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Abstract
Most population models assume that individuals within a given population
are identical, that is, they ignore the fundamental role of variation. By under-
standing the dynamics within heterogeneous populations, we can more accu-
rately predict population growth and composition. Using computational and
analytical techniques, we consider Malthus, logistic and Allee growth models
with several different initial parameter distributions. Our results highlight
the importance of local dynamics on genetic diversity and, consequently, the
role of natural selection on the evolution of traits.
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1 Introduction

Many models assume homogeneous populations, that is, all individuals have
identical traits. However, in reality this is not an accurate depiction. What
is needed is a model that takes into account differences between individuals,
that is, a model where selected traits have rates of increase that are different
from the average individual [3]. The kinds of differences in attributes that will
have the most impact are, for example, death rates and birth rates. In order
to further develop what is known about heterogeneous population dynamics,
we start with the framework for the model developed by Berezovsky et al [1].
Consider a population size N(t) with a growth rate that depends on the

total population size and a parameter a. Hence,

dN

dt
= N(t) · F (N(t), a). (1)

The only case we consider in this paper is the case where F (N(t), a) =
f(N(t)) + a · g(N(t)) which includes the Malthus, logistic, and Allee growth
models.
In a heterogeneous population, where each individual has its own growth

parameter a, it is possible to group individuals with equivalent parameter val-
ues. Let l(t, a) represent the number of individuals at time t with parameter
a. By definition, the distribution function of a can be written as

Pt(a) =
l(t, a)

N(t)
(2)

Then, with further calculations outlined later in the paper, the following
equation is reached:

Pt(a) = e
(a·p(t)) · q(t) · P0(a)

M0(p(t))
(3)

where p(t) and q(t) are given by dp
dt
= g(N(t)) and dq

dt
= q · f(N(t)) with

initial conditions p(0) = 0 and q(0) = 1. P0(a) is the initial distribution of
parameter a and M0(p(t)) is the moment generating function of that initial
distribution of a, evaluated at p(t).
We want to see how different growth models and initial parameter distri-

butions affect what the parameter distribution will be at a later time. (3)
gives us the distribution function of parameter a at time t as a function of
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the growth model and the initial distribution. Therefore, we study the im-
pact of the populations dynamics on the evolution of the initial distribution
of parameter a. By studying a distribution’s evolution, we gain a better
understanding of these local dynamics and their impact upon heterogeneous
population models.

1.1 Background of Natural Selection

Natural selection occurs when the environment changes and the more repro-
ductively successful forms are likely to increase in frequency [5]. Some factors
that affect natural selection are fitness which includes birth rate or adapt-
ability. We define fitness as a measure of an individual’s ability to survive
and reproduce [4]. Here, we focus on the impact of a gradient of fitness in a
population. We interprete higher fitness of a specific trait to mean a higher
net growth rate.
Fisher’s Fundamental Theorem of Natural Selection states that, for a

heterogeneous population, the rate of increase of the average fitness in the
population is equal or roughly equal to the population’s variance in fitness
[3]. The equation,

dr(t)

dt
= σ2(t) (4)

is used for haploid populations with Malthus growth, where r is the average
growth rate of the individuals in the population [6]. Therefore, a population
with a larger variance, will increase in average fitness at a greater rate than a
population with a smaller variance. In other words, the rate at which natural
selection acts upon a parameter distribution within a population is controlled
by the variance of that parameter distribution [6].

2 Parameter Distribution Equation

The following discussion and equations are paraphrased from [1]. We begin
with a general population dynamics model given by

dN(t)

dt
= N(t) · F (N(t), a),

where N(t) is the total populations size and F (N(t), a) is the growth factor
of the population with parameter value a. Again, let l(t, a) represent the
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number of individuals at time t with parameter a. It follows that

N(t) =

Z
A

l(t, a)da, (5)

where A = {set of all possible a values}. For each different a-group l(t, a),
the rate of change of l(t, a) is given by

d[l(t, a)]

dt
= l(t, a) · F (N(t), a). (6)

Note that the growth factor is dependent on the size of the total population
and not on the size of the a-group. For a more complete discussion on this
rationale see [1].
In addition,

l(0, a) = l0(a), (7)

N0 = N(0) =

Z
A

l0(a)da. (8)

Our goal is to compute Pt(a), that is, the parameter distribution function
at any time t. Where,

Pt(a) =
l(t, a)

N(t)
.

Hence, consider the growth factors F (N(t), a) of the form

F (N(t), a) = f(N(t)) + a · g(N(t)). (9)

The functions p(t) and q(t) defined by,

dp

dt
= g(N(t)), (10)

dq

dt
= q · f(N(t)), (11)

where p(0) = 0 and q(0) = 1 are quite useful. We solve for l(t, a) by subsi-
tuting (9) into (6) to obtain the following:

d[l(t, a)]

dt
= l(t, a) · [f(N(t)) + a · g(N(t))]
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Using separations of variables and integrating with respect to t givesZ
d[l(t, a)]

l(t, a)dt
dt =

Z
f(N(t))dt+

Z
a · g(N(t))dt. (12)

Further substitution of (10) and (11) into Equation (12) gives

l(t, a) = q(t) · ea·p(t) · ec. (13)

If we let l0(a) = e
c, (13) becomes

l(t, a) = l0(a) · q(t) · ea·p(t). (14)

The moment generating function of l(t, a) and l0(a) are given by

Ut(λ) =

Z
A

eλ·a · l(t, a)da, (15)

U0(λ) =

Z
A

eλ·a · l0(a)da. (16)

Hence,

Mt(λ) =
Ut(λ)

N(t)
(17)

where,

Mt(λ) =

Z
A

eλ·a · Pt(a)da, (18)

which is the moment generating function of Pt(a). From (17) and (18) we
can find N(t). The subsitution of Equation (14) into (5) gives

N(t) =

Z
A

l0(a) · q(t) · ea·p(t)da.

Using (18), (16), and (17), this implies that

N(t) = q(t) ·N0 ·M0(p(t)). (19)

Equations (10), (11) and (19) allows us to solve for N(t) from the compu-
tation of p(t) and q(t). Substituting Equations (14) and (19) into (2) and

using P0(a) =
l0(a)
N0

gives

Pt(a) =
ea·p(t) · P0(a)
M0(p(t))

.

