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Abstract

In 1998 Watts and Strogatz introduced the concepts of small-world
networks and in the process expanded our views of computer, so-
cial, and biological networks. In this project, we built epidemics on
small world and other networks. Epidemic outbreaks of communi-
cable and sexually-transmitted diseases are modeled on small-world
and two-node networks, respectively. The results of simulations are
compared to those obtained from homogeneous mixing (mean field)
epidemic models. Scaling relationships between transmission rates for
epidemics on small-world, random and homogeneous mixing popula-
tions are established empirically. The transmission dynamics of gon-
orrhea in heterosexually-active populations with multiple partners is
used to illustrate the spread of disease on two-node networks. Strate-
gies for disease control are explored.



1 Introduction

Networks are inherently part of our environment and can be defined as
sets of nodes interconnected by edges. We are part of networks of scien-
tists, actors, and musicians, to name a few. However, networks are not only
comprised of people and there are computer, power generator, airline, and
many other type of networks. Connections between nodes in a network repre-
sent some predefined relationship (such as friendship, hub-host connections,
country alliance, to list a few).

Research into networks has gone in multiple directions. For example,
regular and random networks have been studied extensively. Therefore, these
are the type of networks that we will use in our research.

Regular networks are networks in which each node is connected in the
same way to the same number of neighbors (e.g., four connections to the
nearest neighbors). These networks exhibit high levels of clustering since
nearby nearby points are typically connected by a high density of links. Ran-
dom networks are networks in which nodes are connected haphazardly (e.g.
randomly). Hence some nodes are connected to their nearest neighbors and
others to more distant parts of the networks. Hence, random networks have a
relatively small characteristic path length (a measure of the average number
of steps between any two nodes) and exhibit little clustering. However, such
graphs also have little clustering of nearby nodes.

Watts and Strogatz (1998) introduction of the concept of small-world net-
works and their analysis of the relationship to random networks re-invigorated
the study of networks (for an excellent overview, see Strogatz 2001). Research
on small world phenomenon goes back to the 1960’s [2]. The formulation and
initial mathematical analysis of the properties of small-world networks is due
to Manfred Kochen and Ithiel de Sola Pool (Pool and Kochen, 1978). They
estimated the average number of acquaintances of an individual as well as the
probability that two randomly selected members of a society were actually
connected to this individual via one or two intermediaries. Their estimates
were computed with models that included social level and the degree of strati-
fication present in the population. They concluded that acquaintance chains
in highly structured (cluster) populations had characteristic path lengths
that were not much longer than those found in completely unstructured pop-
ulations. Anatol Rapoport and collaborators worked University of Chicago
colleagues worked on social stratification in networks. Their work set the
ground for the theoretical work of Pool and Kochen.

Watts and Strogatz model of small-world phenomena arose from their
study of networks with a mixed ””connectivity” strategy. They found that
the average characteristic path length and the level of clustering are ex-



tremely sensitive to small variations (addition of long-distance connections
between nodes with low probability) on the connectivity structure of a reg-
ular network. Watts and Strogatz knew that regular networks have longer
characteristic path lengths and larger clustering coefficients (a measure of
the fraction of a node’s links that go to other nodes in its immediate vicin-
ity) than random networks. However, they noticed that the replacement
(with low probability) of a few local connections with long-term connections
drastically decreases the average-path length while keeping high levels of
clustering. In other words, specific perturbations on the connectivity struc-
ture of a regular network result in networks that have some of the features of
random (small average-path length between nodes) and regular (clustering)
networks. Watts and Strogatz showed that the replacement of one percent of
the connections of a regular network with distant links was enough to trigger
small-world phenomena.

In this paper, individual-based disease dynamics are implemented on fixed
small-world and random networks. These networks can provide a good in-
sight into the dynamics of disease in social networks. Results from the known
mean field epidemic models and those resulting from epidemics on networks
are compared. Empirical scaling relationships between both approaches are
established. We also study disease dynamics on networks with two types
of nodes where connections among nodes of the same type are not allowed.
The connections between one type of nodes is assumed to be exponentially
distributed. We apply these two-node networks to study the dynamics of gon-
orrhea on a heterosexually active population. In this two-sex network some
males have more connections than others while females receive connections.
The impact of abstinence is considered. In this network, each individual has
at least one partner of the opposite sex. A deterministic model to study
gonorrhea dynamics is studied for comparison purposes. Results from this
deterministic model are compared with those obtained from two-node net-
works. It is found that abstinence plays an important role in the reduction
of disease prevalence and disease persistence.

