 

e~w</>(e~(>. + </» - >')(3(J.L + </»2 + 3w(J.L + </» + W2 + >'(2(J.L + </» + W)) 
(J.L + </»2(>. + J.L + </»(J.L + </> + W)2(>. + J.L + </> + W) 

1 

J.L+</>+W+>' 
-A 

>. - eT + </> 

(J.L + </> + W) (>. + J.L + </> + W) 
-A A 

eT </>(e"2(>. + </» - >.) 
(J.L + </> + W)2(>. + J.L + </> + W) 

We obtain: 

R~ = '\~B (,81 (1 - Ve + ,\~C) + C2('\~C)B2 (e -t (e~ (>. + </» - >')(1 - Ve)C2(>. + 
C)A - wC( -,83</>(2)' + 3C) + ,82C(>'(Ve - 2) + (Ve - 3)C)) +W2(>. + 3C)A +w3 A))) 

where: 

A = (33</> + Ih(J.L + </» 
B=J.L+</>+w 
C=J.L+</> 

Thus, the weighted Ro is a combination of R6 and R5 obtained from 
both cases: 

->. L,. 
Rf = _1_( (e""2 (e 2 C >')(AwB2 (>'+Bl+f'Y«1 Ve)C2 (>'+C)A C( J33<p(2)'+3C)+J32C(>'(Ve 2)+C(Ve 3)))w+w2 (>'+3C)A+w3 A))) + 

o f'Y+w C2(>'+C)B2(>'+B) 

Ih(m +h(xta - ~))) 

Appendix C : The Probability of Extinction 

The probability of extinction of the epidemic (Pe ) is inversely related 
to the reproductive number, or 

PE=~ 
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We calculate the probability of extinction using conditional probabilities. 
We assume that an infected individual can either infect one other person or 
infect no others before being removed from the system. Therefore 

by 

Pe = P [Epidemic goes extinct I Infected infects none] P [Infected infects none] + 
P[Epidemic goes extinct I Infected infects another]P[Infected infects another] 

where if P[Infected infects no one]=p, 

Solving for Pe , we obtain 

But since Ro is the number of people an individual infects, it is given 

Therefore, 

Ro = I-p 
p 

Pe = min(lo, 1) 

Appendix D The Waning Effect 

Since ~ = -wS, we have 

SV = Soe( -wt) 

We begin our investigation by plotting Pe as a function of Ve and w. 
In figure 8, we see the small changes in w results in great changes in Pe - the 
probability of extinction of the epidemic is therefore highly sensitive to the 
waning effect of the vaccine. In order to make Pe greater than one, w has to 
be between 0 and 0.04. In other words, the vaccine must be effective for at 
least twenty five years. Since we are not interested in studying the impact 
of various degrees of the waning effect in our system for this study, we set 
the value of w to 0.03 when investigating the effects of other parameters. 
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Figure 8: Waning effect of vaccine with So = 1000 

Figure 9: Interval for Lambda for which Pe = 1 

Appendix E : Calculation of P Interval 

In order to find the optimum interval for the efficacy of the campaign, 
we find where .Jo = 1. We do this by fixing a value for Ve, and solving for 

the roots of where the expression for .Jo = 1. Using figure 3, we see that the 
largest interval for P to drive Pe = 1 occurs where Ve = 1, under which the 
interval shrinks and eventually is non-existent. We then substitute Ve = 1 
into the expression for .Jo and plot .Jo - 1 (see figure 9). The roots for the 
graph are .\ ~ 0.4328,2.62274 which corresponds to P ~ 0.5652,0.887337. 
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Appendix F : Command to make figure 3 in MatLab 

function z=grafica_Ro2( LVei,HVei,inci,LOmega2,HOmega2,inc2 
,Mu,Phi,f,Betai,Beta2,Beta3,p,Gamma); 
%Lpi = Lower bound for parameter 1 
%Hpi = Upper bound for parameter 1 
%inci= step increment for parameteri 

%Lp2 = Lower bound for parameter 2 
%Hp2 = Upper bound for parameter 2 
%inc2= step increment for parameter2 
% pari, par2, par3 = additional parameters your function may have 

[X,YJ= meshgrid(LVei:inci:HVei, LOmega2:inc2:HOmega2); 

%this is the function you may want to plot 

lambda=p.*Phi./(i-p); 
R_o=(i./(f.*Gamma+Y».*«exp(-lambda/2).*(-lambda+exp(lambda/2).* 
(lambda+Phi».*«Beta3*Phi+Beta2.*(Mu+Phi».*Y.* ... 