This is the primary equation used for determining the evolution of the para-
meter distributions studied throughout the remainder of this paper.
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3 Methodology

To model the evolution of the distribution of parameter a, we use equation
(3) and numerically study several different initial distributions. We designed
a Matlab program that graphically displays changing distributions of a with
respect to time. The program also outputs graphs of p(t) with respect to
time, and total population size with respect to time. This program consists
of m-files that return values for the moment generating function and the
density, or mass function for each distribution. In the case of logistic and
Allee growth models, p(t) can not be explicitly solved. Therefore, we chose
to use computational techniques to solve p(t) and look at its effect upon the
distributions as they change with time. This capability allows us to analyze
the effects of different growth models. It should be noted that p(t) can be
interpreted as an internal time for the models considered here.
The number of different distributions and cases of N0 in some of the mod-

els, also influenced the decision to study these distributions computationally.
By including the different distributions and their moment generating func-
tions, we can generate a large number of different graphical representations
of the changing distributions in a very short ammount of time.
In order to study the changes in a distribution over time we use equation

(3), which was derived in a previous section, given by

Pt(a) = e
(a·p(t)) · q(t) · P0(a)

M0(p(t))
.

This function uses an initial distribution and it’s moment generating function
to evaluate the distribution of a at a given time t. The changes in the
distribution are influenced by p(t), which is determined by the chosen growth
model. To study these effects, we selected three different kinds of growth
models: Malthus, logistic, and Allee. To see examples of these population
models, please refer to part (D) of the Figures in the following sections.
We began our simulation with the simplest model, the Malthus model:

dN
dt
= N(t) · a. Malthus growth is basically exponential and thus can be

unbounded. For our equation, the Malthus form is F (N(t), a) = a. Since
F (N(t), a) = f(N(t)) + a · g(N(t)), we know f(N(t)) = 0 and g(N(t)) = 1,
thus for p(t) we have dp

dt
= 1. That is, time is not rescaled and therefore

p(t) = t0
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In nature, Malthus growth exists in the first stages of an unrestricted pop-
ultation explosions such as algae blooms, but should not be valid for large
time values due to environmental limitations.
Next we looked at the logistic growth model

dN(t)

dt
= N(t) · a ·

µ
1− N(t)

K

¶
.

This is usually considered a more useful model than Malthus, since it is often
associated with simple population growth that is limited only by population
density; for example, organisms growing under lab conditions. The carrying
capacity of a logistic equation represents the stable equilibrium for the pop-
ulation size. For our purposes, we use the normalized logistic equation where
K = 1. Hence

F (N(t), a) = a · (1−N(t)).
That is, f(N(t)) = 0 and g(N(t)) = (1−N(t)). Here, dp

dt
= 1−N(t). Since

N(t) = N0 · q(t) ·M0(p(t)), we have that

d[p(t)]

dt
= 1−N0 · q(t) ·M0(p(t)).

Recall K = 1, f(N(t)) = 0, and q(0) = 1. Thus, it follows that q(t) = 1.
Additionally p(t) satisfies

d[p(t)]

dt
= 1−N(t),

where

N(t) = N0 ·M0(p(t)).

Hence, our initial population size is chosen for two cases; N0 < K = 1 or
N0 > 1.
Then, we looked at the Allee growth model,

dN

dt
= N(t) · a ·

µ
1− N(t)

K

¶
· (N(t)− α).

This model can also be considered more useful model since it takes into ac-
count the possibility of a population becoming too low in numbers to sustain
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growth. Thus, the Allee model can be used for such situations as model-
ing the reintroduction of endangered species, where α is a threshold below
which the population will die. We used the normalized Allee equation for
our investigations where K = 1. This normalized Allee model is given by

F (N(t), a) = a · (1−N(t)) · (N(t)− α).

Thus, f(N(t)) = 0 and g(N(t)) = (1 − N(t)) · (N(t) − α). Again q(t) = 1,
and p(t) satisfies

dp

dt
= (1−N(t)) · (N(t)− α), (20)

N(t) = N0 ·M0(p(t)), (21)

where our initial population size is either; N0 < α,α < N0 < 1, or N0 > 1.
With these three models, we analyzed six continuous distributions: nor-

mal, truncated normal, exponential, uniform, truncated exponential, and a
hybrid exponential x uniform distribution (see Appendix 7.1). We also in-
clude a brief analysis of a discrete distribution, the Poisson. The continuous
distributions, exponential, uniform, and normal were chosen, because they
well known and commonly used. It is often reasonable to assume that a limit
exists on the variations available in a gene pool at any given time. The biolog-
ical limit of variation of parameter a can be represented by using truncated
distributions. To illustrate this view, we included the truncated normal dis-
tribution, truncated exponential distribution, and the previously mentioned
hybrid distribution. A discrete distribution was included to show how the
model could be extended to approximate discrete distributions for factors
such as family size or fecundity [7]. Using additional equations from [1], we
found the general mean and variance of each distribution at any p(t) (see
Appendix). These also aid us in understanding the dynamics of an evolving
parameter distribution Pt(a).

4 Analysis

Before we discuss specific parameter distributions, we introduce some of the
general trends found. This will help focus our analysis on the specifics of
each distribution.
When considering positive values of a, it may be helpful to assume that

this parameter corresponds to the growth rate. With increasing population
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size, we see a higher frequency of individuals with larger a values over time.
The interpretation of negative parameter values is quite different. Their
effect will be discussed later on.
To look at the effect p(t) has on the parameter distribution, we focus on

the Malthus model where p(t) = t. Under this model, the mean value of
the parameter a increases with t. In general, whenever N(t) is decreasing
p(t) decreases below 0, and the growth rate, F (N(t), a), is negative. It is a
net reproductive rate where the death rate is ”winning”. That is, with time
there is an increase in the relative abundance of smaller a values within the
population as the number of individuals with high parameter values decrease
at a faster rate. The mean parameter value will also decrease in this case,
and as above, for bounded distributions, the variance will decrease towards
0.
With logistic growth, the changes initially resemble those observed with

Malthus growth. However, as N(t)→ 1, p(t) and the density function Pt(a)
approach finite limits. Thus, as the population tends towards its carrying
capacity, the trait distribution approaches an equilibrium.
The Allee model has dynamics similar to those of the logistic model

(Compare Figure 4and Figure5). However, the eventual distribution depends
strongly upon the initial population size. In the Allee growth models with
threshold α and α < N0 < 1, the distributions behave in a similar manner
to the logistic model for N0 < 1. When N0 < α or N0 > 1, the population
declines. For N0 < α, N(t) → 0, and when N0 > 1, N(t) → 1. While
these two situations have drastically different outcomes with respect to the
population size, it is clear that the dynamics of the distribution of traits are
essentially identical.
For positive a values, we consider the evolution of the parameter distrib-

ution to parallel the changes in total population size. A growing population
will cause the distribution to evolve towards higher values. That is, the mean
will increase. A decreasing population will have the reverse effect, that is a
decreasing mean. Let us now compute the specific parameter distributions.