2 Characterizing Networks

Networks can be mathematically represented by an adjacency matrix 7' of
zeros and ones where

j

1, if there exists a connection between individual ¢ and j where ¢ # j,
0, otherwise.



N | Total number of individuals (vertices) in the network.
r | Radius of vicinity.

k | Average number of contacts per individual.

L | Characteristic path length.

v, | Clustering coefficient.

Table 1: Network-related parameters

The dimensions of the adjacency matrix is N x N where N is the total
number of nodes in the network. All links are bidirectional and self-contact
is not allowed (See table 1 for reference to network-related parameters).
The radius of vicinity, 7, gives the maximum possible number of immediate
connections of an individual to the right and to the left. For a regular net-
work, all the connections are to immediate nodes. A regular network with
radius of vicinity r has a total of 2r connections set per node.

According to the analysis of small-world networks, the average number
of contacts per individual in a random network increases with the number
of long-distance random connections. For a regular network with r = 2, the
number of connection per node (individual) is constant and equals to 4. This
value increases until it reaches approximately 8 contacts per individual as the
network moves from a regular to a random network via small-world networks
with an increasing number of long-term connections. See figure 1.
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Figure 1: Relationship between the average number of contacts per individual
and randomness in the networkwhen r = 2
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Figure 2: Histogram of the number of contacts per individual for completely
random network. For the case of a regular network all the individuals have
exactly 2r contacts

2.1 The characteristic path length and the clustering
coefficient

The characteristic path length is defined as the average distance between two
nodes in the network [2]. That is, it is given by the average number of edges
that must be traversed in order to reach vertex i from vertex j. Watts defines
the characteristic path length (L) of a graph as the median of the means
of the shortest path lengths connecting each vertex v € V(G) to all other
vertices. The algorithm to compute L is as follows: d, = d(v,j) for each
j € V(G) and find d, for each v. L is the median of {d,} where v € V(G).

When N is large, this approach is not efficient and random sampling tech-
niques are preferred (see Huber, 1996). According to the method described
in Huber, d, is calculated for a randomly selected subset of s vertices. L is
the median of {d,}

Watts and Strogatz (1998) computed the clustering coefficient in their
graphs by listing all the neighbors of a vertex, counting the edges that link
those neighbors, and dividing by the maximum number of edges that could
be drawn among the node’s neighbors. The process is repeated on all the
vertices and the average taken. In contrast to the characteristic path length
L, the clustering coefficient remains high until the number of random con-
nections in the network is is rather large. Such clustering coefficient v, of T',
(which is the neighborhood of the vertex v) characterizes the extent to which
vertices adjacent to any vertex v are adjacent to each other. More precisely,



_ QeI
T =
@ k” A

2
where | E(T',) | is the number of edges in the neighborhood of v and

( k2" ) is the total number of possible edges in I',,.

That is, given k, vertices in the subgraph 7T, at most ( k2” ) edges can

be constructed in that subgraph.
The clustering coefficient of G is v = v, averaged over all v € V(G) .

For instance, in a regular network where each node is connected to the
four nearest neighbors the number of edges that link any node’s neighbors
is 3 and the total number of connections that can be drawn among those

four neighbors is Therefore the clustering coefficient according to

2
the definition is given by frac36 and is constant for all the nodes in regular
networks.

3 Individual-based models for disease spread
on networks

Individual-based models are simulations based on the local interactions
of members of a population. They typically consist of an environment in
which the interactions occur specific behaviors and characteristic parameters
for the individuals[10]. In an individual-based model, the characteristics of
each individual are tracked through time.

3.1 Method of creating small-world networks

Watts and Strogatz (1998) proposed the following construction algorithm
for generating small world networks: The initial network is a one dimensional
lattice of N nodes. Each node is connected to its 2r nearest neighbors. The
nodes are then visited consecutively; each edge is connected to a node of its r
nearest neighbors clockwise with probability 1-p and then reconnected, with
probability p, to a randomly chosen node. There are no isolated nodes.

3.2 Method of creating two-node networks

We start with an initial network of N nodes where half of the nodes are
different from the other half. First, each node of type 77 is paired to a
node of type T, to avoid isolated nodes in the network. Next, the nodes are



Figure 3: a) Regular network, b)Small-world network, c)Random network
with p=0.5, d)Completely random network

visited consecutively; each node of type 77 sends a number of connections
exponentially distributed to nodes of type T5.