(Mu+Phi+Y).~2.*(lambda+Mu+Phi+Y)+f.*Gamma.*«i-X).*(Mu+Phi).~2.* 

(lambda+Mu+Phi).*(Beta3*Phi+Beta2* ... 
(Mu+Phi»-(Mu+Phi).*(-Beta3.*Phi.*(2.*lambda+3.*(Mu+Phi»+Beta2.* 

(Mu+Phi).*«-2+X).*lambda+(X-3).*(Mu+Phi»).*Y+ ... 
(lambda+3.*(Mu+Phi».*(Beta3.*Phi+Beta2.*(Mu+Phi».*Y.~2+(Beta3.* 

Phi+Beta2.*(Mu+Phi».*Y.~3»)./ ... 
«Mu+Phi)~2.*(lambda+Mu+Phi).*(Mu+Phi+Y).~2.* 

(lambda+Mu+Phi+Y»+ ... 
Betai.*«Y./(lambda+Mu+Phi»+X.*Gamma.* 

«i./(lambda+Mu+Phi»-(X./(lambda+Mu+Phi+Y»»); 

z = min(i,i./R_o); 

%this makes gets the plot 
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mesh(X,Y,z); 

%you add title here 

title('Probability of Extinction as a function of Ve and Omega'); 

% ... and ploting for axes 

xlabel('Ve(Vaccine Efficacy)'); 
ylabel('omega(Wanning Effect)'); 
zlabel('Probability of Extinction'); 

Appendix G : Command to make figure4 in MatLab 

function z=grafica_Ro( Lpi,Hpi,inci,LVe2,HVe2,inc2,Mu 
,Phi,Omega,Betai,Beta2,Beta3,f,Gamma); 
%Lpi = Lower bound for parameter 1 
%Hpi = Upper bound for parameter 1 
%inci= step increment for parameteri 

%Lp2 = Lower bound for parameter 2 
%Hp2 = Upper bound for parameter 2 
%inc2= step increment for parameter2 
% pari, par2, par3 = additional parameters your function may have 

[X,Y]= meshgrid(Lpi:inci:Hpi, LVe2:inc2:HVe2); 
lambda=X*Phi./(i-X); 
R_o=(i/(f*Gamma+Omega))*((exp(-lambda/2).*(-lambda+exp(lambda/2).* 
(lambda+Phi)).*((Beta3*Phi+Beta2.*(Mu+Phi)).*Omega .... 

*(Mu+Phi+Omega)~2.*(lambda+Mu+Phi+Omega)+f.*Gamma. 

*((i-Y).*(Mu+Phi)~2.*(lambda+Mu+Phi).*(Beta3*Phi+Beta2* ... 
(Mu+Phi))-(Mu+Phi).*(-Beta3.*Phi.*(2.*lambda+3.* 

(Mu+Phi))+Beta2.*(Mu+Phi).*((-2+Y).*lambda+(Y-3).* 
(Mu+Phi))).*Omega+ ... 

(lambda+3.*(Mu+Phi)).*(Beta3.*Phi+Beta2.*(Mu+Phi)).* 
Omega~2+(Beta3.*Phi+Beta2.*(Mu+Phi)).*Omega~3)))./ ... 

((Mu+Phi)~2.*(lambda+Mu+Phi).*(Mu+Phi+Omega)~2.* 

(lambda+Mu+Phi+Omega))+ ... 
Betai.*((Omega./(lambda+Mu+Phi))+f.*Gamma.* 
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((l./(lambda+Mu+Phi))-(Y./(lambda+Mu+Phi+Omega))))); 

z = min(l,l./R_o); 
%this makes gets the plot 

mesh(X,Y,z); 

%you add title here 

title('Probability of Extinction vs Efficacy of the Vaccine and Campaign'); 

% ... and ploting for axes 

xlabel('P(Campaign Efficacy)'); 
ylabel('Ve(Vaccine Efficacy)'); 
zlabel('Probability of Extinction'); 

Appendix H : Command to make figure 5 in Mat­
Lab 

function Z=grafica_P(incl,Phi); 
p=O:inc1: .99; 
lam=p*Phi./(l-p); 

y=(Phi+lam.*(1-exp(-lam/2)))./((Phi+lam.* 
(1-exp(-lam/2))+lam.*exp(-lam/2))); 
plot(p,y) 
xlabel('P(Efficacy of the campaing)'); 
ylabel('Passing to 12 or 12v with out being detected'); 
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