4.1 The Normal Distribution

The normal distribution with mean µ and variance σ2, is the classic bell
curve. Using Equation (3) for the normal distribution we obtain:

Pt(a) =
1√
2π · σe

− 1
2
· (a−µ+σ2·p(t))2

σ2
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Figure 1: Normal Distribution with Malthus Growth: A) A graph of the distribution
as it changes with respect to time. B) A two dimensional representation of graph A. C)
A graph of p(t) vs t. D) A graph of the total population size N(t) over the given time
interval.

With the Malthus model, the mean shifts in the positive direction with ve-
locity σ2 and is unbounded since p(t) = t. From the graphs and calculations,
an initial normal distribution remains a normal distribution with a changing
mean µt = µ0+σ2 ·p(t) and a constant variance σ2t = σ2. In other words, the
mean of Pt(a) changes, but the varience and distribution type do not (see
Figure 1). Note that the initial variance of our parameter distribution has a
direct influence upon the rate of change of the normal distribution. Under
the simple Malthus model, our biological interpretation of this distribution
evolution is quite limited. Although this simplistic model does provide much
insight into the dynamics of the changing normal distribution, it makes little
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sense to have the mean diverge to infinity.
Refining our model from Malthus to logistic growth, an initial normal

distribution again remains normal. For an initial population N0 less than
the carrying capacity, p(t) approaches a limiting value. Therefore, the mean
and varience of the distribution will asymptotically approach a limit value as
N(t) → 1 (see Figure 2). Starting with N0 > 1, the population will decline
and approach 1. Very similar dynamics occur under the Allee model, for
α < N0 < 1.

Figure 2: Normal Distribution with Logistic Growth where N0 < 1: A) A graph of the
distribution as it changes with respect to time. B) A two dimensional representation of
graph A. C) A graph of p(t) vs t. D) A graph of the total population size N(t) over the
given time interval.
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4.2 The Truncated Normal Distribution

The Truncated Normal Distribution with parameters µ and σ2, truncated
between c and d is of the form:

P0(a) =
−√2 · e− 1

2
·( (a−µ)2

(σ2)
)

(σ ·√π · ((erf(1
2
·√2 · (−d+µ)

σ
)− erf(1

2
·√2 · (−c+µ)

σ
))

Pt(a) is too large to put in the paper.

Figure 3: Truncated Normal Distribution with Malthus Growth: A) A graph of the
distribution as it changes with respect to time. B) A two dimensional representation of
graph A.

For Malthus growth, the truncated normal initially behaves much like
the regular normal distribution. However, as the mean comes closer to the
truncation point of the initial distribution, the σ2 → 0. Note that this
last effect is an marked difference from the standard Normal distribution
described above, which had a constant variance. As t increases, the mean
approaches the upper boundary, and the variance decreases (see Figure 3).
If time were allowed to go to infinity, mathematically the parameter density
function would tend towards having infinite height and infinitely small width
(small variance), that is, it approaches something similar to the δ-function.
Biologically speaking, this could mean that the curve keeps shifting to higher
and higher parameters until it reaches the biological limit at the boundary.
For logistic, when N0 < 1, and for Allee, when α < N0 < 1, the distrib-

ution starts out like the Malthus, but then slows down and tends towards a
final parameter distribution, similar to the Normal Distribution.
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Figure 4: Truncated Normal Distribution with Logistic Growth and N0 > 1: A) A graph
of the distribution as it changes with respect to time. B) A two dimensional representation
of graph A. C) A graph of p(t) vs t. D) A graph of the total population size N(t) over the
given time interval.
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Figure 5: Truncated Normal Distribution with Allee Growth and N0 > 1: A) A graph of
the distribution as it changes with respect to time. B) A two dimensional representation
of graph A. C) A graph of p(t) vs t. D) A graph of the total population size N(t) over the
given time interval.
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Figure 6: Truncated Normal Distribution with Allee Growth and N0 < α: A) A graph of
the distribution as it changes with respect to time. B) A two dimensional representation
of graph A. C) A graph of p(t) vs t. D) A graph of the total population size N(t) over the
given time interval.
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For logistic and Allee, when N0 > 1, we see the reverse affects, as N(t)
tends back towards the carrying capacity (compare Figures 4 and 5).
For Allee, when N0 < α, N(t) approaches 0, however, the dynamics are

almost identical to the case where N0 is greater than 1 (compare Figure 6 to
Figures 4 and 5). We see that for any decreasing population, F (N(t), a) can
be perceived as a death rate or net growth rate. We have the same dynamics
regardless of the value N(t) is approaching.

4.3 The Exponential Distribution

The exponential distribution has the distribution function:

P0(a) = λ · e−λ·a

By applying Equation (3), we obtain the general equation

Pt(a) = e
a·(p(t)−λ) · (λ− p(t))

which is still exponential, but with parameter λ− p(t). It should be pointed
out that because of our moment generating function, this distribution is only
valid for p(t) < λ.
As p(t)→ λ, this distribution will approach a uniform distribution, how-

ever it does not ever become uniform, due to the infinite range of parameter
values. In fact, the exponential distribution tends towards 0 as p(t)→ λ and
is only defined for values of time p(t) < λ. More interesting results occur
with the truncated exponential distribution, which is discussed later in this
paper.
With Malthus growth, when p(t) = t, the exponential distribution re-

mains exponential with parameter λ − t. Thus, as t → λ, the mean and
variance of the distribution go to infinity (see Figure 7).
With logistic growth, for an initial population below 1, the exponential

distribution behaves as discussed above for the Malthus model. However,
due to p(t) approaching a limiting value, the parameter λ− p(t) approaches
a limiting value as well. Observe that p(t) is still restricted to values less
than λ, however it can be shown that p(∞) = λ · (1−N0). Therefore, for the
logistic model, there are no time restrictions since p(∞) = λ · (1−N0) < λ.
By solving dp

dt
= 0 to find the limiting value, the distribution is a fixed

exponential distribution with the parameter approaching λ−p(∞) = (λ ·N0)
as the population size approaches 1. For an N0 greater than 1, the p(t) values
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Figure 7: Exponential Distribution with Malthus Growth: A) A graph of the distribution
as it changes with respect to time. B) A two dimensional representation of graph A.

Figure 8: Exponential Distribution with Logistic Growth, N0 < 1: A) A graph of the
distribution as it changes with respect to time. B) A two dimensional representation of
graph A.
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Figure 9: Exponential Distribution with Allee Growth, N0 > 1: A) A graph of the
distribution as it changes with respect to time. B) A two dimensional representation of
graph A.

move with the decrease in population and approach a negative limiting value.
Thus, the parameter λ− p(t) is increasing towards the limiting value λ ·N0
as the population size approaches 1 (see Figure 8).
For the Allee model when N0 is between the threshold value and 1, the

evolution of the distribution resembles the evolution seen with logistic growth
above. It can be shown that for N0 > 1, the distribution is an exponential
distribution with the parameter approaching N0 · λ (see Figure 9). Below
the threshold condition, the population dies out as (N(t) → 0) and the
distribution is an exponential distribution with the parameter approaching
N0
α
· λ. Again, we see similar dynamics with these two cases.