S;(t) | Vector that represents the state of the individual i at time t.

B Infectious rate for individual based models

I3 Infectious rate for deterministic models

y Recovery rate

o Loss of immunity rate

I(t) | Total number of infected individuals on the network at time t
S(t) | Total number of susceptible individuals on the network at time t
R(t) | Total number of recovered individuals on the network at time t
ot A small time increment

Ps; | Probability of a susceptible individual becoming infectious

Prr | Probability of an infected individual becoming recovered

Prs | Probability of an infected individual becoming susceptible

ij Adjacency matrix that represents connections among individuals on the network

3.3 Modeling the epidemic process

Now that we have described ways of construction, we proceed to build
simple epidemics on them. We will consider a simple case where individu-
als on the network could be at most in one of the following three possible
epidemiological states: Susceptible (S) b) Infectious(I) ¢) Recovered (R).

A susceptible individual in contact with I infectious individuals may be-
come infected during a period 6t with probability:



Py =1— ¢ P10 (1)
where B is a constant risk of infection per unit of time.
The infectious rate is chosen according to the relationship that gives the

average number of infected individuals by an infected individual that has k
neighbors (Keeling & Grenfell, 1999).

~

Ry=k-2 2)
B+~
% determines the proportion of such infected individuals.

It is also assumed that the infectious period is exponentially distributed,
that is, that the probability of recovery in (t,¢ + 6t) is given by:

P]R =1- 677& (3)
Hence % gives the mean infectious period.

Recovered individuals may lose immunity at the per capita rate o, that
is the probability of an individual losing immunity in (¢,¢ + 6t) is given by:

Prg=1—¢""" (4)

When infection do not provide permanent immunity then recovered indi-
viduals become susceptible again. The probability of such transition is given
by (3). On the other hand, if immunity is permanent then ¢ = 0 in (4)

4 Computer simulations

Computer programs for the disease spread simulations were developed on
MATLAB. Basically, three programming modules were constructed: The
network-creation module, the disease-spread-simulator module, and the mod-
ule to plot the network topology.



Infectious indiiduals, It

For the network-creation module, the total number of nodes (individu-
als), N, for the networks was fixed to 1000 and the radius of vicinity ,r, was
set equal to 2.

For the disease-spread-simulator module, the recovery rate, v, was fixed to
%. Three infectious rates were chosen to run simulations: 3 = %, 0= 13—4 and
B = % Simulations were run for the SIR, SIS and SIRS models with two

different initial conditions: 7(0) =5 and I(0) = 500.

The randomness in the connectivity of the individuals on networks plays
an important role in disease spread.
When randomness increases the actual characteristic path length between
individuals decreases, the average number of contacts per individual increases
for a certain r and the clustering among individuals decreases.

Effect of randaomness
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Figure 4: Randomness effect on the disease spread on a network

5 Homogeneous mixing models in closed pop-
ulations without vital dynamics
The homogeneous mixing models corresponding to the cases described in

Section 3.2 are widely used in epidemiology (see for example, Brauer and
Castillo-Chavez, 2000). The simplest SIS model is given by
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If recovery provides permanent immunity then the model changes to

ds I}
— = _—_—57
g
dR
— =~l.
= =7 (9)

Finally, whenever acquired immunity is lost at a constant per capita rate o
the model becomes

s B

I 3

dR

= — A~ = 12
7 = —oR (12)

Only models (6-?77) and (10-12) can support endemic equilibria.

6 Scaling relationships

In homogeneous mixing models, each individual has equal chance to contact
anyone else in the population. That is, every single individual has at least
a weak influence on all other individuals. In addition, homogeneous mixing
models do not deal with any type of intrinsic structure. On the other hand,
dynamics on networks depend strongly on the network structure. That is,
two different network structures will provide different results when disease
dynamics are implemented on them.
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Empirical relationships between the transmission parameter () used in the
homogeneous mixing models and that used in the stochastic individual-based
model (B) were obtained for the small-world, and in a general random net-
work as a function of network properties. Simulation results obtained for
networks with different levels of randomness including the regular networks,
small-world networks, and completely random networks were analyzed. Two
properties in such networks were found to play an important role in order to
compare the disease spread dynamics with homogeneous mixing models of
the type SIR, SIS,and SIRS. These are the average number of contacts per
individual (node) and the clustering coeflicient.