4.4 The Uniform Distribution

Consider the uniform distribution with boundary values c and d such that
c < d:

P0(a) =
1

(d− c)
This means each parameter value is equally represented within the population
initially. Therefore, using Equation (3), we have:

Pt(a) =
(p(t) · ea·p(t))
(ed·p(t) − ec·p(t)) .

18



As will be shown later, we see that Pt(a) is of the form of a truncated
exponential distribution with t > 0. See Equation (22) in the Appendix for
details.

Figure 10: Uniform Distribution with Malthus Growth: A) A graph of the distribution
as it changes with respect to time. B) A two dimensional representation of graph A.

For the Malthus growth model, the distribution starts uniform and over
time the parameter distribution increases for higher values of our parameter
a. Thus, the distribution begins to resemble a positive exponential curve (see
Figure 10). The mean tends towards the positive boundary and variance
tends to 0 as p(t) → ∞; an expected but still unrealistic result for most
applications.
Next we consider the logistic and Allee models. For the logistic model

when N0 < 1 for the Allee model when α < N0 < 1, the population still
evolves into a distribution resembling a positive exponential curve. The
velocity of the change approaches 0 as p(t) approaches its limiting value
(see Figure 11). For N0 > 1 for both the logistic and Allee models, and for
N0 < α in the Allee model, the behavior observed is identical to the behavior
described at the beginning of the Analysis section for decreasing populations.
As can be seen in the next section, the Truncated Exponential Distribution at
time t remains truncated exponential but with parameter λ− p(t) and when
λ−p(t) = 0 the distribution is uniform. Therefore, for a uniform distrubiton
where p(t) is negative, Pt(a) is exponential with parameter λ = −p(t) (see
Figure 12).
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Figure 11: Uniform Distribution with Logistic Growth and N0 < 1: A) A graph of the
distribution as it changes with respect to time. B) A two dimensional representation of
graph A. C) A graph of p(t) vs t. D) A graph of the total population size N(t) over the
given time interval.
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Figure 12: Uniform Distribution with Allee Growth and N0 < α: A) A graph of the
distribution as it changes with respect to time. B) A two dimensional representation of
graph A. C) A graph of p(t) vs t. D) A graph of the total population size N(t) over the
given time interval.
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4.5 The Truncated Exponential Distribution

Figure 13: Truncated Exponential Distribution with Malthus Growth. The time ranges
from t = 0..2 : Note the uniform distribution at t = λ, where λ = 2. A) A graph of the
distribution as it changes with respect to time. B) A two dimensional representation of
graph A.

The truncated exponential distribution with parameter λ, truncated from
c to d, is given by the equation:

P0(a) = λ · e−λ·a

e−λ·c − e−λ·d
Therefore using Equation (3), we see that Pt(a) rearranges to the equation:

Pt(a) =
((p(t)− λ) · ea·(p(t)−λ))
(ed·(p(t)−λ) − ec·(p(t)−λ)) . (22)

Under Malthus growth, as with the exponential distribution, the trun-
cated exponential distribution tends towards a uniform distribution as p(t)→
λ (see Figure 13). However, due to the truncation, the moment generat-
ing function is now defined for any p(t) value. This means that the trun-
cated exponential distribution actually does become a uniform distribution
at p(t) = λ and continues towards an exponential curve (see Figure 15). Fur-
thermore, it can be shown (see Appendix) these distributions are actually
identical, in that the uniform distribution at time t is equal to the truncated
exponential distribution at time t+ λ. See The Uniform Distribution in the
section above for the dynamics of the truncated exponential distribution, and
compare Figure 14 with the Uniform distribution in Figure 11.
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Figure 14: Truncated Exponential Distribution with Alee Growth, α < N0 < 1: A)
A graph of the distribution as it changes with respect to time. B) A two dimensional
representation of graph A. C) A graph of p(t) vs t. D) A graph of the total population
size N(t) over the given time interval.

23



Figure 15: Truncated Exponential Distribution with Malthus Growth. The time ranges
from t = 0..4: Observe that we can compute distributions for t > λ. A) A graph of the
distribution as it changes with respect to time. B) A two dimensional representation of
graph A.

4.6 The Hybrid Uniform x Truncated Exponential Dis-
tribution

As seen in the Appendix 7.1, we derived a different version of the truncated
exponential distribution, which is given by:

P0(a) = λ · e−λ·a + 1 + e
−λ·d − e−λ·c
d− c

We see that this distribution has characteristics of both the exponential and
uniform distribution, therefore the resulting dynamics reflect properties of
both distributions. While the graphs of these two distributions appear quite
similar, for p(t) = λ, we observe the slight difference. Whereas the standard
distribution is uniform, our hybrid distribution has a slightly higher density
for the larger parameter values (see Figure 16) and compare to Figure 13. We
see from the previous comparison of the truncated exponential and uniform
distributions that this is an expected result.
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Figure 16: Hybrid Uniform x Truncated Exponential Distribution with Malthus Growth:
Observe that at t = λ, where λ = 2, the distribution is not quite uniform as in trucated
exponential. Compare with Figure 13. A) A graph of the distribution as it changes with
respect to time. B) A two dimensional representation of graph A.

4.7 Discrete Distributions

Some biological traits are better modeled by a continuous gradient. However
some traits may have discrete outcomes, such as the number of offspring
per reproductive episode (fecundity). These distributions and their moment
generating functions can be approximated by considering them continuous.
While we did not study these distributions extensively, we look at a case here
to show how this can be done. More discrete distributions can be explored
using our Matlab program (see Appendix 7.3).
The Poisson distribution with parameter λ is given by the density function

P0(a) =
e−λ · λa
a!

.

Using Equation 3 and n! = Γ(n+ 1) yields

Pt(a) =
λa · ea·p(t)−λ·ep(t)

Γ(p(t))
.

For a Poisson distribution with Malthus growth, the mean increases as in
the previous distributions. However this distribution has some interesting
dynamics. This can be clearly understood when we look at the mean and
variance, since both are λ · e(p(t)).
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Figure 17: Poisson Distribution with Malthus Growth: A) A graph of the distribution
as it changes with respect to time. B) A two dimensional representation of graph A.

Figure 18: Poisson Distribution with Logistic Growth, N0 < 1: A) A graph of the
distribution as it changes with respect to time. B) A two dimensional representation of
graph A.
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Since the mean and variance increase with time, the density of parameters
near the mean decreases as the mean increases, due to the growing variance.
Therefore, the distribution becomes uniform as time increases. For the more
reasonable logistic model, the Poisson distribution approaches some finite
limiting value as N(t)→ 1, as can be seen in Figure 18.

4.8 Negative Parameter Values

Negative parameter values are also of interest for some problems. For ex-
ample, the homegeneous Malthus model of extinction models the important
process of tree population self-thinnning [1]. As mentioned in the analysis
of the different distributions, these values are particularly interesting in the
study of the logistic and Allee growth models.
We begin by taking a second look at the interpretation of our paramater a.

In both the logistic and Allee models a > 0 is usually interpreted as a growth
rate. For negative a values, we can consider the parameter a as a death
rate, or a negative net growth rate of the population. More specifically, this
parameter represents the magnitude of the effect that the current population
size has on the rate of change of the population. In our individual based
models, this parameter has the effect of controling how the current state
of the total population impacts the rate of change of an a-group, or sub-
population. It is this connection between the state of the overall population
and the growth or decline of an individual a-group that brings to light the
cause of the dynamics observed under the models studied.
We first consider a heterogeneous population as described in the Intro-

duction. We see from [1] that for Et(a), the mean parameter value of the
population, the rate of change of the population for both logistic and Allee
models is given by the equation

d[N(t)]

dt
= N(t) · Et(a) · g(N(t)),

where the form of g(N(t)) is determined by either the Allee or logistic models.
When assuming Et(a) is positive, it follows g(N(t)) is negative.
If we consider the various a-groups which are given by the equation

d[l(t, a)]

dt
= l(t, a) · a · g(N(t))
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as described in earlier sections, it can be observed that for those a-groups with
negative a values, d[l(t,a)]

dt
is positive. Therefore the a-groups with negative

parameter values will actually grow as N(t) declines!

Figure 19: Normal Distribution with Allee Growth: A) A graph of the distribution as
it changes with respect to time. B) A two dimensional representation of graph A. C)
A graph of p(t) vs t. D) A graph of the total population size N(t) over the given time
interval. Note that the population drops down in numbers at first, then increases towards
the threshold value α = 0.25.

The result of this phenomena can be see in populations with a paramater
distribution containing some negative values, such as in Figure 19. Initially,
the majority of the population begins to decrease. However, after a period
of time the growth of those a-groups with negative parameter values begins
to overtake the decreasing effect of the a-groups with positive a values and
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Figure 20: Truncated Normal Distribution with Allee Growth: A) A graph of the distri-
bution as it changes with respect to time. B) A two dimensional representation of graph A.
C) A graph of p(t) vs t. D) A graph of the total population size N(t) over the given time
interval. Note that the population does not drop down in numbers at first, but decreases
towards N(t) = 0. Compare with Figure 19.
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Et(a) → 0. This results in the population increasing to the threshold value
α. For example, under an Allee model with N0 < α, the total population size
is increasing due to the negative parameter values and is still less than α.
Therefore g(N(t)) = (1−N(t)) · (N(t)−α) remains negative and approaches
0.
Regardless of the population dynamics in this case, the dynamics of the

distributions are very similar to those we would see with a population con-
taining only a-groups with positive parameter values (see Figures 19 and
20).

4.9 Applications to Biology

So far this paper has involved mostly abstract mathematical discussions and
simulations. In this section we will now apply the model developed in [1] to
a hypothetical biological situation.
First, let us look at how this work impacts Fisher’s Fundamental Theo-

rem of Natural Selection (4). The definition stated previously for a haploid
population is:

d[r(t)]

dt
= σ(t)2

which biologically signifies that the increase of fitness in one generation is
equal to the additive genetic variance of fitness [2]. This is usually taken
to mean that a population with a larger variation is able to change faster,
that is, it adapts quickly. From Karev’s studies using Equation (3), we see
how a distribution, and subsequently its variance, changes over time. By
following how that variation is changing, it is possible to see how Fisher’s
theorem can be studied over time. Through this application, not only can one
understand what trend an organisms fitness composition will lean towards,
but also this can be used to mathematically understand why and how the
variance is changing.
Note that in the framework of a heterogeneous model, equation (4) is

valid if and only if the growth model of the population is Malthus. In the
more general and realistic cases where F (N(t), a) = f(N(t)) + a · g(N(t)),
we have the more general form of Fisher’s equation [1].

dEt(a)

dt
= g(N(t)) · σ(t)2.
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This equation can be considered as a generalizaton of the Fundamental The-
orem of Natural Selection for haploid populations [6].
Very rarely is Malthus growth experienced for long periods of time, so we

will only focus on the logistic and Allee growth models. To better understand
the results of this heterogeneous population model and how it relates to
natural selection, we will briefly present a hypothetical biology example.
Suppose we have a population of fireflies with a variation of biolumines-

cence (brightness) from very dim to very bright. For our situation, let us
assume that the brighter the firefly the more fit the organism is, that is, the
faster the growth for that trait. Now let us say that there is a uniform dis-
tribution of this trait within the population and that each individual has its
own rate of Malthus growth in correspondence to this variation. Using the
equation by Karev, we find as time goes on, that the distribution of dim and
bright variations will have a distribution resembling a positive exponential
curve. This makes sense because we start by having equal numbers of all
variants of fireflies, and as time goes on, the faster growth (brighter) indi-
viduals increase substantially in their numbers where the relative number of
the slower growth individuals decreases. From our model we would expect
to see higher numbers of bright (more fit) fireflies within the population over
time, with this trait distributed according to a positive exponential curve.

5 Conclusions

In our investigation, we discovered there is a significant change over time
in the distribution of a trait within a heterogeneous population. We also
found that the initial distribution does indeed determine the dynamics of a
changing distribution. The growth model used for the population also plays
a vital role by controlling the final equilibrium distribution of the trait. As
illustrated in the Allee and logistic growth models, the initial population
size also has an effect upon the evolution of a trait within a population, as
dictated by the growth model.
Under logistic growth, the parameter p(t) slows down after some time and

the distribution’s rate of change slows down as well. With Allee growth, the
distribution strongly depends on the initial parameters as to the survival or
decline of the individuals in the population and the initial population size.
This research helps us understand the role of heterogeneity in population
modelling and the role of different distributions of traits and their influence
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on natural selection.
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7 Appendix

7.1 Hybrid Uniform x Truncated Exponential Distri-
bution

Our version of the truncated exponential differs from traditional methods.
This version consists of truncating the exponential at point K, and then
adding the excised tail to the truncated exponential, thus shifting the graph
up and making the area under the curve equal to 1. C(t) is the constant to
be added. Z K

0

P0(a)da =

Z K

0

(λ · e−λ·a)da+
Z K

0

Cda = 1

For the above equation to be true,Z K

0

Cda = e−λ·K

Only then will the area under the curve equal 1. Thus,

C =
e−λ·K

K
.
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Our parameter distribution function for this distribution is therefore,

P0(a) = λe−λ·a +
e−λ·K

K
.