According to the method of network construction, the average number of
contacts per individual increases with the randomness in the network and
the clustering coefficient decreases significantly as high levels of randomness
are achieved. In general the following relationship between the infectious
rate in the deterministic model and that in the networks holds when levels
of clustering in the networks are very low:

B = kp,
where k is the average number of contacts per individual on the network.

One of the main features of a small-world network is the high levels of
clustering retained with the introduction of a small number of random con-
nections. The above relationship does not hold for small-world networks.
However for random networks with 40% of randomness or higher, such re-
lationship adjusts accurately due to the low levels of clustering in such net-
works.

An empirical relationship for small-world and in general any random net-
work was found by using regression on a set of data generated from stochastic
simulations:

~

B = (—7.32+ 1.85k + 2.08%,)6,

where 7, is the clustering coefficient of the network and the data set
consisted of two predictor variables: k£ and ~, and a response variable: the
factor k that best fit the network results with the mean field model results.
See figures 6, 7 and 8 for comparisons of the SIR, SIS and SIRS homogeneous
mixing models and the results obtained from different random networks.
In the next section, two-node networks are used to study gonorrhea on a
heterosexually active population.
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Figure 5: Randomness effect on the clustering coefficient of networks
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Figure 6: Comparison of the SIR homogeneous mixing model and the results
obtained from a completely random network and v, = 0.0077. The infectious
rates were scaled according to the relationship above. 3 = % and v = % for

the top graphs and (§ = % and v = % for the bottom graphs . 1(0)=5 (left

graphs); 1(0)=500 (right graphs)
7 Application: Gonorrhea spread in hetero-
sexual populations

Gonorrhea is a sexually transmitted disease. Gonorrhea mostly affect teens
and young adults. The CDC reportslt2hat gonorrhea rates declined steadily



Approvimalian 1o {he Si5 deterninistic modei

0m L]
A e ot g P e, P F N o haa s “ LA R Al
B I o, S At AN RO TANEy
o B
80 - ’
& 70 =
= =sm
T 600 K
2 ERL
2 s | 2
u 2 7m
g 4mf | 2
T 5]
& 2 6
£ 3m £

— Determiniatic model

Random network with =05 | | s

L , . M , M L . . L , M
0 10 20 =W 40 &0 B D &0 W 100 0 10 20 = 40 & B 70 & W 100
Time Time

¥ AR, Rt R R e T B
a0 a0
Sty B ]
m pan ; P B
B0 a0
m 781
m “m
am o8
m B0
1m &80

Figure 7: Comparison of the SIS homogeneous mixing model and the results
obtained from a random network with p = 0.5 and v, = 0.074. The infectious
rates were scaled according to the relationship above. B = % and v = % for
the top graphs and 3 = % and v = % for the bottom graphs. I(0)=5 (left
graphs); 1(0)=500 (right graphs)

until the late 1990’s([12]). However, rates stabilized between 1996 and 1997
but between increased by nine percent between 1997 and 1999. It is believed
that this increase is due to the increase in gonorrhea among gay and bisex-
ual men([12]). Studies have shown that gonorrhea can facilitate HIV trans-
mission. If the disease is not treated on time gonorrhea can cause serious
difficulties in women, like: PID (pelvic inflamatory disease), subsequent in-
fertility and tubal pregnancie. Since women are less likely to show symptoms
there are fewer cases reported from women. Men show symptoms quickly and
are more likely to seek treatment. The recovery rate for men is three times
greater than for women, that means it takes a man 7 days to they recover
and become susceptible again and a woman takes 21 days to get treated and
become susceptible. The infectious rate for men is around 2.5 greater than
for women[11]. Hence, due to their asymptotic behavior females stay infec-
tious longer than males.

We introduce temporary periods of abstinence in our stochastic and deter-
ministic frameworks. Abstinence plays an important role in the control of
sexually transmitted diseases[12]. In our simulations individuals who have
just recovered go through an abstinence period. Simulations for abstinence

13
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Figure 8: Comparison of the SIRS homogeneous mixing model and the results
obtained from a random network with p = 0.1 and v, = 0.366. The infectious
rates were scaled according to the relationship above. B = % and v = % for
the top graphs and 3 = % and v = % for the bottom graphs. I(0)=5 (left
graphs); 1(0)=500 (right graphs)

periods of 1,2,3, and 5 weeks and efficacies of 50% up to 100% in increments
of 10% are carried out, where efficacy is defined to be the proportion of the
population that obey the abstinence state. Simulations results show that
the actual endemic states can be lowered considerably and proportional to
the abstinence periods. However, such endemic state can be lowered con-
siderably only when the efficacy to follow such abstinence period is above
80%. Furthermore, oscillations whose amplitude depend on the abstinence
period appear. In fact, the disease may be eradicated for large enough pe-
riods of abstinence that may not be realistic. Therefore, abstinence can not
be a strategy to eradicate the disease, but it can control the spread in a
susceptible population.

7.1 Deterministic model for gonorrhea with an absti-
nence state

The following deterministic model for the heterosexual transmission of gon-
orrhea was introduced by Hethcote[11]:

14
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Figure 10: Life history for 200 days for individuals in two different networks
on a SIS model. a) Small-world network b) Completely random network.
N = 1000, B = % and v = %, in white the susceptibles and in black the
infected.
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where r = J]VV—T;, N,, is the male populaton and Ny is the female population.

The transmission rate for males is 312 and (2 for females, 7; are the infectious
period of males and females where ¢ = 1 are males and ¢ = 2 are females.
I, are the males in the infected class and I are the females in the infected
class and the susceptible classes are S; = 1 — I; where i = 1 are the male
susceptible class and ¢ = 2 are the female susceptible class.

A deterministic model for the heterosexual transmission of gonorrhea with

15



temporary periods of abstinence is introduced, as shown in Figure 11. We
will consider males and females. Considering that we want to make com-
parisons with the two node stochastic model for gonorrhea, this model was
derived taking into account the structure of the network. In the network the
population size is fixed to 1,000 individuals and we divide the population in
two: 500 males and 500 females. The nodes are set to be one male following
a female and so on. Also, a male at least has one female partner but it can
have up to five partners distributed exponentially in the male population.
The female population receive the connections but do not send connections.
In the deterministic model individuals can become infected with gonorrhea
by having contact with an infectious individual from the opposite sex at the
rate 3;;1;, where i # j, i = 1,2 and j = 1,2. After an individual becomes
infected with the disease the individual can become abstinent at a rate ~;.
While in the abstinent state the individual may still be infectious but does
not transmits the disease. After a period of time they leave the abstinent
state at a rate 6;.

Individuals are classified epidemically into classes: S; for susceptible pro-
portions where ¢ = 1 stand for male population and ¢ = 2 for females, I;
for the infected males and females proportions, and A; for males and fe-
males in abstinence respectively. We assume a constant population with no
recruitment and no deaths.

aily
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Figure 11: Deterministic model for gonorrhea with abstinence

The model equations for the proportions are:

16



dS;

— = PuSih+6A (13)
% = BiSely + 624, (14)
% = BuSils — il (15)
% = B12Soli — Iy (16)
% = I — 64, (17)
%2 = uly — 694, (18)

Where, Sl+Il+A1:1and SQ+IQ+A2:1.

7.1.1 Basic Reproductive Numbers

The basic reproductive number is defined as the average number of secondary
infections caused by an infectious individual during the infectious period in a
population of mostly susceptible male and female populations. Because there
is only heterosexual contact we have a basic reproductive number for males
Ry, which is the number of secondary female cases produced by one infected
male R,,, = %, and the female basic reproductive number is, R,y = ba
which is the number of secondary male cases produced by an infected female.

The R, for the system is then:
R, = Ry Roy-

R, gives the number of secondary males (females) cases that one female
(male) case produce in a fully susceptible population. The disease will persist
only if R, > 1.

7.1.2 Equilibria and Elasticity analysis

The disease free equilibrium of system13 is S;=1,1, =0, and A; = 0. For
R, < 1 the disease free equilibrium is locally stable while for R, > 1 the
disease free equilibrium becomes unstable and there exist a unique endemic
equilibrium.

17



I = 71726162(1%0 - 1)
' B12(B216102 + Ba17102 + 616271 + Y17201)

I, = 71726162(1%0 - 1)
? Ba1(B120102 + B127201 + 616271 + Y17202)
A %‘fi
Ai —
0;

Wherei:1,2 and SZ:]_—[AZ—AZ

We analyzed the stability of the endemic equilibrium for both male and
female populations numerically. For all parameter values that were used in
the simulations the endemic equilibrium resulted stable as shown in figurel2.
Proving stability for endemic when R, > 1 in a general case could be done
by using the Routh Horwitz criteria but we were not able to find it.