The Moment Generating Function for the truncated exponential is given by:

MGF =

Z K

0

et·a · λe−λ·a + e
−λ·K

K
da,

and with some calculations, we have:

M0(t) =
λ

λ− t · (1− e
−K·(λ−t) − e

−λ·K

K
· (1− eK·t).

7.2 Relation of the Truncated Exponential Distribu-
tion to the Uniform Distribution

We mention in the body of the paper that under this system the Truncated
Exponential Distribution for a ∈ [c, d] and the Uniform Distribution for a ∈
[c, d] are essensially the same equation, only time offsets from one another.
The following is included as a proof of this statement.
First we look at the initial parameter distribution of the truncated expo-

nential,

P0(a) =
λ · e−λa

e−λc − e−λd
Using the definition (20) we find that the general moment generating function
for this pdf is

M0(p(t)) =
λ(ec(p(t)−λ) − ed(p(t)−λ))
(p(t)− λ)(e−λc − e−λd) ,

and the case when p(t) = λ we get the following equation

M0(λ) =
λ(d− c)
e−λc − e−λd .

Applying (3) to the above equalities we obtain

Pλ(a) =
eλa · λ·e−λa

e−λc−e−λd
λ(d−c)

e−λc−e−λd
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and after simplification we have

Pλ(a) =
1

(d− c) , (23)

which is the parameter distribution function for uniform. This shows that as
truncated exponential distribution approaches λ it actually becomes uniform.
If you recall, the initial uniform distribution at time tu becomes

Ptu(a) =
p(tu) · ep(tu)·a
ep(tu)·d − ep(tu)·c . (24)

Now for a truncated exponential distribution over the range (c, d) at time te,
Pte(a) is given by:

Pte(a) =
ea(p(te)−λ) · ((p(te)− λ)

ec·(p(te)−λ) − ed·(p(te)−λ) .

Making the subsitution p(te) = λ + p(tu) into the density function for the
exponential distribution, Pte(a), we see that:

Pte(a) =
p(tu) · ea·p(tu)
ed·p(tu) − ec·p(tu) (25)

Comparing (24) and (25) we see that when conditions are such that p(te) =
λ + p(tu), the truncated exponential distribution with paramater λ and the
uniform distribution are essentially equivelent distributions.

7.3 MatLab Program Files

The Following MatLab M-files were created to model the changing distrib-
utions studied in this paper. They were used on PC’s running Matlab R12
with the Microsoft Windows 98 operating system. Copies of the program can
be obtained from the authors or through the Mathematical and Theoretical
Biology Institute at Cornell University.
The main function probdist() calls the other three functions mass(), mo-

ment() and p() and from them constructs graphs of the changing parameter
distributions. All interested parties are encouraged to experiment with new
distributions by including their density functions and moment generating
functions in mass.m and moment.m, respectively.
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Matlab M-File: probdist.m
function [a,x,P]=probdist(tmin,tmax,ai,aj,model,n0,dist)

%Usage: [a,x,P]=probdist(tmin,tmax,ai,aj,MODEL,n0,dist);

%

% ***You also need files: p.m, mass.m, and moment.m****

% Also note that our population is NORMALIZED

%This function plots our parpameter distribution as it evolves over time.

%It returns

% a = range of parameter values

% x = p(t) values (the internal time of our model)

% P(p(t),a) = Parameter values over the given range of t and a

%The arguments are

% (tmin,tmax) = range of time values.

% (ai,aj) = range of parameter values.

% MODEL= Either ’malthus’ or ’logistic’ models for parameter evolution.

% n0 = value of N0, our initial population size (0..1)

% dist = distribution number (below)

%

% *** Here’s a list of different parameters ***

%1) Exponential: probdist(0,2,0,3,’malthus’,.5,1);

% probdist(0,1,0,3,’logistic’,.2,1); probdist(0,3,0,3,’logistic’,2,1);

% probdist(0,11,0,3,’allee’,.2,1); probdist(0,12,0,3,’allee’,.5,1);

% probdist(0,3,0,3,’allee’,2,1);

%

%2) Truncated Exponential (std.): probdist(0,2,0,3,’malthus’,.5,2);

% probdist(0,2,0,3,’logistic’,.3,2); probdist(0,2,0,3,’logistic’,2,2);

% probdist(0,3,0,3,’allee’,.3,2); probdist(0,3,0,3,’allee’,.5,2);

% probdist(0,3,0,3,’allee’,2,2);

%3) Truncated Exponential (our version):

% *** See Truncated Exponential (std.) above for these parameters. ***

%

%4) Normal probdist(0,3,-5,15,’malthus’,.3,4);

% probdist(0,3,-5,15,’logistic’,.2,4); probdist(0,2.5,-15,10,’logistic’,1.1,4);

% probdist(0,15,-10,15,’allee’,.2,4); probdist(0,17,-10,15,’allee’,.45,4);

% probdist(0,25,-25,15,’allee’,1.1,4);

%

% probdist(0,25,-15,10,’logistic’,1.1,4); With negative aplha, check MU=1 vs

0

%

%5) Truncated Normal

% probdist(0,5,0,10,’malthus’,.3,5);

%

%6) Uniform probdist(0,1,-11,10.01,’malthus’,.2,6);

% probdist(0,1,-11,11,’logistic’,.2,6); probdist(0,.45,-11,10.01,’logistic’,1.3,6);

% probdist(0,1,-11,11,’allee’,.2,6); probdist(0,1,-11,11,’logistic’,.2,6);
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% probdist(0,.35,-11,10.01,’allee’,1.3,6);

%

%7) Binomial probdist(0,3,0,10,’malthus’,.2,7);

%

%8) Poisson probdist(0,2,0,15,’malthus’,.5,8);

% probdist(0,1.5,0,15,’allee’,.5,8);

%

%9) Geometric

% probdist(0,2,0,2,’malthus’,.5,9);

%

% More Graph Parameters.