In order to find what parameters were most likely to change the endemic
equilibria we compared the elasticity of the R, with respect to the transmis-
sion rate [3;;, @ # j and the infectious rate 7;. Elasticity of f(\) with respect
to A is defined as:

BN = 22

In our case we have E(R,, (12) = R()Lm% and E(R,, #21) = R%)f%

The elasticity analysis showed that the most significant parameter is the
infectious period for females, 75. We can resume from the elasticity analysis
that when R, > 1 if we lower the infectious periods of females the endemic
states will lower significantly. A strategy for control would be having females
being abstinent for longer periods of time until they recover, but the problem
of asymptomatic individuals takes that strategy out. After looking at various
changes in the initial conditions we found that there is an endemic equilibrium
for any initial conditions I;(0) and I5(0), and a disease free equilibrium when
I,(0) = 0 and I5(0) = 0. Therefore, the endemic state of the disease is
independent of any other changes in the parameters. But we can observe if
individuals choose to be abstinent for longer periods of time, the endemic
state of the disease would be lower than if individuals leave the abstinent
state after a short period of time. Hence, we can conclude that abstinence
will not make the disease die out but rather lower the chances of individuals

18
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Figure 12: Endemic state

getting infected. As we see in figure 13 the endemic state of the disease for
different periods of abstinence.

7.2 Networks with two types of nodes

We focus on heterosexual populations. That is, only sexual contacts among
males and females are considered. The model assumes an active population
where there are no isolated individuals. Everyone in the network has at least
one partner. The distribution of the number of partners is exponential and
given by the following relationship:

e—a

where a was fixed to 0.5.
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Figure 13: Endemic state of gonorrhea after different periods of absti-

nence, (left: one week),(right: five weeks)

7.3 Simulations for the gonorrhea spread

A computer program for the spread of gonorrhea on networks of two types

of nodes is developed on MATLAB. The total number of individuals (indi-
viduals), N, for the network was fixed to 1000, half males and half females.

1

1

The recovery rate, v, is fixed to = for males and to 5= for females. The

7

21

infectious rates are chosen to be B = 2.5 and B = 1 for males and females,
respectively. Simulations are based on an SIS model. Initially, there is an

infected male with four partners, I(0) = 1.

Simulation results show the presence of an endemic state for all the sim-

ulation runs.

7.4 Comparisons between the stochastic and determin-

istic models

Now we want to compare the stochastic and deterministic and see if there
is any relation between them. In figurel6 the period of abstinence is for
one week. In figurel7 the period of abstinence is five weeks. The stochastic
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Figure 14: Comparison between the gonorrhea evolution without abstinence
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Figure 15: Gonorrhea evolution with an abstinence period of 5 weeks for
males and females considering a 100% abstinence efficacy.

model show oscillations and the deterministic crosses through the middle as
the average of those oscillations. We used mostly the same parameters values
in the stochastic and the deterministic in order to make the comparisons. The
one parameter value that changed was the infectious period. In the stochastic
the infectious period 7; was for males y; = 1/7 and for females v = 1/21.
Therefore, individuals in the stochastic would be infectious for 7 days for
males and 21 days for females. In the deterministic model the infectious
period was reduced to 7; = 1/4 for males and 2 = 1/9 for females.

8 Conclusions

Small-world networks provide a good approach to modeling individual-based
disease dynamics. Such networks can provide a good insight into the dynam-
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Figure 16: Stochastic vs. Deterministic

ics in social networks. Disease dynamics is only one of many dynamics that
could be modeled on a small-world network environment. Disease dynamics
on networks depend strongly on the network structure.

Individual-based models offer a useful approach to understand disease
dynamics on networks. In this paper, we focus on small-world networks and
random networks. Local dynamics yield global consequences since each indi-
vidual is characterized and tracked through time.

For networks with small clustering coefficient, the relationship § = kﬁ
provides an accurate approximation between the deterministic mean field
models and those based on random networks.

Empirical relationships between networks with different levels of random-
ness including small-world networks can be obtained by multilinear regression
where the clustering coefficient and the connectivity are chosen as the pre-
dictor variables.

In sexually transmitted diseases as gonorrhea, abstinence plays an im-

portant role in the way of decreasing endemic states. Oscillations in disease
evolution appear as a consequence of such control strategies.
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Figure 17: Stochastic vs. Determinisitic

9 Future Work

Use different infectious rates for long distance connections.
Study virulence evolution in networks.

Study disease dynamics on weighted networks where the infectious rate
would depend on the distance between individuals.
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A Computer programs

The following computer code corresponds the network-creation
module and the disease-spread-simulator module.

function y=SWNetwork(n,in,r,tspan,filename,flag?)
WILILIII7777777777777777777777777777777777/
%SMALL WORLD NETWORK

WL 7777777777777777777777777777/7/7777

%INPUT
%n is the total number of nodes in the network
%r is the radious of vecinity
%0UTPUT
%hcpl=characteristic path length
#hce=clustering coefficient
%in=initial number of infected individuals
%filename=name for the file where the adjacency matrix is saved
%p=probability of edge randomly changed
%flag2=1 if bidirectional connections are considered
%T(i,j)=Matrix that indicates the number of ways of node i to reach node j in
ONLY one step

if r>((n/2)-1)
’r [the radious of vecinity] is too big’
end

PROBS=zeros(1,n+1);
frac=1/n;

PROBS(1,1)=0;
sumfrac=0;
for j=2:n+1,
sumfrac=sumfrac+frac;
PROBS(1, j)=sumfrac;
end

p=0.1;

while p<=0.1 %Loop for changing P and get different networks
T=sparse(n,n,n*5); for i=1:n,
k=i;
1=i;
a=0;
for j=1:r,
if (k+1)>n %right neighbors
k=1;
else
k=k+1;
end

%1 percent of the edges will be set randomly
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rndl=rand;

if (rnd1>=0) & (rndi<p)
’randomly chosen’

k2=1;

while (i==k2)

rndl=rand;

for x=1:n+1,

if (rnd1>=PROBS(1,x)) & (rnd1<PROBS(1,x+1))
k2=x;

end

end

end

T(i,k2)=1;

else

T(i,k)=1;

end

if (1-1)<1 %left neighbors
1=n;
else
1=1-1;
end

%1 percent of the edges will be set randomly
rndl=rand;
if (rnd1>=0) & (rndi<p)
%’randomly chosen’
k2=1;
while (i==k2)
rndl=rand;
for x=1:n+1,
if (rnd1>=PROBS(1,x)) & (rnd1<PROBS(1,x+1))
k2=x;
end
end
end
T(i,k2)=1;
else
T(i,1)=1;
end
end
end

T;

save(strcat(filename,’-’ ,num2str(p),’.mat’),’T’)

if flag2==2
% Convert the network to a bidirectional network-> critical for highly random
networks

’Two way connections have been chosen...’
T2=sparse(n,n,n*5) ;
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T2=T;

for i=1:n
con=T(i,:);
(x,y)=find(con) ;
for j=1:length(x)
if T(i,y(3))==
T2(i,y(3))=1;

if i =y(j)

T2(y(j),1)=1;

end

end

end

end

T=T2;

strcat (filename,’-’ ,num2str(p),’-bi.mat’)
save(strcat(filename,’-’ ,num2str(p),’-bi.mat’),’T’)
else

’one way connections have been chosen...’
end

%
%End of network creation

YParameters
b=2/7; %infectious rate
g=1/7; Yrecovery rate
s=0.1; %loss of immunity rate
dt=0.5;
Tsus=n-in;
Tinf=in;
Trec=0;
Tsusm=zeros (4000,2) ;
Tinfm=zeros (4000,2) ;
Trecm=zeros (4000,2) ;
Tsir=zeros((tspan/dt)+1,4);

Cstatus=zeros(tspan/dt,n);
SUSCEPTIBLE_=0;
INFECTED_=1;
RECOVERED_=2;
t=0; %initial time
status=zeros(n,1); Y%status of individual O=suceptible,l=infected,2=recovered
%Set the number of initial infectious individuals
for i=1:in
status(i)=1;

end

YA
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Cstatus(1,:)=status(:,1)’;
’Simulating disease spread on the SW-NETWORK (SIS model)...’