%

%>> probdist(0,3,-5,15,’malthus’,.3,4);

%>> probdist(0,3,-5,15,’logistic’,.3,4);

%>> probdist(0,3,-5,15,’malthus’,.3,4);

%>> probdist(0,5,2,10,’malthus’,.3,5);

%>> probdist(0,.5,2,10,’logistic’,5,5);

%>> probdist(0,9,2,10,’allee’,.24,5);

%>> probdist(0,1.9,0,3,’malthus’,.5,1);

%>> probdist(0,1,.9,10.01,’malthus’,.2,6);

%>> probdist(0,1,.9,10.01,’logistic’,.2,6);

%>> probdist(0,1,.9,10.01,’allee’,.2,6);

%

%>> probdist(0,1.9,0,3,’malthus’,.5,2);

%>> probdist(0,1.9,.9,4.1,’malthus’,.5,2);

%>> probdist(0,1.9,.9,3.1,’malthus’,.5,2);

%>> probdist(0,2,.9,3.1,’malthus’,.5,2);

%>> probdist(0,1.999,.9,3.1,’malthus’,.5,2);

%>> probdist(0,2,.9,3.1,’malthus’,.5,2);

%

%>> probdist(0,4,.9,3.1,’malthus’,.5,2);

%

%>> probdist(0,17,.9,3.1,’allee’,.26,2);

%>> probdist(0,2,-.01,3.1,’malthus’,.5,3);

%>> probdist(0,2,0,15,’malthus’,.5,8);

% Before we begin, we need some global variables to make things easy.

global MODEL N0 K;

MODEL=model;

N0=n0;

%First lets choose the growth model & then solve for our p(t) values.

if (strcmp(model,’malthus’)==1) %Avoid ode45 for malthus since p(t)=t

t=linspace(tmin,tmax,50);

x=transpose(t); %set up x as ode45() would
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else if (strcmp(model,’logistic’)==1 | strcmp(model,’allee’)==1)

%Generate p(t) values with p(0)=0. p.m needs to know ’dist’

[t,x]=ode45(@p,[tmin tmax],0,[],dist);

else

error([’Argument #5: Please specify ‘logistic‘ or ‘malthus‘ models. ;-]’]);

end;

end;

pts = size(x); %pts(1) is the number of a values to use between ai and aj

a = linspace(ai,aj,pts(1)); %a is the range of parameters from ai to aj

for i=1:pts(1) %For each x value,

for j=1:pts(1) %For all the a values...

%calculate the distribution Pt(a)

P(i,j) = exp(x(i)*a(j))*mass(a(j),dist)/moment(x(i),dist);

end;

end;

%--------------------------Now we display our graphs!---------------------------%

%3D graph (Pt(a) vs t vs a), 2D graph (Pt(a) vs t), p(t) vs t and N(t) vs t%

%-------------------------------------------------------------------------------%

figure, hold on

subplot(2,2,1), surf(a,t,P) % The 3D Graph

ylabel(’Time t’), xlabel(’Parameter a’), zlabel(’Density P’)

grid on, shading faceted %or ’shading interp’

colormap(sqrt(hsv)) %We can modify the color matrix by exponentiation ;-]

axis xy

switch (model) %Pretty things up a little ;-]

case ’allee’, model = ’Allee’;

case ’malthus’, model = ’Malthus’;

case ’logistic’, model = ’Logistic’;

end;

%Add a title to our Figure and graph

switch (dist)

case 1, A=[’Exponential Distribution with ’,model,’ Growth Model’];

case 2, A=[’Truncated Exponential with ’,model,’ Growth Model’];

case 3, A=[’Hybrid Uniform x Truncated Exponential with ’,model,’ Growth Model’];

case 4, A=[’Normal Distribution with ’,model,’ Growth Model’];

case 5, A=[’Truncated Normal Distribution with ’,model,’ Growth Model’];

case 6, A=[’Uniform Distribution with ’,model,’ Growth Model’];

case 7, A=[’Binomial Distribution with ’,model,’ Growth Model’];

case 8, A=[’Poisson Distribution with ’,model,’ Growth Model’];

case 9, A=[’Geometric Distribution with ’,model,’ Growth Model’];
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otherwise, A=[’[Un-named, see mass.m] with ’,model,’ Growth Model’];

end;

%Set the graph title, figure window title and maximize the figure.

title(A),

set(figure(gcf),’Numbertitle’,’off’,’Name’,A,’Position’,[1 29 1024 672])

%----------And now the 2D graph----------

subplot(2,2,2)

%Get 3 Distribution curves, t=0, one from the middle, and at t=tmax

t0=1;t1=round(pts(1)/2);t2=pts(1);

hold on, plot(a,P(t0,:),’r-’),plot(a,P(t1,:),’m-.’),plot(a,P(t2,:),’b:’)

xlabel(’Parameter a’), ylabel(’Density P’)

title(’Time Change in Density’)

S1=[’P(a) at t=’,num2str(t(t0))]; S2=[’P(a) at t=’,num2str(t(t1))];

S3=[’P(a) at t=’,num2str(t(t2))];

legend(S1,S2,S3)

%Graph p(t) (internal time) vs time

subplot(2,2,3), plot(t,x)

xlabel(’Time t’), ylabel(’Internal Time p(t)’)

%Graph our Populations size N(t) vs. time

subplot(2,2,4)

for i=1:pts(1)

N(i)=(N0)*moment(x(i),dist);

end;

plot(t,N), xlabel(’Time t’), ylabel(’Population Size N(t)’)

S1=[’N(t) with N(0) = ’,num2str(N0),’.’];

legend(S1) %No ; so the figure can be modified from the command line

% AND THEY ALL LIVED HAPPILY EVER AFTER,

% T H E E N D.

Matlab M-File: mass.m
function p=mass(a,dist)

%Usage: mass(a,dist)

%

%Density/mass function used by probdist() to calculate Pt(a).

%See ’help probdist’ for more details.

% a = parameter value

% p = Po(a) where Po() is the initial distribution given by ’dist’.

% dist = 1,2,... see ’help probdist’

%PLEASE SEE MOMENT.M FOR VARIABLE DESCRIPTIONS.
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%----- 1 = Exponential.

switch (dist)

case 1

L = 2.000000000001; % parameter lambda

p=L*exp(-L*a);

%----- 2 = Truncated Exponential.

case 2

L=2;

% Truncate from c to d

c=1; d=3;

if (a>=c & a<=d)

p=(L*exp(-L*a))/(exp(-L*c)-exp(-L*d));

else

p=0;

end;

%----- 3 = Truncated Exponential x Uniform hybrid (a ’custom’ distribution.)