%iterations=round(tspan/dtt) ;
iterations=tspan;

tic
c=1;
while gt<=tspan
for i=1:n
con=T(i,:);
switch status(i)
case SUSCEPTIBLE_
Linf=0;
(x,y)=find(con) ;
for j=1:length(x)
if status(y(j))==INFECTED.
Linf=Linf+1;
end
end
PSI=1-exp(-b*Linfxdt) ;
u=rand;
if u<=PSI
status (i)=INFECTED_;
Tinf=Tinf+1;
Tsus=Tsus-1;
end

%SIR model -permanent immunity
case INFECTED.
PIR=1-exp(-g*dt) ;
u=rand;
if u<=PIR
status (i) =RECOVERED_;
Trec=Trec+1;
Tinf=Tinf-1;
end

% SIS model
Yicase INFECTED_
% PIS=1-exp(-g*dt);
% u=rand;
% if u<=PIS
% status(i)=SUSCEPTIBLE_;
% Tsus=Tsus+1;
% Tinf=Tinf-1;
% end

%SIRS model -loss of immunity
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case RECOVERED.
PRS=1-exp(-s*dt) ;
u=rand;

if u<=PRS

status (i)=SUSCEPTIBLE_;
Tsus=Tsus+1;
Trec=Trec-1;

end

end

end
Tsir(c,1)=qt;
Tsir(c,2)=Tsus;
Tsir(c,3)=Tinf;
Tsir(c,4)=Trec;

if ¢==10
toc
end
if mod(c,1)==0
save(strcat(’status-’ ,num2str(p),’-’ ,num2str(c),’.mat’),’status’);
end

Cstatus(c+1,:)=status(:,1)’;

if Tinf==0
qt
break %Exit for loop when the number of infectives are 0
end

dgplot(strcat(filename,’-’ ,num2str(p),’-bi.mat’),strcat(’status-’,num2str(p),’-’,num2str(c),
M(c) = getframe;

qt=qt+dt;
c=c+1;
end

movie2avi(M, ’temp.avi’,’FPS’,5,’QUALITY’,90)

toc
save(strcat (’statusFinal-’ ,num2str(p),’.mat’),’status’);
save(strcat (’SIRSDATA’,’-’ ,num2str(p),’-’ ,num2str(z),’ .mat’), Tsir’);
save(strcat(’Cstatus-STD’,’-’ ,num2str(z),’.mat’),’Cstatus’);

p=p+0.1
end Y%of while p<=1

c=c-1;
plot(Tsir(l:c,1),Tsir(1:¢c,2),’g’);
hold on;

plot(Tsir(l:c,1),Tsir(1:¢,3),’r’);
plot(Tsir(l:c,1),Tsir(1:c,4),’b’);
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xlabel(’Time steps’);
legend(’Susceptibles’,’Infected’, ’Recovered’);

The following is the module to plot the network topology:

function DGplot(filename,filenameStatus)
load (filename,’T’);
load(filenameStatus);

T
L=length(T);
y=zeros(L,2);
x=-round(L/4) ;
i=1;

TSO=zeros(L,2);
TIO=zeros(L,2);
TRO=zeros(L,2);
cons=1;
coni=1;
conr=1;
SUSCEPTIBLE_=0;
INFECTED_=1;
RECOVERED_=2;

while i<=(L/2)+1
y(i,1)=x;
y(i,2)=sqrt((L/4)2-x.2);

switch status(i)
case SUSCEPTIBLE_
TSO(cons,1)=x;
TSO(cons,2)=y(i,2);
cons=cons+1;
case INFECTED.
TIO(coni,1)=x;
TIO(coni,2)=y(i,2);
coni=coni+l;
case RECOVERED.
TRO(conr,1)=x;
TRO(conr,2)=y(i,2);
conr=conr+1;
end

x=x+1;
i=i+1;
end

x=round(L/4)-1;

J=1;
’iccc’,i
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while i<=j+((L/2)-1)
y(i,1)=x;
y(i,2)=-sqrt ((L/4)2-x.2);

i
if i<=L
switch status(i)
case SUSCEPTIBLE_
TSO(cons,1)=x;
TSO(cons,2)=y(i,2);
cons=cons+1;
case INFECTED_
TIO(coni,1)=x;
TIO(coni,2)=y(i,2);
coni=coni+i;
case RECOVERED.
TRO(conr,1)=x;
TRO(conr,2)=y(i,2);
conr=conr+1;
end
end
x=x-1;
i=i+1;
end

gplot(T,y,’-0’);
hold on;

if conr>1
conr=conr-1;
TO=eye (conr, conr) ;
gplot (TO,TRO(1:conr,:),’-oy’);
end

if cons>1
cons=cons-1;
TO=eye (cons, cons) ;
gplot (TO,TSO(1:cons,:),’-0g’);
end

if coni>1
coni=coni-1;
TO=eye (coni,coni) ;
gplot (TO,TIO(1:coni,:),’-or’);
end

cons,coni,conr

length(y)
TSO
TIO
TRO



end
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