% ******* VALID only for t<L ********

case 3

L=2.000000000001;

k=3;

if (a>k | a<0)

p=0;

else

p=L*exp(-L*a) + exp(-L*k)/k;

end;

%----- 4 = Normal.

case 4

u=1; s=2;

p=(1/(s*sqrt(2*pi))*exp(-(a-u)2/(2*s2)));

%----- 5 = Truncated Normal.

case 5

u=6; s=1; c=2; d=10;

if(a<c) | (a>d)

p=0;

else

p=sqrt(2)*exp(-1/2*(a-u)2/(s2))/(s*sqrt(pi)*(erf(1/sqrt(2)*

(-c+u)/s-erf(1/sqrt(2)*(-d+u)/s))));

end;

%----- 6 = Uniform.
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case 6

alpha=1; %parameter a

b=10; %parameter b

if (a>b | a<alpha)

p=0;

else

p=1/(b-alpha);

end;

% -------------------------------------------------------------- %

% ---------------- Some DISCRETE Distributions. ----------------%

% -------------------------------------------------------------- %

% Note: use n! = gamma(n+1), to interpolate our distribution ;-)

%----- 7 = Binomial.

case 7

% *** FOR a<k only!!!

k=10; %parameter k = number of trials...

P=.3; %probability P

%p=((factorial(k))/(factorial(A)*factorial(k-A)))*PA*(1− P )(k−A);
p=((gamma(k+1))/(gamma(a+1)*gamma(k-a+1)))*P a*(1− P )(k−a);

%----- 8 = Poisson.

case 8

L=1; % parameter lambda

%p=exp(-L)*(LA)/(factorial(A));
p=exp(-L)*(La)/(gamma(a+1));

%----- 9 = Geometric.

case 9

P=.9; % probability parameter P

p=P*(1− P )(a−1);

end; % end our switch

Matlab M-File: moment.m
function m=moment(x,dist)

%Usage: moment(x,dist)

%

%Moment gerenating function for probdist(), see ’help probdist’

% x = some p(t) value

% m = moment(p(t) for the distribution given.

% dist = 1,2,... see ’help probdist’
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switch (dist)

%----- 1 = Exponential.

case 1

L = 2.000000000001; %parameter lambda = just over 2 ;-)

m=L/(L-x);

% Note that we’re only valid for x->Lambda...

%----- 2 = Truncated Exponential.

case 2

L=2; c=1; d=3; %truncated between c and d

if (x==L), m=L*(d-c)/(exp(-L*c)-exp(-L*d));

%The Mo(p(t)) value for p(t)=L

else, m=(L*(exp(c*(x-L))-exp(d*(x-L))))/((L-x)*(exp(-L*c)-exp(-L*d)));

%General Mo(p(t)) for p(t)!=L

end;

%----- 3 = Truncated Exponential x Uniform hybrid (a ’custom’ distribution.)

case 3

L=2; k=3; %Exponential part has paramaeter L, truncated from 0 to k

if x==L

m=(1+L2*k2-exp(-L*k))/(L*k);
else

if x==0, m=1;

else, m=L/(L-x)*(1-exp(-k*(L-x)))-exp(-L*k)/(k*x)*(1-exp(k*x));

end;end; %end if statements.

%----- 4 = Normal.

case 4

u=1; s=2; %parameter mean = u, standard dev. = s

m=exp((u*x)+((s ∗ x)2/2));

%----- 5 = Truncated Normal.

case 5

u=6; s=1; c=2; d=10; %mean u, std. dev. s, and truncated from -k to k

m=exp(1/2*x*(x*s2+2*u))*(-erf(1/2*(-d+x*s2+u)*sqrt(2)/s)+erf(1/2*(-c+x*s2+u)*
sqrt(2)/s))/(-erf(1/2*sqrt(2)*(-d+u)/s)+erf(1/2*sqrt(2)*(-c+u)/s));

%----- 6 = Uniform.

case 6

c=1; d=10; %Truncated from c to d.

if (x==0), m=1;

else, m=(exp(x*d)-exp(x*c))/(x*(d-c));

end;

%----------- Some DISCRETE Distributions... -----------
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%----- 7 = Binomial.

case 7

% *** FOR a<k only!!!

P=.3; % probability parameter

k=10; % number of trials.

m=(P*exp(x)+(1-P))k;

%----- 8 = Poisson.

case 8

L=1;

m=exp(L*(exp(x)-1));

%----- 9 = Geometric.

case 9

P=.9;

m=(P*exp(x))/(1-(1-P)*exp(x));

end; %end the switch statement

Matlab M-File: p.m
%Used by probdist() -- please see ’help probdist’

function dx=p(t,x,dist) %x is p(t)

global MODEL N0

if (strcmp(MODEL,’logistic’)==1)

% differential equation for finding p(t) (determined by "moment")

% K = 1, normailzed carrying capacity, N = initial population...

% our ODE to return to ODE45...

dx=1-N0*moment(x,dist);

else if (strcmp(MODEL,’allee’)==1)

% look at the allee model, with critical population value alpha,

% carrying capacity K and initial population N.

alpha=.25;

m=moment(x,dist);

%K=3.9; N0=4.5; alpha =5; aplha>N0, die out. N0<aplha, like logistic.

dx=(N0*m-alpha)*(1-N0*m);

end; end;
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7.4 Distribution Means and Variances of Pt(a)

General Mean Equation: Et(a) =
d
dλ
ln(M0(λ))

General Variance Equation: σ2(t) = d2

dλ2
M0(λ)
M0(p(t))

− d
dλ

M0(λ)
(M0(p(t)))2

Table 1:These are the general equations used to find the means and variances below.
Please note that for these general equations that λ = p(t).

Distribution Computed Mean

Uniform p(t)de(p(t)d)−p(t)ce(p(t)c)−e(p(t)d)+e(p(t)c)

p(t)(e(p(t)d)−e(p(t))̧)
Exponential 1

λ−p(t)
Normal µ+ σ2p(t)

Binomial* nrep(t)

rep(t)+1−r
Poisson λep(t)

Geometric* 1
1−ep(t)+rep(t)

Truncated Exponential Too large for table
Hybrid Uniform X Trunc. Exp. Too large for table

Truncated Normal Too large for table
Table 2:These are the calculated means of the evolving distribution equations.

Distribution Computed Variance

Uniform p(t)2 d2 e(p(t) (d+c))+p(t)2 c2 e(p(t) (d+c))−e(2 t d)+2 e(p(t) (d+c))−e(2 p(t) c)−2 p(t)2 d e(p(t) (d+c)) c
p(t)2 (e(p(t) d)−e(p(t) c))2

Exponential 1
(λ−p(t))2

Normal σ2

Binomial* n r ep(t) (−1+r)
(r ep(t)+1−r)2

Poisson λ ep(t)

Geometric* (−1+r) ep(t)
(1−ep(t)+r ep(t))2

Truncated Exponential Too large for table
Uniform X Trunc. Exp. Too large for table
Truncated Normal Too large for table

* Here, r is the parameter for the distribution. Traditionally this parameter or prob-
ability is denoted as p.

Table 3:These are the calculated variances of the evolving distribution equations.
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